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Abstract

An explosive reconnection process associated with the nonlinear evolution of the coales-
cence instability is found through studies of the electromagnetic particle simulation and
the magnetohydrodynamic particle simulation. The explosive coalescense is a process of
magnetic collapse, in which we find the magneﬁc and electrostatic field energies and tem-
peratures (ion terﬁperature in the coalescing direction, in particular) explode toward the
explosion time #o as (to — t)~%/3, (to — t)7%, and (to — t)~%/3, respectively. Single-peak,
double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic

energy, respectively, are observed on the simulation as overshoot amplitude oscillations

and these features are theoretically explained. The heuristic model of Brunel, Tajima and

Dawson is extended to this explosive coalescence in order to extract the basic process.
Since the explosive coalescence exhibits self-similarity, a temporal universality, we theo-
retically search for a self-similar solution to the two-fluid plasma equations. .Our theory
produces the indices of explosion in agreement with our simulation results. The governing
equation for the scale factor takes a form of the orbital equation in a Sagdeev potential, in

which the potential energy assumes a form of the gravitational potential and the centrifu-
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gal energy. For the coalescence to become explosive, the “total energy” has to be close

to zero and the plasma £ value to be small. Such a situation is realized for the peaked -

- current: distributions. The explosion time is. given as \/iag/ *ta /3, where ag is the scale

factor at £=0.and ¢4 the Alfvén time. Explosive acceleration of particles binormal to the
magnetic field B, and electrostatic field E, becomes possible during the magnetic collapse
and yields the maximum momentum p®* =~ moc(E,/B,)/[1—(E./B,))*/?, as E2 diverges

faster than Bﬁ.
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1. Introdﬁction

A crucial process in the study of maghetohydrodynamic (MHD) activities of tokamak

plasmas,! reverse-field pinch plasmas,? and field reverse configuration: plasmas® is that

- of magnetic field-line reconnection and tearing. Examples of phenomena that involve

this process include the major and internal disruption of tokamak confinement,'** the
externally sustained reverse field conﬁguratlon and its deterloratlon, and the rapid decay

of a plasma after the tilting mstablhty 6 Tt is also essential to cosmic plasmas such as in

7.8.9 10.11

and in the magnetosphere,

solar flares in which the magnetic energy is converted

into kinetic energy when there occur intense magnetic disturbances.

In these problems the reconnection of field-lines is believed to take place due to

finite resistivity n = ¢?/4mo (be it small) The relative magnitude of the time scale for

magnetic field-line reconnection may be characterized by the magnetic Reynolds number
(or the Lunquist number) R,, = 7,/T4.0r a smallness parameter, the inverse of Reynolds
number, € = R 1. Thus the tlme scale of reconnectlon due to the mechamsm of the tearmg

mstablhty is chara.ctenzed by e 3/5 Sweet and Pa,rker obtalned a steady state SOl'thlOl’L

which has a narrow z-point angle; the time scale 7gp of reconnection is characterized7'1‘
by T = 7)1/°( i/ne)?(va/L)/?1 /2o  n'/?, where 2L is the length of the impinged
plasma, n; and n. are the densities inside and outside of the singular layer.!? Petschek®
sirﬁilarly obtained a steady-state solution which has a large z-point angle; the reconnection
time scale 7p is independent of resistivity, 75 1« n° The time scale of reconnection due
to the mechanism of the Sweet-Parker process is characterized by e¢~1/2, while that of
Petschek is by €. Here we use the words, driven reconnection, in a broad context in which
reconnection of magnetic field-lines is incurred so forcibly from external forces that the
reconnection process is essentially nonlinear, exhibiting no reminiscent linear instability
growth.

In order to rapidly convert magnetic energy into kinetic by a substantial amount,

it seems necessary that the-bulk of magnetic energy has-to-participate in the.conversion

process: - the resistive heating at the z-point alone is-too meager: -‘This is becausé the-avail-
able magnetic energy at the z-point is small by itself. On the other hand, the ideal MHD

instabilities such as the kink instability and the coalescence instability are the processes
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that involve the bulk current redistribution in a matter of the Alfvén time scale.

Nonlinear processes of reconnection either driven by external boundary

-conditions'®'3:14. or triggered: as:a secondary process!® by the primary instability have
been investigated. Act':_érdin.g to Refs. 12 and 14 for the problem of externally driven re-
connection the rate of reccﬁmection experiences more than one phase with a sufficiently
strong drive and a. conipressible plasma: the ﬁrsi; Sweet-Parker phase were the recon-
nected flux ¢ = n'/2¢ and later (after 7sp) the second phase ¢ = nl/ 2t.°‘, where o is
determined by the deﬁsity.compression.

