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Abstract

From the nonlinear gyrokinet‘ic_&.equation-we formulate the renormalized turbulenceéqua—
tion for the n;-mode drift wavew;lnstability. The study shows that the dominant nonlinear
damping mechanism is from the E X B convection of the pressure fluctuation and that
the kinetic modifications to the fluid £ X B mode coupling, studied earlier, shift the spec-
trum toward the shorter wavelengths. Balancing the linear growth rate with the nonlinear
damping rate at the linearly most unstable region, we calculate the anomalous ion ther-
mal conductivity which exceeds the neoclassical plateau formula and gives a value of the
same order as that previously computed by Horton, Choi and Tang [Phys. Fluids 26, 1077
(1981)], but with a kinetic enhancement factor. Also, the thermal conductivity formula

remains finite for vanishing density gradient.




I. Introduction

In the recent pellet fueling experiments! in the Alcator C tokamak, the global energy
confinement times were longer than in the discharges fueled by gas puffing. ‘Such an
improved energy confinement is attributed to the reduced ion heat conduction which has
. a large anomaly with gas fueling.  The main mechanism of degrading ion confinement in
the gas puffing experiment is suspected to be the ion pressure gradient driven drift mode,
often called the n;-mode, which is probably stabilized when the plasma density.prbﬁle
becomes peaked as observed in the pellet fueling experiments.” Also in the edge regions
of tokamaks, the instability parameter 7; (= dﬁnTi/dénNi) for this mode is large and
sometimes exceeds by an order of magnitude the critical n, =~ 1 required for instability,
indicating the n;-mode is'strongly unstable in this region.? Coppi® et al. use this drift mode
to explain the anomalously fast inward particle transport and called it the “mixing fnode.”

Earlier studies of ion power balance during neutral beam injection in the TFR tokamak*

__show that the ion thermal conductivity must.exceed ..the-.neoclassical..vélues.by..a. substantial - ...

margin to obtain consistent 7(r) profiles and post injection decay rates of the central ion
temperature. Therefore the relevance of the 7;-mode for the tokamak experiments is well

recognized and the characteristics of this-mode need to be investigated in detail.

Numerous works have been done on this mode in the linear phase of growth both
in the electrostatic®%° and the electromagnetic”'® regimes. The studies show that except
near marginal stability where the kinetic resonances are important, the mode characteristic |
is a fluid-like insta’bility, with v, > wg > wps, k|vi, and k p; < 1 for the parameter range
n; well past the threshold value® of . = 1. From fluid theoiy Horton et al.® dnalyze the
toroidal n,-mode using the ballooning formulation and show that the fast growing mode
balloons significantly to the outside of the torus and is driveﬁ by the unfavorable magnetic

curvature for typical tokamak parameters. Also they é:onst;ruct a mode-coupling theory
based on the renormalized turbulence formulation of Horton and Choi® and compute the

saturation spectrum, the saturation level and the anomalous ion thermal conductivity.

Since wy < 4 in the strongly unstable regime in toroidal geometry, the study of the

n;-mode is outside the scope of the standard weak turbulence theory'® and the renormal-



ized treatment is required. The renormalized turbulence equations are found in numerous
‘works.?11=13 The basic structure of these works may be summarized as follows. The renor-
malization reduces through statistical closure the original nonlinear dynamical equations
into two ‘c".oupled equations for two unknowns: the nonlinear response function ¢; and the
spectral distribution I. In the complete renormalization theory, both the wave-particle
prdpagator and ‘the vertex interaction become dressed or renormalized by the turbulent

fluctuation.

Recent nonlinear studies include the Waltz and Dominguez’s study'? of the drift
wave problem using the renormalized turbulence equations for a sheared slab and solving

1.16 study

reduced equations numerically. The Similon and Diamond!® and Diamond et a
the various nonlinear problems using the coherent approximation to the direct interaction
approximation (DIA)!7 within the one-dimensional ballooning mode representation of the

fluctuations. The quasilinear study of Migliuolo!® calculates the saturation amplitude of

__the most unstable 7;-mode as an expansion about marginal stability.

The present work extends the earlier studies by including a systematic development
and reduction of the renormalized propagator and vertex renormalization of the. ns-mode
turbulence and using a WKB formulation of the fluctuations in the nonlinear gyrokinetic
equation. By taking the fluid limit of the fully renormalized kinetic response functions the
resulting cancellations in the vertex and propagator renormalizations are found to retrieve
the results of renormalized fluid turbulence theory applied to the 7;-mode.5 In the process
of making the fluid reduction we find the important kinetic theory modifications to the

nonlinear damping.

