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Abstract

Three dimensional particle simulations of collisionless drift waves in sheared magnetic fields
were performed in order to determine the nonlinear behavior of inverse electron resonance
dynamics in the presence of thermal fluctuations. It is found that stochastic electron

diffusion in the electron resonance overlap region can destabilize the drift wave eigenmodes.

Numerical evaluations based on a nonlinear electron resonance broadening theory give =

predictions in accord with the frequency and growth rates found in the simulation of short

wavelength modes (kyps 2 1).




Low frequency drift wave induced turbulence is conjectured to be one of the impor-
tant mechanisms for anomalous transport in tokamaks. An ingredient necessary for a
theoretical model of turbulent transport is an understanding of the instability mechanism.
Consequently, the stability of electrostatic normal mode perturbations in an inhomoge-
neous, collisionless plasma embedded in a sheared magnetic field has been a subject of
interest over the past decade.!™® Specifically, the effects of electron orbit stochasticity

have been proposed as a significant consideration in determining drift wave stability.®:"

In this Letter, the stability of electrostatic collisionless drift waves in a sheared mag-

netic field is investigated using a three dimensional electrostatic particle simulation model.
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It is found that modification of the linear electron dynamics due to overlapping electro-
static islands in the vicinity of the mode rational surfaces <k|| = kflcc = 0) can affect the

7/

stability of the linear drift wave eigenmodes.

The simulations are carried out in slab geometry with the inhomogeneous density

~ profile, n(z) = nokLye "/ (1 —e~*Le), in the z-direction. The system length in the

z-direction is L, ng is the average number density, and L,(=1/k,6=—n'(z)/n) is the
density scale length. The y and z-directions are homogeneous and periodic. A normal
mode expansion of the fields and charge density is employed in the z-direction.® The
electron dynamics are treated in the guiding center approximation for motion across the
magnetic field and exact parallel motion is retained along the field.® The ion motion evolves
exactly, according to the Newton-Lorentz equation. The magnetic field is given by B =
By [73 + 9 (z — o) / Ls], where o defines the central position of the rational surfaces and
L, is the shear scale length. The value zg = L, / 2 is chosen and the rational surfaces
are concentrated in the middle of the simulation domain. The boundary condition on
the electrostatic potential is ¢(0) = 0 = ¢ (L;) and the eigenmode parity is dominantly
even with respect to the rational surfaces. The rational surface positions are located
at Tmn = 2, & (n/m) (LsLy/Lz), where k, = 27rm/Ly and k, = 27rn/Lz. Typical
simulation parameters used are: Ly X Ly X L, = 12ps X 6p, x 1200p5, 7 = Te/Ti =1,
mi/me = 500, Ls/Ly = 14, Ly/§ = 16, ve/wpeb = 2.6, wee Jwpe = 11, kyp, = 1.1m,
ng = 16 particles/cell, w;At = 0.07, m = 0,41,...,£16, n = 0,%1,..., 45, and the finite

particle size is given by a, = 1.56, a, = 6, and a, = 2706. The parameter definitions
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are T, = mev?, ps = /Tvi/wei, wei = eB/mic, Wi, = 47rnoez/m and § is the unit grid
spacing. ' v v

The analysis and interpretation of the simulation results consists of two parts. First,
particle orbits and diffusive electron behavior are investigated in detail. Second, the wave
potential fluctuations are temporally and spatially analyzed in order to determine their
sté,bility.

Test electrons are continuously selected in the vicinity of the mode rational surfaces
and the spatial diffusivity is obtained. To determine the Chirikov condition!® for stochas-
ticity at the simulation thermal level in the mode rational surface region, the island width
is compared with the mode rational surface separation. In the neighborhood of the electron
resonance, the island width is approximately Azz/ps ~ (4/ ps) (Ls |bmnl / Bve)l/ 2 This
value is 5 ( le@mnl / Te)l/ ? for the simulation parameters. A crude estimate of the rational

surface spacing is given by Awmn/ps = (—L L /psL )(An/Am) ~ 0.21n/ [m(m+ 1)].