In the 'present- paper we are interested ip the latter problem, i.e., the nonlineér
driven reconnection triggered as a secondary process by the primary instability. In par-
ticular we pick the coalescence instability'®1” as the primary instability to investigate its
nonlinear consequences. We do so because (i) although it is an ideal MHD instability

in the linear sense, it would not nonlinearly evolve if there were no resistive (non-ideal

MHD) effect; (ii) it can involve a large amount of conversion of magnetic to kinetic ener-

gies in a shcr)rtr time; (iil) it is essentially _# two-dimensional instability, thus more amenable
to thorough analysis of the fundamental processes of the instability. It is interesting to
observe that with this two-dimensionality restriction we still find an explosive process as
we shall see. Generally, it is believed that introduction of an additional dimension (this
case, a third dimension) to the problem allows breaking of symmétry that has been kept
before the introduction, leading to more or easier paths to relax the system to the “lowest
energy state”. Therefore, we should be “guaranteed” to have an explosive process in three
dimensions through the nonlinear coalescence instability since it was “already” explosive
in two dimensions. In Ref. 15 the reconnection was driven by the coalescence instability,
the primary instability. The coalescence instability starts from the Fadeev equilibrium,!®
which is characterized by the current localization parameter ¢.: The equilibrium toroidal
current (in the z-direction) is giveﬁ as J, = Bopk(1l — €2)(coshky + €. coskz)™?. The
parameter €; varies-from 0.to 1 with small €. corresponding to-a Weakuloéalization and e,
- close to unity. corresponding to a peaked localization; in the limit of €. — 1 the current
distribution becomes delta function-like. According to Ref. 15 the rate of reconnection was

that of Sweet-Parker for small €., while the reconnection rate experiences two phases for
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larger €. (but smaller than 0.8). This emergence of two phases is similar to the case of the

“driven reconnection.!® The intensity of coalescence and the rate of subsequent reconnec- -

~-tion are-controlled by- just- one- parameter, the current localization (e.). In this problem
- there is no ambiguity as to the nature of the driver in contrast to the recorm_vection driven
by external boundary cénditions-. For the case with ¢,=0.7, the second phase showed the
reconnected flux ¢ increasing as t* with 1 < o 5°2. This indicates that the more the

current localizes, the faster the reconnection becomes.

This leads to a question: Can the reconnected flux 9 increase explosively as (tq —

t)7%(o > 0) triggered by the coalescence instability? As we shall see in the next section,
yes it can, when e, is increased further to a larger value. In the present section, however, let
us show computational results obtained by our electromagnetic particle simulation based

on the same pafameters as reported in Ref. 19 and on a sét—up similar to Ref. 20.

-Figure 1 diéplays the time history of various field and particle quantities observed
in our simulation in which after the initial transient (up to t=4Q; ' in the code unit
to Be éxpléiﬁéd 1n thefollowmg s‘éct‘i;ﬁjr bti1rei ﬁhdée of coalescence of tvvb magnetic islaﬁds
commences. It is seen in Figs. 1(a)-(c) that around t=27 the magnetic and electrostatic field

energies shoot up explosively as well as the ion temperature in the direction of coalescence

(the z-direction). The unit of computational time is omitted hereafter whenever it is

unambiguous. It is also seen in Figs. 1(a)-(c) that (1) after the explosive increase of
the field energies and temperature this overshooting results in synchronous amplitude
oscillations of all these quantities with the period being approximately the compressionél
Alfvén period; and (ii) superimposed on these overall amplitude oscillations is a distinct
double-peak structure in the electrostatic field energy and the ion temperature. Although
we are interested in analyzing the entire episode of the run including the initial phase and
the post-explosive phase, we focus particularly on the explosive phase of the coalescence.
We replot Figs. 1(a)-(c) into Figs. 1(d)-(f) to find the way in which these quantities increase
- toward the catastrophic point. We find from Figs. 1(d)-(f) that (i) the magnetic energy
explodes as (to — t)~%/3; (i) the electrostatic energy explodes as (to —t)~%; and (iii) the
ion temperature in the coalescing direction'explodes as (%o ft)_s/ 3 until saturation due to

overshooting sets in, where g is the explosion time measured here to be 5 ~ 27(Q; 1) in




this run. See Table I.

This discovery of the existence of an explosive process (or instability) and its
indices of-explosion (the exponent to the time) is-important because it tells us that the
explosive magnetic process (we may call this the magnetic collapse) can take place in two
dimensions and also it prompts our allalysis. It is learned that driven reconnection (in
the present case it is driven by the coalescence instability) can be explosive under the
appropriate conditions. This also underlines a point that the magnetic in‘tel.'action(the
current-current interaction in the manner of Biot-Svava,rt’s law) caﬁ be .inherentl‘y attractive
and thus explosive (if currents are in the same sense).

As we shall see, it is pessible to explain many of these overall as well as deta{iledv as-
pects of the ekplosive procesAs. In particular.our theory can predict many of these indices of
explosion. In addition We observe that as the coalescence process approaches the explosioil
:time.t=t0, each qua.ntity tends to saturate, but with a different timing and fashion. During
the overshooting and its subsequent recovery period (that of amplitude oscillations) each
quantlty exhlblts a dlfferent pattern These featﬁfes Wlil be noteda.nd dlscussedalong
with our theoretical explanations for these effects.