The organization of this paper is as follows. In Sec. II, we formulate the renormalized
turbulence equation and obtain the reduced set of equations. In Sec. III, we calculate the
renormalized response function ¢, for the nonlinear evolution of the 7;-mode by taking
the fluid limit of the response functions. The reduction of the response function is utilized
in the computation of the nqnlinear_ growth rate in Sec. IV and the dominant mechanism
of the nonlinear damping is shown to be the E x B convection of the pressure fluctua-

tion. In addition to the fluid contribution we also obtain the kinetic correction to the




nonlinear mechanism whose sign changes as the value of wavenumber varies in contrast
to the fluid contribution of damping. The kinetic corrections are a stabilizing effect to
the long wavelengths and destabilizing effect to the short wavelengths. By balancing the
linear growth rate with the nonlinear damping rate at k ~ ko where the linear growth rate
- hds a maximum value, we calculate the anomalous ion thermal conductivity. The result is
compared with the previous formula.® In Sec. V, we summarize our findings. In Appendix
A, the details of the renormalization of the gyrokinetic equation are given. For a clearer
understanding of the physical contents of the nonlinear terms, we review in Appendix B
the renormalization of the fluid model developed by Horton, Choi and Tang® and compare

with the kinetic calculations of the main text.

II. Formulation

Recently, many nonlinear problems of various plasma instabilities are studied from different

_view points. One of the most successful approaches is based on the renormalization theory.

In this section, we renormalize the nonlinear gyrokinetic equation for the low frequency,

electrostatic perturbations and obtain the renormalized turbulence equations.

We consider the toroidal confinement geometry with a strong toroidal magnetic field
such as a tokamak. Since in the plasma motion there exists two spatial scales, the slow
variation in the parallel direction and the rapid variation perpendicular to the magnetic

field, the WKB ansatz is employed to express the fluctuations as
_ X0
5f(X,V)=Z§f(X,V;k_L)eXp 'I,/ k_LdX_L—’I,L(kJ_) s
k,

with (X,V) and (x,v) being the phase space coordinates of the guidiin_g center and the

particle, where L(k ) =k -vXx é”/ﬁ, and 6 f as well as k| contain slow spatial variations.

The nonlinear gyrokinetic equation®® for low frequency, electrostatic perturbations in

toroidal geometry of the fluctuating part of the ion distribution function is given by
e L
fe = —pFodi + hie™ ‘ (1)
where the non-adiabatic part of the distribution function hj satisfies
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... The background ion distribution Fy_is. taken_ as. Maxwellian...w.ith,.m..;‘..dﬁnTi./dZnN;_?_. and

Jo is zeroth order bessel function.” In Eq. (1)-(2) and hereafter we adopt the notation
k = (k,w). All nonlinearities in the problem arise from the E x B convection of the

- particles contained in Eq. (2).

For electrons we take them as adiabatic and the Poisson equation becomes

bi = _47r]j;foe <; : ) i+ 47rNoe/dvth0( ) 3)

Next, we set up the renormalized turbulence equations from Egs. (2) and (3). The sim-
plest procedure is to follow that of Kadomtsev!! as briefly explained below and the details
of the derivation are given in Appendix A. We isolate the “self-action” term proportional

to hx and ¢, among the nonlinear term of Eq. (2) and write Eq. (2) as

(w — k) — wpi + di) b = (Sk + &) ¢ + Zkal Pk hky + dehi — Exdr (4)
k1

with the shorthand notation of




.C /.
kal = ‘LE (eH kg x kz) Jo‘(’yl)

|

\

“and

where ky = k — k;.
The resonance broadening and vertex renormalization functions dy and & are defined

by the requirement that among the terms in the second parentheses of the right-hand

side of Eq. (4) only the input from the beat interaction of different modes remain. These

beat interaction inputs are considered to be small. So we put hy = h,(co) + h](cl) and

P = ¢;(CO) + ¢,(C1). As a result we obtain

47 Noe [ € e 471 Nge
d’;(cl) - _ ko (E_I_ E) ¢I(cl) k. 0 /d h( )Jo(’)’) | (5) ;
and
(w — kg — wps + di) b = (Sk + &) ¢(1)+ZV L6ORD (e)