* I‘mm the fluctuation levels mea,sured in the 31mu1at10n, lO'3 S e¢mn / Te pS 10 -1 the is-

’ land overla.p condltlon is Well sa,tlsﬁed (AmT > AZpmn) and the electron orb1ts are stochastlc
as demonstrated in Fig. 1.

The diffusion coefficient, D, for test particles may be measured by using D =
limy— oo Zf\_]__l (AXZ-)2 / 2N i, where AX; is the change in position of the guiding center
for the ¢th particle at time ¢ and where N is the number of test particles. The guiding
center displacement of test electrons in the z-direction as a function of time, initially lo-
cated in the range 5 S z / ps S 7, is illustrated in Fig. 2a. The value of the test particle
diffusion coefficient (D = 0.006p%w,;) is verified by two independent calculations. One
estimate is based on the potential fluctuations measured in the simulation assuming that
resonant diffusion dominates. Another estimate is made using the exponential divergence
of neighboring orbits, where the relation between the parallel correlation length and dif-
fusion coefficient is determined. It is evident from Fig. 2a that the diffusion coefficient
decreases beyond wc;t = 132. This indicates that the diffusion process is time-dependent
and, as will be shown, is related to the saturation of the potential fluctuations.

Using a modification of the resonance broadening theory of Dupree,’' Hirshman and

Molvig® derived a renormalized kinetic equation to describe the behavior of electrons in a
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--Here; the-diamagnetic-drift-frequency-is 'w*'":"wé{'('kg'p‘,z“)“ ("pg /Ln) , the correlation length ig-~ e

strongly turbulent plasma in a sheared magnetic field. For the case of resonance overlap,
stochastic particle orbit behavior resulted in a net effect of electron orbit diffusion trans-
verse to the magnetic ﬁelcl.1 ’Ehe electrons decorrelate from the drift wave resonances at
a rate of w, = [(khve>2 D] / , where kil = ky/Ls. It was also found that at short wave-
lengths (ky ps 2 l) the linearly stable modes can be nonlinearly destabilized for w, 2 w,
where w is the linear drift wave eigenmode frequency.

The renormalized electron density résponse is coupled to the linear ion respomnse

through the quasineutrality condition. This gives an eigenmode equation for the perturbed

potential,®

d?$/ds* +Q(3)$ =0, 1)

[(1+T)“‘"+Ci (Ci)(1+7i>l“o(b)+z’( )w—‘“— ] o
{CzZ(Cz)(* )[ o(b) — ()]+32< —1)2-2[(@}

Q(&) =

T, = (wc/w*) (Ls/Ln) (me/2mi)1/2_, I'n(b) = e7°I,(b), I, are modified Bessel functions,
b= (kyps)2 /7', (= w/\/ﬁk”vi, and ¥ = :v/ps. The turbulently modified electron source

term,

I(O):/O ds g, (3)

change the basic linear eigenmode stability, where g =
ht/2 exp [ (w/wc) s — (m/w ) 3277,/4], and h = (1 +33)-1. The electron response inte-
grals are numerically evaluated and the eigenmode equation can be solved using a standard
shooting method. To verify this approach, comparisons are made with an initial value code :
which follows the time evolution of the perturbed distribution function and electrostatic
potential.!? The eigenfunctions, $(.%), and eigenvalues, w = w, + 17y, are determined by
varying the parameters kyp,, 7, L / L, m; / Me, and we / wy, Where w,/w, measures the

strength of the background fluctuations causing the diffusion in z. In Fig. 2b, the growth
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rate is represented as a function of the decorrelation rate for various wave numbers. The

solid circles correspond to the prediéted growth rates at the measured simulation decorre-

lation rate.