Our investigation of the coalescence of magnetic islands is through extensive nu-
merical simulations of both MHD and kinetic types. We analyze these results, and then
construct a heuristic model of the explosive coalescence and later a more complete theory
of this process. The theory that accounts for the explosive coalescence process is then
extended to explain the explosive acceleration of particles during this process.

Section II presents a nunﬁerical study of the explosive coalescence through the
particle simulation as well as the MHD particle simulation. This section goes on to dis-
cuss the fundamental physical process underlining the explosive coalescense by presenting
the heuristic model that is a generalization of the Brunel-Tajima-Dawson model.12*4 In
Sec. III we polish the generalized Brunel-Tajima-Dawson model for the explosive process
and construct a more complete theory.. This theory predicts many indices of explosion
under various different conditions. The theory-is put to comparison- with. the above sim-
ulation observations with reasonable agreement. We expand our theory in Sec. IV to

explain the heating and acceleration associated with the explosive coalescence. Again the

6




comparison of the theory with simulation is compelling. The final section discusses many
possible applications of the present discoveries and theory to diverse fields of physics. It

. also-summarizes and gives conclusions.

II. Coalescence of Magnetic Islands

A. Stmulation Results

The nonlinear evolution of explosive coalescence of magnetic islands is studied by
computer simulation. We éombine and compare both an MHD model and a kinetic model
of simulation. The results from these two different models are consistent in basic points,
but are complementary in many detailed aspects. The results afe then analyzed in light of
- a heuristic model presented later in this section which contains some ‘essential ingredients
of the physical process of explosive coalescence. |

The kinetic simulation model we adopt here is the electromagnetic particle:
~code®*? with 25 dimensions. The configuration of the plasma and magnetic fields is
that of Refs. 19 and 20. The plasma density is initially uniform in the z- and y-directions
and the z-direction is the ignoréble direction. Fields are solved with periodic boundary
conditions in the z- and y-directions. The sheared magnetic fields are generated by the
exterpally imposed sheet currents J, at y=0 and L,, where L, is the length of the péri—
odic box in the y-direction. The sheet currents are turned with a ramp function profile in
time. The excess of the plasma return current or lack of it for the uniform component (the
wavenumber £=0) is compensated by the displacemerit current term alone, since the term
V X B vanishes for k=0.2° There are narrow slits in z where J,=0, which fix positions
of magnetic islands. As discussed in Ref. 20, the other islands are induced in between.
the islands that are fixed as mentioned in the above. These islands later coalesce. The
process of island generation from this conﬁgura.tion was discussed in Refs. 12 and 20. The
later process of coalescence of generated islands is our main concern in the present article.
A uniform external (toroidal) magnetic field B, is applied with various chosen strengths.
Typical parameters we employ in this code are: - the numbers of grid points in the.z-and.
y-directions are Lm /A=128 and L,/A=32, the number of electrons (and that of ions)
16384, the speed of light c=4w,.A, the thermal velocities of electrons in the z-, y-, and
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z-directions v, = lwp.A, the electron-to-ion mass ratio m./m;=1/10, the electron-to-ion

temperature ratio T, /T;=2.0, the (poloidal) sheared magnetic field B, at y=0 and L, is

‘such that eB;/m.c=0.7Tw,., and the size of particles a=1A, where A is the unit' grid

length and wy. is the electron plasma frequency for the uniform plasma at the initial time.
The toroidal field B, is varied with eB »/mcw,, ranging from 0 to 0.2, 1, and 2.
In these parameters the poloidal Larmor radius at the external current sheets

for electrons and ions are ppe=1.2Ap. and pp;=5.3\ D;, the Poloidal cyclotron frequen-

cies for electrons and ions 2.=0.7Tw, and 2,=0.077w,., and the poloidal Alfvén veloc-

Aty v Ap:1;22ve and the poloidal Alfvén transit time measured in terms of the poloidal

Alfvén velocity at the sheet with the initial plasma density is TAy = Ly/vap = 26(.01;61 and
Tae = Ly /vap = 105u)';el. These numbers change accordingly when there is an imposed

toroidal magnetic field B,. Because of the nature of the particle code and electromag-

netic interactions retained, the temporal and spatial scales of simulation are compressed

by usi‘ng an unrealistically large electron-to-ion mass ratio and small grid. However, it is

no'fedA thatﬂtrhie Vmain time scales we are interestérdrin éfe that of the Alfvén time and the
electron time scales are sufficiently isolated froﬁl this. The chief purpose of this simulation
is not to reproduce laboratory plasma behavior but to extract some fundamental under-
lying processes and try to understand them. In fact, as Wé shall see, many of the basic
characteristics of the simulation findings are reasonably expiained by theoretical analysis.
Although the fundamental physics emerges in the kinetic simulation, fnaﬁy parameters are
strained in this model such as an unrealistically large mass ratio 1/10. On the other hand,
the MHD model dispenses many of these processes and thus it is unnecessary to strain

many parameters

The MHD simulation model we use is the MHD particle code?? With?% dimen-
sions. The configuration of the plasma and magnetic fields is that of Refs. 15 and 19
based on the initial conditions of Fadeev et al.’s equilibrium.!® The MHD particle code
is robust in applications to problems even with strong turbulence, flows, convections, and
density depression. This is helpful because the present problem involves fast.(explosive)
reconnection, strong density depression and compression, and strong flows. The magnetic