_.Then, we multiply Eqgs. (3).and_(4) by_¢; and_average over the random phasesof :
h,(co) and d),(co). We now substitute hy = h,(co) + hgcl) and ¢ = (O) ¢(1) in the nonlinear ;
term and identify the terms proportional to (hx¢)) and ($rd%) as dx and . As a result |
we have, upon dropping the superscript (0), the renormalized set of equations for the

correlations functions Py = (hx¢;) and Iy = (¢x¢5)-

’ Iy Iy
Py = gx (Sk + &) Ir + gk Z Viek, 9k, (Sky + Eky) V—k,—k; 61 k2 ) (7)
kq -
1 VkkyV—k,—ky
el = 5 Z lelsz, ) (8)
k1
where _
‘47rNoez 1 1 47 Noe /
= e d
=1+ 2 (Ti Te> VJQ(’Y)ngk
471 Nye VkkoVkok
-z / dVJO(’Y)gkZka19k2Vk2kakl - Z ﬁc—z—fkl, (9)
kl . kvl : 2 .
~1
9k = (w — kv —wpi + dk) ) _ (10)
Zkalgk2Vk2 klfkl, - (11)
ky




€ = Z Viky 9ko Vigk Py

ky .
Vkok Vkqk
+ Zkalgkz (Sk, + k,) <’_2-7k1 T —1‘11c2) ) (12)
kq sz ekl
and
47 Nge :
Vg, = kzo /vao(’y)gk [Viek, 9k, (Sky + Eky) + (1 2)]. -(13)

The primitive form of mode-coupling equations contain the usual “free” propaga-
tor g,(co) = (w - k“v“ - wDi),_l vertex kal and source of instability Sy with the two
equations determining hy and ¢. In the renormalization, the selection of dominant
interactions®!1:!2 and ensemble averaging lead to the seven equations of Egs. (7)-(13)
for seven unknowns Py, I, €k, 'gk, di, &k and vkk,. These equations may be viewed as
determining the unknowns in two steps. For given I; and P, Egs. (10)—(11) determine
the renormalized propagator g and the resonance br.oadening dr. For given Iy, Py and gk,

then Egs. (12)—(13) determine the renormalized wave-particle vertex ¢ and the renormal-

~ ized wave mode-coupling vertex vyg,. Finally, Egs. (7)—(9) determine the wave-particle

correlation function Py, the wave-wave correlation function I and nonlinear response

function e.

To make the problem tractable, we take the lowest order contributions for the wave-
particle correlation Py and the renormalized wave-particle vertex £x as Px = gx (Sk + &) Ik
and & = Zkl kal Gkok Vg Pk, - These simplifications amount to retaining terms of the

lowest power in Iy for Px and in g for £x. Equivalently, the approximation drops the

correction terms due to the renormalized wave-wave coupling vgx, within the wave-particle '

correlation function Py and the vertex renormalization ;. Then, the truncated equations

are

1 Vkky V—k,~kq
Ekfk = 5 ; —E_k——"flcl-[kg (14)
1

with

47 Nge? (1 1> 47 Nye?
€ =1+

1 2
k2 E—I-E — ——ﬁi—/dvgk (w——w*t-}-bk) FoJO(’)’)

v v :
-y Rty (15)
PR




47 Noe? . ¢

Vkky = kz—ﬂZE / dvgrJo(7)Jo (1) Jo (72) | (k1 X k)” Gk, (w,2 - wit,z + bkz)

+ (1 A 2)]FO= (16)

c? 2 2
dp=-) 52 (k1 x k) jjgky Jo (1) iy (17)

ky
and
2 .

c , |

bk = - Z B2 (k1 x k)ﬁgkzg—kl (w1 +why+bog,) I (1) Ik, (18)
K 7

where we define by by ‘
e

J br.
TiFo o(7)bk

€ =

With these reductions we have six equations for six unknowns I, €k, gk, dx, bx and

Vkk, - Dupree and Tetreault?® argue in the drift wave problem that the resonance broad-

ening dj alone does not conserve energy so that the inclusion of by in the renormalization

is important to conserve energy. Thayer and Molvig?!, however argue that the inclusion of
by is to be taken as a constraint on the renormalization and is to be distinguished from the
traditional energy conservation relation where the average particle distribution equation

is employed.