Figure 3 shows the time history of the electrostatic energy for the single and multiple
rational surface cases. For the multiple rational surface case with kyp, > 1, there is
approximately a 30 percent increase in the amplitude above the thermal ﬂuctuation level
and it occurs over several drift periods. Total energy conservation was less than half a
percent over the entire length of the run. The growth rates of the fluctuations correspond
closely to the predictions derived from the nonlinear eigenmode equation. The variation
of the mode in the z-direction agrees qualitatively with the wave function obtained from
the eigenmode equation. The growth rates and real frequencies for various mode numbers,
as well as comparisons with the analytic model are shown in Fig. 4

The enhanced fluctuation level is large enough to cause relaxation of the equilibrium

density profile in the resonance overlap region. The decrease in the electron diffusion

coeflicient illustrated in Fig. 2 coincides with the saturation time of the longest wavelength
modes, (m,n) = (+1,n). The increased amplitude of the potential fluctuations is sufficient
to push particlesv out of the resonance overlap region. This changes the diffusivity of the
particles, which in turn affects the niode stability. The enhanced diffusion out of the
resonance overlap region manifests itself as a local density profile relaxation. Employing
a more exact analysis of the two time diffusion orbit integrals, the time dependence of
the diffusion coefficient is predicted for a system with a finite width resonance region.!®
The time for an electron to diffusively pass through the finite resonance region roughly
corresponds to the initial departure of the diffusion coefficient from time independence.

For the previous parameters, the éntire wave number spectrum (kyps) gave positive
growth rates. We also consider the situation where additional stable, long wavelength
modes (kyps < 1) are present in the simulation. The parameters outlined previously were
used with the following alterations: (.uce/wpe =35, kyps = 0.31m, and we; At = 0.14. Due
to computational limitations this is the largest system that could be used.

The fluctuation level of the electrostatic energy remains at the thermal level for the

entire length of the simulation as is illustrated in Fig. 3a. No observable changes in the
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equilibrium density profile occurred. Particle orbit measurements verify that the electrons
are stochastic and resonance overlap is well satisfied. Growth for the modes with kyps 21
was not observed. One possible discrepancy between simulation and theory arises from
the addition of large amplitude, damped, long wavelength fluctuations. Through mode
coupling, these modes can provide a sink of energy for the more unstable, short wavelength
fluctuations. Another possible influence on the eigenmode stability is nonlinear ion Landau
damping effects (i-e., ion Compton scattering).!* The Compton scattering process causes a.
transfer of mode spectrum energy to long wavelengths while producing additional damping
to short wavelengths. |

We have performed approximate calculations for the damping effects of mode coupling
and ion Compton scattering on the modes with kyps < 1. For typical triplet interactions
in this sheared conﬁgura,tion, strong local coupling of the large amplitude long wavelength

stable modes is on the order of the stochastic growth rate. Also, the nonlinear Landau

da.mpmg rate is found to be lower than the l1near shea.r da,mpmg 1ate by roughly a fact01 of _ ‘

nthree Consequently, the stable results found for the snnulatlon W]f]JCh included large am-
plitude, long wavelength modes can be explained theoretically by including mode coupling
damping effects on the short wavelength modes.

In conclusion, we have performed three dimensional particle simulations with condi-
tions in which a nonlinear destabilization mechdnism for drift waves is operative. It should
be noted that this work is subject to the computer capabilities at the time of computation

so that effects may have been neglected which could give rise to the enhanced fluctuations.
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Figure Captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Test electron orbits in (:v —-‘v”) space as a function of time. Open circles refer
to initial particle positions and solid circles are rational surface positions fof
mode (m,n).

(a) Guiding center displacement of test electrons in the z-direction as a
function of time. (b) Theoretical growth rate as a function of the decorre-
lation rate for various wavenumbers. Solid circles are predicted growth rates
using measured simulation values of the decorrelation rate.

Time history of the total electrostatic energy for (a) multiple rational surface
case and (b) single rational surface. The arrow indicates electrostatic energy
level necessary to satisfy the island overlap.

Theoretical and measured simulation growth rates and real frequencies for

various wavenumbers.
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