induction equation is advanced by the Lax-Wendroff method.?® The plasma is originally




uniform in density and temperature contained by metallic (conducting) walls at y=0 and
L,. Here typical parameters are: L,/A=128 and L,/A=64, the number of fluid partic1e§' '
. 32768, the poloidal magnetic fields B, at y=0 and L, are such that the (poloidal) Alfvén
velocity v4,=3.5¢;, the adiabatic constant.y=2, .and the size of particles a=1.0A, where
¢s is the sound speed and A is the unit grid length. The current localization parameter
€ is varied from the value ¢.=0.3 to 0.85 .Where €. appears in the equilibrium current
profile as J,=B, k(1 — €2)(cosh ky.—l— €ccoskz)™2. The Alfvén transit times a_cross' the
ly—direction and the z-direction are %Ay:18.3A /cs and T4,=36.5A/c;, respectively.. The
typical magnetic Reynolds number is R,, = 10* with 7 = 0.036Ac,.As is well knoWn, the
ideal MHD dynamicé does not contain any characteristic length, except for the system’s
overall length; in the preseﬁt case it is either L, or the island width. For example, the
collisionless skin' depth c/w,e and the Debye length Vaniéh. Therefore, in .contrast with
the kinetic model discussed earlier, the spatial scales are not compressed. Similarly. the

relevant time scales are the Alfvén time and the much larger resistive time. On the other -

hand, the MHD model largely lacks the kinetic effects such as the Landau and cyclotron

dampings, particle acceleration, finite Larmor radius effects, etc. Thus the study by the

MHD model is complementary to that by the kinetic model mentioned earlier.

Results from the electromagnetic particle model are now discussed. Figure 2
presents the time history of various field quantities and temperatures in the course of
the early formation and the coalescence process with the toroidal field being such that
eB, /mec = Qey = 0.2wp, while Fig. 3 is that with Q¢:=1.0wp.. In Fig. 2(a) both the mag-
netic field energy and the ion temperature in the direction of coalescence (z) show that,
after the early (¢ < 3Q7!) rise which corresponds to the magnetic island formation by
tearing, a long relatively dormant period (¢ = 3-22) sets in, followed by a stage (¢ & 22-27)
of rapid and huge increase in these oscillatory quantities. It is also evident that after the
rapid increase (¢ > 27) amplitude oscillations ensue in the coalescence due to overshooting.
A similar phenomenon was also observed in the work in Ref. 24. It is to be remarked that
all the other quantities shown in Figs. 2(a)-(e) closely follow-the pattern of..Fig.‘ 2(a) with
their characteristic events simultaneously occurring. It is also noted that the amplitude os-

cillations of the temperatures (7}, and Tig as well as To., and T..) and the electrostatic field
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energy have a structure of marked double peaks. The valley of the double-peak structure

coincides with the peak of the magnetic field energy amplitude. As mentioned in Sec. I,

it is important to notice.that the rapidness of the increase of each quantity differs and
that each quantity explosively-increases cllardcterized by a certain definite, but different,
index of explosion (i.e., the eprnent to the time measured backward from the -poinf of
eﬁcplosion time) until the saturation stage sets in. The early saturation of rise (¢~3) of
each quantity in Fig. 2(a)-(e) corresponds to the completion of island formation.?® The
follbvving. Quiescent period (3 < ¢ < 20) corresponds to the stage where the formed islands
slowly attract each other. The rapid explosive ri.se (t > 20) marks the commencement of

the explosive coalescence. The following stage of amplitude oscillations correspond to the

“breathing”!? (or pulsatiohs) of coalesced islands (compressional Alfvén oscillations). The

induced electric field E, explosively increases when there is rapid flux reconnection during
‘the explosive coalescence and then osvci]lates‘as the-magnetic flux in the coélesced.,isl'and
is compressed and decompressed.

~ Figure 3 shows a similar qualitative trend of the coalescence process when the
toroidal field is stronger (Q¢;=1wy.). There are, however, several differences. Although
the double-peak structure still appears in most frames of Fig. 3, some quantities (the
electrostatic field energy and 7;,, T¢.) do not show clear double peaks anymore. In fact,
the electrostatic energy does not show systematic amplitude oscillations anymore. The
period of the amplitude oscillations and the separation of sub-peak to sub-peak in one
double-peak structure are longer.