The equations (14)—(18) also follow from the selective summation to all orders of the
most secular contributions in the small ¢; expansion of the mode-coupling equation as
given by Horton and Choi.? The selective summation for the vertex renormalization and

the energy conserving clump kinetic equation are given by Balescu and Misguich.??




III. Reduction of the renormalized turbulence theory for the n;-mode

In this section, we study the nonlinear evolution of the n;-mode. Consider the renormalized

. response function ¢, which we write as

€ = e(l) + e( ) (19)
where
47TN 62 Te Te 7
El(cl) =1+ k2:]c')'e {1 + E — E / dvgi (w — Wy T bk) Jg(’)')FO} ‘ (20)
and
N2 47re
, .
e = W = Z ” k2 /dvngo(W)Jo (m1) Jo (72)

X [gry (w1 —wley +by) — gy (w2 — wit,z + by, )] Fo x /dngZ Jo(7)Jo (71) Jo (v2) -

X [g_kl (—wl + wit,l + b_kl) — gk (w — wit + bk)] Fo. ' (21) .

”()

contams the mduced scattermg contrlbutlon from the beat ~-wave mode couphngs

We first investigate the lowest order response function e,(cl). Since we are interested

in w > kjv), we expand g in power series of k“v”/ (w — wp;). With the assumption of

dk/w < 1, bk/w < 1 and quasi-neutral limit of kA% < 1, the response function e,(cl)

reduces to
(1) _ 4mNoe? Wit oo
€T = sze 1+7—17 de——tzJO(’Y)FO
2 . :
v w—wt .
—~ rkj / dv L L J3 (1) Fo (22)
w — wDi) W — Wpq

T/dV (w “wae Dk bk > JE(V) Fo

W —Wp,W— Wpy W —WwWpy

where we put 7 = Te/Ti.

In the fluid limit of &, p; < 1 and wp; / w < 1, we perform the velocity space integral

. : | wt
w*e> + k3 (1 - wxP) (cos @ + sfsind) (1 - 'p)
w w

in Eq. (22) and obtain

(

(1 _ 47 Nge?
kT ke,

Here, e;(cl) conta.ms the renormahzed propagator 9k and the vertex renormahza’mon bk Whlle




. . wl w}
+ 2¢, <w'e + ‘“’2) < 2l "3> }J ‘ (23)
w wao w1 w -

with .
D =w(w—we) + k2w (w — wip) + 2€pw.e (w — wip) .
Here, k3 = k* (1+ s26%), w.. = k, wip = —ﬂl—ji) and w};p,l = —M, and we

used dimensionless variables given by the azimuthal wavenumber k = kgps with ps =
¢ (m;Te) 1/2 /eB the frequency w = wrn/cs with ¢; = (Te/mi>1/2 and the poténtial @) =

T, ps
e Tn ¢k'

we solve e( )qbk =0 Wthh is a Weber equatlon in 0 with the fundamental (n =0) solutlon

of the form

¢x(0) = drexp <—’;‘/Jk'92> ) o | (24)

Wq | We 1 - 2 o 1/2
we=—1—2€, | =—s) —k®s
€n | W 2

valid for <02> ~ l/uk < 1 and with <k2> = k252 <02> The eigenfrequency for ¢ () is the

where p is given by

solution of

(1) 47TN062 2\, ,2 ol 4y 1+mn,,
=——=|(1+% — (1 -k —— —2¢, ) k 2¢,——k
P I AT T
Pk€n k (1+mn; 2, W
ky
e Dt . k
X{&_ﬂ__kz_l_k%__l_tﬁz_(kzkl kf—)
w Wi T Wi w
T4+m (b ke [k kg 4w Noe? [, I
+2en T <w+w2> <w wi kZTew2[ k(W) + Xi(w)] (25)
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In writing Eq. (25), we have defined
DE(w) = (1+ k2) w? — kugw + k242
with ;
up=1-2e, = k214 ) /7, V=26 (1+m) /T - (26)
and the remaining terms by Xk(w). The lowest order linear eigenmodes are given by

D%(w) = 0 and the kinetic integral correction are given in Ref. 8.