As the -toroidal field is further increased to Qet:2wpe in this setup, the process
of island formation abruptly and qualitatively changes.'?> We called this the threshold
phenomenon with the toroidal field. The rate of reconnection for island formation is
down by two orders of magnitude and the structure of islands is not coherent but now
turbulent.'® In this case, we never observed that the system went beyond the stage of
early island formation (corresponding to ¢ < 3 in Fig. 2 and 3 cases). So we do not discuss
this case in the present paper in any further depth. -A case with no toroidal. field case

Qe:=0 was reported earlier,?® which will also be closely compared with the present cases

(Qet:0.2 and 10).
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Let us study the structure of the plasma and fields shortly before and after the
completion of island coalescence. Figure 4 exhibits the spatial structure of the magnetic
-field lines, the toroidal -current density .] ., the plasma electron density, the electron flow,
. the ion flow, and the electric field at.t=240;", while Fig. 5 shows_that at =280 L oIn
Fig. 4(a) the island near 2=55A, y=16A is rapidly approaching the other island at z==0
and y=0 pinned by the sheet current gaps. The former island is accelerated by the ln_tense
magnetic fields behind it. The density of electrons is sharply peaked just behind the center
of the island because of the acceleration [Fig. 4(c)]. Electrons flow mainly along the field
lines [Fig. 4(d)], while ions which are left behind the electrons try to catch up with the
electrons [Fig. 4(e)]. This sets up an electrostatic field pattern with arrows pointing from
the inside to the outside of the island [Fig. 4(f )] (Note that in the present code the charge

of electrons is taken to be positive for a historical reason.)

Figure 5 similarly exhibits the spatial structure of these quantities that appear.in -

F1g 4. The coalesced 1sla.nd now s1ts near r= O and y= 16A The electron ﬂow contmues

in the dlrectlon of magnetic ﬁelds [F1g 5(d)] The ions continue to compress themselves
but with a slightly skewed direction (rotation) [Fig. 5(¢)].

On the other hand, Fig. 6 presents the case of Qe;=1w,, just after the coalescence
(t=18), corresponding to Fig. 3. (The structure before the coalescence is similar to Fig. 4.)
The overall structure after coalescence (¢=18) in Fig. 6 is still close to that of Fig. 5, but
has a few important differences. The electrons again flow roughly along the magnetic field
lines, but shows some kinks. The ion flow shows a rotational motion. The main reason for
these is that as the toroidal magnetic field increases, ‘the mcompress1b1l1ty of the plasma
increases and upon coalescence the island motion adds a strong component of velocity
going like g x B;, where g is the acceleration of the islands during the coalescence.

Some of the above findings can be given by a qualitative explanation. Since we
shall discuss the explosive phase in 'greaf,er detail later, we pay attention to the amplitude

oscillation phase in particular here. Once two currents coalesce, they are bound by the

common magnetic flux. The larger coalesced island continues to vibrate.- Within the.

coalesced island the counterstreaming plasma flows cause turbulent flows which dissipate

their energy quickly into heat, thereby reducing the amplitude oscillations of temperatures
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and fields. As a result, as we shall see, the momentum distribution of plasma electrons and
ions exhibit an intense bulk heating and acceleration of the tail. The heating in the poloidal
direction (z) is due to adiabatic compression and decompression of the coalesced currents.
The eventual bulk heating seems to be a result ,of.turbﬁle_nt..dissipation of counterstreaming
instabilities. The heating in the toroidal direction may be due to heating/ acceleration by
the inductive toroidal electric field Whiclj. is several times the classical Dreicer field?® énd E
due to the v,;, % B acceleration. Examination of some of these proéesse_s will be discussed

in Sec. IV.

VT‘he double peak invthe,time development of the temperatures occur just before
(t=t1 ~ 27) and after (t=t3 ~ 29) the maxima of magnetic fields (t=ty ~ 28) In Fig. 7
schematic sequential pictures of plasma dynamicél behavior during coalescence are shown.
At t=t; the magnetic (J x B) acceleration of ions becomes maximum so that the fnagn_etic
flux behind the colliding plasma as well as the plasma itself are strongly compressed.
This plasma compression causes the first temperature peal\ at t=t;. After th1smax1mum -
accel;aratioﬁ phase ions acquire substantial velocities along the direction of collision so that
they overtake the magnetic flux against which ions have been compressed. This results in
an expansion phase (¢=t) of ions, and hence in an adiabatic éooling of the plasma as the
magnetic fields obtain maximum values. The process reverses after the maximum of the

magnetic fields at t=t3 ~ 29Q;1, which gives rise to the second peak of the temperature.

The particle a¢celera.tion in the high energy tail of ions and electrons may be qual-.
itatively djséussed here. The tail formation is probably due to a combination of localized
electrostatic field acceleration across the poloidal magnetic field?® and magnetic acceler-
ation (v, X B acceleration), as will be shoﬁn in Sec. IV. A plasma and field behavior
similar to that shown in Fig. 4 persists up to t ~ t; ~ 27Q;*. This is schematized in
Fig. 7(a). Found in Fig. 5 is the plasfna behavior near t=t; ~ 28Q; * when the maximum
of the magnetic field energy is achieved [see Fig. 2(a)]. The schematic of this is shown in
Fig. 7(b) (note that in Fig. 5 the spatial scale of the computer plot in the z-direction is
different from that in y so that it looks overly prolate). The pattern immediately after...
(t=t3 ~ 29) is again shown in Fig. 7(c). Electrons are magnetized and are carried away

with the accelerating magnetic flux, while bulk ions are accelerated by the J x B force.
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On the other hand, the high energy ions are due to the charge separation created near
the compressed flux. The difference of motions between ions and electrons around t=t,
causes.a strong localized shock-like electrostatic ﬁeld,l E;,, whose phase propagates with a
phase velocity of the structure v,, = v,. Here the mechanism of v, X B acceleration is
~ that an electrostatic wave propagating with phase velocity v, can add energy to a particle
that is propagating obliquely to the wave propagation direction‘by combining the electric
acceleratton and v X B acceleration when the particle is trapped in the wave. This v, x B

. acceleration®®~2?® causes the formation of high energy particles in the toroidal direction.

By this acceleration process, ions and electrons are accelerated to relativistic energies in -

opposite directions along the toroidal magnetic field.
Results from the magnetohydrodynamic particlé models are presented hence. Fig-
ure 8 shows the kinetic energy and the reconnected flux upon coalescence as a function of

time for the case with €,=0.85. ‘A theoretical curve (tg—t)~ 4/3 is superimposed on the sim-

ulatlon result Durlng the phase of the rapld increase of reconnected ﬂux (t = 50 90Ac"1)

”the s1mulatlon result matches reasonably Wlth the theoretical curve. Beyond t=90Ac,
the increase begins to be mitigated due to a saturation effect (the flux depletion).

Figure 9 displays the case with €,=0.7. The reconnected flux ¢ increases rapidly
with A¢ oc t™(m ~ 1.9).35 Tt is, however, less rapid than the case with €.=0.85. The
released energy is also less in the present case. In Ref. 15 the case with €.=0.3 was

treated, where At o t™ with m=1. Thus, it is clear that as €. increases, the process of

12,14,15

reconnection becomes faster, changing from the Sweet-Parker’ rate to the faster rate

to the explosive rate. It is also noted that the explosive increase of reconnected flux during
the coalescence is observed in the MHD simulation as well as in the kinetic simulation
discussed earlier. It is to be noted that pulsations are seen that are superimposed on the
overall growth of the reconnected flux in Figs. 8 and 9 as well as Figs. 3, 5, and 7 in Ref. 15.
The pulsation in Fig. 8 are more irregular than the ones in Fig. 9. In Fig. 8(a) one peak
appears at t=40Ac; ! and another at ¢t ~ 85Ac;"! while smaller peaks appeart after the
major peak at t ~ 95Ac;; in Fig. 9(b) pulsations have a period of 35 ~ 40Ac; 1, which is
of the order of the poloidal Alfvén transit time in the z-direction.

The structure and its evolution of the plasma and magnetic fields during the
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coalescence are now examined. The case of ¢,=0.7 is shown in Figs. 10-12, while that of

€.=0.85 in Fig.. 13. Compared are three time stages: Fig. 10 just about at the beginning

of rapid coalescence, Fig. 11 during the continued rapid coalescence, and Fig..12 after the ..

rapid phase of coalescence. The sequence of coalescence proceeds as follows. The early
slight displacement toward each island is shown' in Fig. 10(a) at t=20A/c,. When the
two islands come in full contact, the magnetic field lines exhibit a pattern simﬂar to that
shown in Fig. 1(b) of Ref. 15. At this moment (t=40), the plasma density at the z-point
becomes high (about twice as much as the original value) as shown in Fig. 10(c) at the
same time the current (J,) is strongly induced at the z-point as seen in Flg 10(b). The
plasma flow is shown in Fig. 10(d), exhibiting inflows along the z-direction and strong jet
outflows along the y-direction making an.overa]l' pattern of vortices. The plasma flow in
the z-direction is shown in Fig. 10(e): As the z-y flows are set up by the coalescence,

the z-direction flow is induced because of the toroidal field. The development so.far is

quahtatlvely 51m11ar to the case of €= =0.3 (except that the 1s1ands squeeze the plasma in

between a little more and the sheet structure is thinner here)

However, later (at t=75) there appear some deviations from the.ec=0.3 case. Fig-
ure 11 shows the snapshot of the flux, current, density, flow in the z-y plane, and the flow in
the z-direction at t=75A/c,. Note that an z-point-like feature appears at z=64A4, y=32A

as well as a marked and rapid density variation in the plasma sheet [see Figs. 11(a) and (¢)]:

The flow has a very large value near the z-point and inner vortex structure [Fig. 11(d)].'