Now we consider the second part of the response function 6502) from the beat-wave

mode coupling where we take the lowest order term in /c”v“/ (w — wpi),

212 ar2.2
@) _ (47re ) Nic 1

’ . F w —wi Wwao —wi
X/dv.]o('y).]o (1) Jo (’72)w 0 ( 1 1 t,2>

—Wp: \ W1 — WDi,1 W2 — Wp4,2

- X/dv JO(’Y)JO_(PY_I)JO_(’.D) W2——_CUD ,2 \ W1 — Wpi1 W —Wp;

Taking the fluid limit and calculating at § = 0, e,(cz) reduces to

6(2) o 47I'N0262

I
(ky x k)ﬁ _,521—‘*"'"2

kT 2 2
k*T.w ™ ks |
[ Df ¢ L+n; [ ke . k e k|
X %—D—g—kkz—}-kkl—k + 1 <k2—1—k1—%>+’)’g_(2——£>
wy Wi T w1 w2 w\wz W
‘D¢ Dj ok k ky [k Ky
x| 2k = ok kyky — ey <k—1 +k1—> +E = (— - —1>
| w w? T w1 W wr \w w1/
47 Nge? .
= Y, . 28
k2T, w2 k(W) (28)

in dimensionless variables, where we approximated D,ec ) by €k, in the denominator. In-
(2)

cluding ¢;"’, the nonlinear response function now becomes
47 Nge?
€k = 5o [DE(w) + Xk(w) + Yi(w)] . (29)
k*T,w

With the expressions for D%, X; and Yj given in Egs. (25), (26) and (28), we have

calculated the reduction in the fluid expansion of the renormalized response function eg.

11

—whi w—uwl .
FO__,_,_______/ w1 st,l W th)ﬂ(27)




IV. Saturation condition and the anomalous ion thermal conductivity

In this section, we balance the linear growth rate with the nonlinear damping rate and

from this calculate the anomalous ion thermal conductivity.

A. Radial wavenumber spe’cti‘um

We model the radial wavenumber spectrum to reduce the problem to a one-dimensional
one. From Sec. III, recognizing the eigenfunction is the same one as the linear case of
Ref. 5, we employ the result of that reference where a well defined radial wavenumber for

the entire spectrum of azimuthal wavenumber & is given by

1/4 41/2

<k2>1/2 =k = (2¢n)

g () T *

which remains finite as r, — oo and satisfies k1 p; < 1. Thus, we are led to investigate

Taking the spectrum as symmetric in k; with I (kz,ky) = 1 (ki,k) and of width <k_,,2:>, we

write

I1(k) =/ dk.I (k2,k) =2/ dko I (k2,k),

— 00 0
and

(k2) I{k) = 2/000 dkok2T (K2, k).

The 2D mode-coupling simulations?® for a reduced fluid model of this mode are con-

sistent with a Lorentzian distribution in k, with

=1 (k2)"* 1(k)
k2 + (k)

IR

I(kZ,k)
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B. Reduced spectral balance equation
Taking X (w) and Y(w) of Egs. (25) and (28) as corrections to D% of Eq. (28) we obtain
w= d)fo + Aw; + Awqy

with

_ k : 2 2 2| .
T [ukiz\/4fyo(1+k) uk},

and the complex frequency shifts Aw; and Aw, of

oD%
ow
w:wo w=wo
oDt
Jw
w:wo

21/}c

(w—wr)® + 0}

wo

Awy = —Xg(w)

and

Awg = =Y (w)

(JJ=(/JO

Le(w) = R(T) (31)

with T' = (¢1 + t2) / 2. Here, wy is a nonlinear frequency and vy is a decay rate of the two-
time correlation function which are determined by the coupled set of nonlinear equation
resulting froni Egs. (14)-(18) with Eq. (31) for the w integration. In this paper, we -
approximate v, = fy,‘é. The fluid simulations of Brock and Horton?2 show an exponeptial

decay of the two time correlation function consistent with Eq. (31).

Using this frequency spectrum, we carry out the frequency integration and obtain

1 2 2 k — kq

Im(Aw;) = —— ky x k)| Ix < + ) (32)

1) 270 k§o( 1 )” Y\ k+k; (k+k1)2

and |
1 o [1k—k  k—k
fm (Aws) == 2 D (ky xk)j Iy, kik+ ki (k+ k)2
k;>0 -l
2
L+mns\" 1 3

( o > I (k—k1)” (k+ 2kq) |. (33)
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In the calculation of Aw;, the contribution from the ion acoustic terms to Im(w) is neglected
because in the toroidal geometry it is small for kvyo > €, / g as confirmed by numerical

integration in Ref. 5. Thus the nonlinear growth rate becomes

1
V4 -0 2
"YZ' :’Yk—-z—fy—Okz:(kl Xk)”Ikl
>0 ]
2 1k—k, [1+m:\*1 3 .
e _ Sk —ky)® - (k4 2k) ] . 34
S PE <zw> g (b= k)" (b 2h) (34)

In obtaining the expression of Eq. (34), terms underlined in Egs. (32) and (33) cancel each
other. This shows the importance of retaining the vertex and the prbpagator renormal-
ization up to relevant order since without it, the spurious terms enter in the final balance
equation. In Appendix B, we review the renormalization of the fluid model developed by -
Horton, Choi and Tang.® Comparing the kinetic and fluid formulas we see that the first

and second term in the bracket of Eq. (34) are from the E x B convection of the pressure

_fluctuation and it is the dominant term in the fluid limit which is the nonlinearity con-
sidered in Ref. 5, while the third term arises from the kinetic contributions. The kinetic

contribution gives a weak stabilizing effect for long wavelengths and destabilizing effect for

short wavelengths.

For the saturation condition of 'y,’;e = 0, we consider the following situation. When the
spectrufn Iy is negligible, the system is unstable‘ and the waves grow with the linear growth
rate 'yﬁ. As I becomes non-negligible, 'y,’;“e is reduced overall wavenumber space and only
region near ko of the maximum linear growth would still remain positive. Further growth
of I then makes the saturation condition of 7,’3‘ = 0 which, in terms of the one-dimensional

spectrum I(k), requires

em__<k_§>/kmx 2, 12 14 (1+m 2 IRL:
=G | dky (k? + k2) I (ky) () G- (k + 2k;) (35)

min
to be satisfied at k& ~ ko where 7,‘2 has the maximum value. From Eq. (35) we can see
that as kmax — 00, for the integral to have a finite value, I (k) for large k should decrease

faster than £~%. In the right-hand side of Eq. (35) the dominant contribution comes from

small values of ky. Calculating the kinetic term at k ~ ko > k;, Eq. (35) reduces to the

14




quadratic equation in k. With v = ok and balancing at k = ko gives two constraints or

integral equations of I(k)

Icnmxdklf(kl) _ 1 {1— <1+m>2k§} B | (36)
kpain ki <kg> o o
and .
/kma,x dhyka (k) = i’ygko {1 B <1 + m)z kg] ! (37)
Emin <k’2‘> 4 2707
with

1/2 \ 1/2
2(1— 2¢,) + [(1 —2¢,)° + 24€, (1 + m)/r)]

ko = 3(1-|-77¢)/T

which remains finite as r,, — oco. For the toroidal regime of s < ¢, using Eq. (12) of Ref. 5,

the condition wp; > kv leads to (s/q)/? ((1 -+ m-)/en)l/‘1 < 23/4 5o that €, > erit and

useful relations, and in particular Eq. (37) provides the moment needed for the thermal
conductivity. Thus, without solving for the I(k) spectrum explicitly, one can obtain the
ion thermal conductivity. The explicit solution of the I(k) spectrum is needed for the
computations of other physical quantities. We will report the I(k) solution elsewhere
from the formulation which includes the right-hand side of Eq. (14), sometimes called the

“incoherent” term of mode-coupling equation.
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C. Anomalous ion thermal conductivity

The anomalous ion thermal flux is

Q= (PVg)
with
c ~
VE = EZ x Vo
and

._l - 2 z§ .<_w*pi>
P, = 2szz/dvv hiJo(y) = 2Nle 1 » by

In the dimensionless variables of

P L S

the thermal flux Q@ = é, - Q reduces to

_Ps cT, ( > 3 N T,
— 38
rn eB ZkaIm 2 rn (38)
and the thermal conductivity is given by
Using w = ivo|k| in Eq. (38) and with Egs. (30) and (37), we obtain
p CT 2 kmax
=22 dkkI(k)
Tn eB o Emin
9 -1
oo cTeq (1Hmi) g (L1EM) - (39)
rh eB s T 2707

in the toroidal regime in which ¢, > €5t ~ 0.05.
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We compare the above formula for the anomalous ion thermal conductivity with the

neoclassical plateau formula
ps cTe
=26 ——qe¢
Xi Ty eB 9én

and the previous formula of Ref. 5

. s T 1+n; 12 | |
XHCT — _p_g._.g < i ) in (kn]ax/kmin) .