Note also that this (¢=75) is the period during which the continuous rapid coalescence
gees on. These features were not observed in the case e.=0.3 (see Fig. 1, Ref. 15), in which
the reconnected flux increased linearly in time and in proportion with the square root of
the resistivity n (Av o« n*/ 2t) and in which the reconnection angle stayed very narrow.
Compare with Fig. 3 of Ref 15. | |

These signatures are consistent W1th our hypothesis (a) that the feconnection takes
place by the mechanism of Sweet and Parker7 for coalescence with €.=0.3. The signatures
found in Fig. 11, on the other hand, imply that the reconnection process is not that of
Sweet and Parker. It shows instead that (i) the reconnection angle at the z-point has

enlarged [Fig. 11(a)]; (ii) avhigh density spot near the z-point is formed [Fig. 11(c)]; (iii)
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the reconnected flux increases faster than the Sweet-Parker process (A o t™ with m o~ 2).
These are consistent with our further hypothesis (b) that the reconnection is through the
process of Brunel, Tajima and Dawson'#?® for coalescence with ¢,=0.7. Later (t=160),
the system approaches saturation when most of the flux available has reconnected as seen
in Fig. 12(a) (at t=140 for this frame) and the high density region has shifted from the
z-point to the coalesced island 1'1e<.:1ge [Fig. 12(c)]. The flow is randomized [Figs. 12(d) and

()]

Figure 13 presents the pattern of the plasma and fields of the case ec:O..85, where

we see faster and explosive reconnection (Fig. 8). We are advancing our third hypoth’esis-

(c) that the coalescence with €.=0.85 is explosive and this reconnection process is to be

characterized by the present paper. See Table II. In frames of Figs. 13(a)-(d) (t=50) one

sees the coalescence behavior before it becomes explosive. Although, in Figs. 13(a)-and

(b), in partlcular, one can detect some dev1at1on from the Sweet Parker type for ec—O 3 1t

is qualltatlvely smnlar to the ec—O 3 case and the €,=0.7 case . at this stage. In Figs. 13( )
and (f) (t=75), we now see significant deviations in pattern from the cases with less e..
A much wider reconnection angle than the previous ones is observed in Fig. 13(e). From

these observations it can be argued that the Widening of the reconnection angle has to be

accompanied by fast or explosive coalescence, as suggested by Refs. 12 and 14.

B. Heuristic Derivation of Ezplosive Coalescence

Some of the observed features of the explosive coalescence detailed in the above
can be explained by a simple heuristic theoretical consideration. In the problem of driven
fast reconnection Refs. 12 and 14 extracted the essence of the reconnection process that is
faster than the Sweet-Parker process. Geometry of magnetic fields here is exemplified by
Fig. 11(a). We are primarily concerned with the plasma sheet region (in the neighborhood
of z=64A and y ~ 20A-42A). In the vicinity of the sheet region the physics is nearly
one-dimensional, that is, the variation of quantities in the y-direction is much less than

that in the z-direction. We employ the following equations. First, the magnetic induction
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equation, that describes the evolution of the magnetic flux, is

e

8t =—V: v¢+nv ¢7 (1)

where % is the poloidal flux related to the poloidal magnetic fields (in the z-y plane)
B, = V% x z. The equation needed next is ordinarily the equation of motion of the
plasma and the fluid description of it is 8v /0t +v- Vv = (V x B) x B/47rp — Vp/p, where
p and p are the plasma mass density and the pressure, respectively. When the_pia,sma
motion is slow enough to establish a local equilibrium, however, this equation is replacéd

by the pressure balance equation
pi+ BY,/8m = p. + BZ, /87 + BZ, /8, (2)

where B, is the toroidal (z) magnetic field and the subscripts ¢ and e refer to the internal
and external to the plasma sheet. The third relation is the continuity equation, which

- under- the assumed-local equilibrium-reads - - - - - -
piua = pevl, - 3)

where the subscripts i and e again indicate the external and internal quantities, v is the
incoming flow velocity in the z-direction v=/ B.,, a the sheet width (in the z-direction),

L the sheet length (in the y-direction), and u is the exhaust (outflow) speed?®® given by
u S By /(ampi) . @

One can identify the left-hand side of Eq. (3) as the particle flux inside the separatrix,
while the right- hand side as that outside the separatrix. Equatlon (1) becomes an ideal

MHD equation predominantly determined by
- O /0t ~vB,, (5)

with v = 1/) /Bey in the outer region of the plasma sheet, while it takes a form of a diffusion

equation in the inner region

o

B,
2 Yy ~ .__y

16




These equations lead to the expressions'* of temporal behavior of the reconnected flux

~and the reconnection angle o as

\ Pil Pe '
’lb = ¢0 (i> ’ (7)

and

Ca= 2= P /utBe,, | | | (8)

where L* is the time-dependent length of the current sheet. Equations (7) and (8) success-
fully extracted the main physics of the fast reconnection and explained the driven recon-
nection simulation results!?14 as well as the coalescence simulation results with €. < 0.‘7.15

This set of equations can be extended to describe the explosive reconnection. In
the explosive process, the local equilibrium, as é,ssumed in the above, can no longer be
- maintained, but the aynamiéal pressure equation or the equation of motion as it is has to

be employed. In place of Eq. (2) we have
.