¢ r, eB s T

The anomalous transport exceeds the neoclassical plateau transport by the factor

21 ; 1 ;
R + 7y ko |1— + 4 kg :
2.6 s€,T 2707
which is typically a factor of order ten, and the previous formula X'?CT by the factor

N1/2 | N2 17t '
T » 2507 kmin

which is order one. Without the enhancement from the kinetic correction terms, the main

term from the fluid contribution gives the value of same order as in Ref. 5. However,
the enhancement factor can be as large as three. Our formula remains finite as r, — oo
in contrast to the previous formula which goes to zero. Corrections to ion thermal flux
from gyroradius and nonlinear effects can modify the result and will be investigated in the

future work.

17




V. Conclusion

In conclusion, we forfnulaté ther reﬁormalized ‘turbulence équations vfdir the ionv pressure
‘gradient driven or the 7;-mode from the nonlinear gyrokinetic equation. We show that the
linearly unstable n;-modes are stabilized by the turbulent E X B convection of the pressure
fluctuation and the kinetic correction gives a stabilizing effect to the long wavelength
and a destabilizing eﬁectv to the short wavelengths. The resulting anomalous ion thermal
conductivity formula given in Eq. (39) is greater than the neoclassical plateau formula by
a factor of up to ten, but gives the value of same order as the previously computed formula
of Horton-Choi-Tang with a kinetic enhancement factor that can be as large as three. Also,
the formula remains finite as r, — oco. The turbulence theory developed here requires the
system be sufficiently above threshold n; > 7.t &~ 1 that a number of modes Ak < ko
are unstable. Linear studies® show that by n; ~ 2 there is a broad spectrum of unstable

modes (e.g., Fig. 1 of Ref. 8). The effect of coupling to the electromagnetic components

Ay and 6By is not appreciable until 3 approaches 8/, ~ 0.9 where 8. = €, /¢*(1 +n;)is

the critical plasma pressure for MHD instability.
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Appendix A: Renormalization of the Gyrokinetic Equation

In this appendix, we derive the Egs. (7)-(13) from Egs. (2) and (3). Equations (2) and (3)

are written as

(w — kv — wps) hi = Sk + Zka1¢klhk2 (A1)
ki
and
47 Noe [ e 47rNoe
be=-"0 <Ti z ) bi + /dvtho( ). (42)

We isolate the “self-action” term proportional to ~; and ¢ among the nonlinear term

of Eq. (A1) and write Eq. (A1) as

(w — k”v” —Wwp; + dk) hyp = '(Sk + fk) o + Zkal ¢k1 hkz + dihi — &P | - (A3)
ky

~—In"the second parenthesis of the right-hand side of Eq.(A3); from whichwehave

removed the self-action of each mode, only the input from the beat interaction of different

modes remains. These inputs are considered to be small. So we put Ag = h;co) + h,(cl) and

Pk = ¢;(co)b+ ¢](91). As a result we obtain

47 N, ' 47N, '
0 = A (2 1) 604 T2 [ anaato) (A4
and v
(w — kv — wpi + di) B = (Sk + &) $3V ZV LR, (45)

We need only the nonlinear term on the right-hand side of Eq. (A5) because dkh,(co) - fkqﬁ,(co)

do not contribute in the third-order correlation.

To find the equation for the spectrum, we multiply Eqs. (A1) and (A2) by ¢} and

average over the random phases of h,(co) and ¢,(CO). This gives

P = gk (Sk + &) I + gk Zkal Bk, hiy %) + dePr — Exli - (46)
k1 '

19




and

I = _4mNoe <.e e > 7 +‘47rNoe

— 4 — Jo(n ~ ‘ AT
k2 T; + T, L2 /dVPk o(7), (AT)
where we defined Py = (hxi), Ir = (¢xd;) and g = (w — kyo| — wpi + dk)_:l

To evaluate the third-order correlation, we put Ay = h,(co) + hgcl) and ¢ = (O) + (b
and substitute them into the third-order correlation term. Since the third-order correlation

vanishes in the lowest order, we obtain to the next order

<¢k1hk2¢k> <¢k1 h}(cg x(o)> n <¢I(cci)hl(€;)¢;(o)> <¢(0 h(o 5@ >

We substitute h,(C ) and qﬁk D from Egs. (A4) and (A5) and use the random phase approx-
‘imations of correlations in the form (ABCD) = (AB) (CD) + (AC) (BD) + (AD) (BC)

and obtain

(Bry Py b5) = kg Vg~ <¢;(c?)¢}2§0)> <h,(co)¢z(o)>
ks Ve ok <¢k ¢(O)> <¢1(c0)_hk(0) >

+0u, (S, + €5,) < Ekzk <¢kl)¢k(o)> ’Uklk <¢(°)¢k >> <¢;(c°)¢2(0)>

kk (0) (=(0
+ 0 (S + 6) <¢k3¢k1 ) (o) «skg ), (48)
where we defined
4w Nge? [ 1 1 41 Noe
=1+ —7 (5,— + f> - = / vy (Sk + &) Jo(v) (49)
and ,
47w Noe v
Vkk; = T3 v Jo(7)gx [Vieky 9ky (Sky + Eky) + (1 2)]. (A10)

Substituting Eq. (A8) into Eq. (A6), we obtain, dropping the superscript (0),

Py = gk (Sk + &) I + g Zkalgkzvkz,—klkaPk + Zkalgk2vk2kP—k1]k

ki ky
_ kok Vi k
+ Zkalgkz (Sky + &ky) < 6;2 I, + —6 Ik2> Iy (A11)
k1

*

Ykk
+ Zkalgkz (Sky + Exy) ‘;i_lfhsz + dp P — Ekjk}-
kq
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The resonance-broadening di and the vertex renormalization function &5 are defined

so as to eliminate the terms proportional to P, and I, respectively, so we obtain

i == Viky Gy Vieg,—ky Ty (A12)
ky

and

Vkok Vkik
€k = Zkalgk2VIc2kP—k1 + Zkalgk2 (Sk, + €xy) <E—k2—11c1 + j1k2> . (418)
kl kl 2 1 o

Equation (A11) is then written

LI
Pr = gk (Sk + &) Ix + g Zkalgkz (Sk, + §k2)‘vkk1 i,( 2
k1 k
and substituting this equation into Eq. (A7) gives
i Ek:Ik: = Ekz——};——fkljkz (A14) i
1
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Appendix B: Renormalization of the Fluid Model Equation

In this appendix, we renormalize the model fluid equation developed by Horton, Choi and
Tang® which retain only the convective nonlinearity in the ion pressure balance equation

and is applicable to the toroidal regime.

The model equations are (Eq. (17) and (18) of Ref. 5)

d
(1+ &%) % = tkurdy + 21ke, Py (B1)
d Py )
T —tk(1 4+ n)éx + ; (k1 x k2 iy Py - (B2)
1

We regard the linear equation of (B1) as “Poisson-like equation” and the nonlinear equation
(B2) as “Vlasov-like equation.” Following the procedures of Sec. II and Appendix A, we

obtain the renormalized set of equations. They are

_ . *
k1
with
_ v '
er = (~2enk) ™! [0 (14 k2) — kuy, + 26,kgi Sk + 26,k Y fk—’zcﬂfkl ,  (B4)
ky 2
e = (w+di) ", | (B5)
Sk = k(1 +n) + bk, - (BS)
Vir, = 1 (k1 X k2) (B7)
dp = — Z'kalgszkz,—kl I, (B8)
ky
bk = > _ Vicky Gky VigkG—ky S—req Iiy (B9)
k1

and

viky = 9k (Vicky 9ky Sty + Viko 9k, Sk, ) - | (B10)
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With the assumption of %, % < 1, the nonlinear dispersion relation becomes

ex = D (w) + Xi(w) + Yi(w) =0, (B11)
with
Df;(w)‘ = (1 + kz) w? — kugw + k*~E, . (B12)
I kE k .
— L2 2ik (1
Xi(w) = kg kZ (k1 x k) o <w w1> , ~ (B13)
1
and

Yi(w) = qg%: (ky x k); g;l—klcg (k—z - ﬂ) (1“1 - 5) : (B14)

Treating X and Y} as perturbations, we calculate the frequency shift

0D (w
8 = = [Xio) + Vil | 2]
’ w=wgp
1 1k—k
Im =—— (k1 x k) Ik — ky x k) Iy . (B15
( 70k2>:0 1 H lk-l—kl 2,70klz>o(l )H lklk’—i-kl. ( )

The result of Eq. (B15) is exactly the same ones as the first two terms in the parentheses
of Eq. (34) in Sec. IV of the nonlinear growth rate. These contributions are from the fluid

nonlinearity of the E x B convection of the pressure fluctuations as evidenced in Eq. (B2).
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