8t  8rpdx Y 20z

o

where we have taken into account the predominant one-dimensionality of the problem in
the z-direction and dropped the plaisﬁla internal pressure p compared with the dynamical
pressure %vg The continuity equation Eq. (3) either remains or goes depending upon the
compressibility of the plasma. Otherwise, the reduced set of equations as employed in -
Refs. 13 and 14 are applicable. | | | |

To describe the explosive process when the plasma is incompressible, it may be

possible to rewrite Eqs. (1) and (9) in terms of the reduced set of MHD equations®® as

o c '
B—If = gl + 1V, ~(19)

878 = 74 4, V1¥] - £ lp, Vgl o

where [ ] is the Poisson brackets, ¢ is the velocity potentlal v =cz X Vy/B,, and V| is

the in-plane gradient.
Let us make an ansatz that in the explosive coalescence the overall evolution of

the process is determined by the outer solution and the inner solution has to adjust to the
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former. This turns out to be self-consistent and yields theoretical results consistent with
the simulation observation. We seek an outer solution to Egs. (1) and (9). By knowing
- the existence of the explosive process through our computational work, it is possible to
postulate an explicit expression for the flux and velocity in the outer region. It is a special

solution for the outer region in a form of separation of variables z and ¢. Let the functions

o V(=)
S (12)
B, - ,f(:C)t’ | | (13)
b= | (14
L t(f(f)t’ (%)

where a one-dimensional model is assumed. By inspection Egs. (12)-(15) in fact satisfy
~ Egs. (1) and (9), since all the nonlinear terms are quadratic and the linear terms have the _
time derivative.

 Equations (1) and (9) in the outer region now become
v=wv, (16)
2V = —[(¥'?] — [V?, | (17)

Where.the primes represent the derivative with respect to ¢ and 4mp is appropriately
normalized.

Let us look at a typical behavior of solutions to Egs. (16) and (17). Take a case
in which the left-hand side of Eq. (17) is equated with the first term of the right-hand side

(the magnetic acceleration dominant case). Combining with Eq. (16), we obtain

1/4:d_‘I’

U2 _ g2
( 0) CZ{B

(18)

where ¥y may be identified with the flux of the center of an incoming island. In particular

we may be able to take its value as zero. In this case the solution to Eq. (18) is

Y(e) = (o~ 20, (9

=
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where zg is the center of one of the islands. This solution is valid as long as z is outside of
the inner régibn and satiéﬁes the assumptibn that we drop the second term on the right-
hand side of Eq. (17). Similarly one can obtain the spatial dependence of other quantities
V, B, and &. o

From the temporal behavior of Egs. (12)-(15) one can cast a prediction on a generic
pattern of explosiveness of various quantities upon the explosive coalescence. For example,

the magnetic field energy would diverge as
B2 X (to - t)_z, (20)

from Eq. (13). The electrostatic field can be determined from the massless electron eciua,-

tion of motion

Cc .

along with Ohm’s law in the z-direction

T —c 0 '
_ v 22
Vez- 47ne O By, ( )

where n is the plasma density and the subscript e refers to electron quantities. Combining

Egs. (21) and (22), we obtain

1 0

- drn, 5;

(By/2). (23)

z
Thus, the electrostatic energy would be expected to increase as
E2? o (to —t) ™% (24)

The inductive electric field E, is related to vy X Bby through Ampere’s law and thus it

would scale as

E, « (to—t)™2 (25)
The toroidal current J, is proportional to By through Eq. (22) and thus it would scale as

Jy o (to—1)7 1 (26)
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These estimates of explosiveness of various quantities (the indices of explosion) are
to be compared with the observed explosiveness discussed in Fig. 1. The simulation shows
(see Fig. 2) in particular that the rise of electrostatic field energy is much faster than that
of niagnetic energy. The observed indices for these quantities are not far from the values
given by Eqgs. (24) and (20). If we resort to the reduced version of the continuity equation

(3) and assume that p. and p; scale in a similar fashion, we obtain
L~ (vai/vz) a, ' | ' (27)

where v4; = Bey/(4mp;)*/? ~ constant. On the other hand, the magnetic equation (1) in

‘the inner region reads [Eq. (6)]

oY n
—Z =V~ LB
5 =" (U T

which yields a scaling of the plasma sheet thickness

a o (tg —t). ' (28)
Using Egs. (12), (27), and (28), we obtain
Lo (to— )2 | (29)

Comparison of Egs. (28) and (29) suggests that the originally flat flux structure as shown
in Fig. 13(a) similar to the Sweet-Parker” configuration (L >> a) makes transition into a
strﬁcture with increasing a/L, eventually leading to a/L ~ 0(1) similar to the Petscheck®
configuration. In fact, Fig. 13(e) shows a structure which has a larger reconnection angle
at the z-point. A difference of the present explosive process from the case of Ref. 15 and,
for the matter of reconnection process ifself, Refs. 12 and 14 as well, is that in Refs. 12,
14, and 15 L is proportional to to-¢ and a is held constant, while in the present case L and

a scale as Eqgs. (28) and (29).
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III. Theoretical Model of Explosive Coalescence

As shown in the previous section, the current sheet of nearly one-dimensional structure is
formed in the explosive stage of the coalescence instability. As the coalescence proceeds

further, the magnetic field structure approaches an z-type (Petsheck type®) configuration.
3 .

: 7] . . .
We assume that — > — 35 in which z is the direction of coalescence, while y is the
z . .

dzx Oy’
direction of poloidal magnetic field line and z is the direction of plasma current. We treat

the external pldsma dynamics of the expldsive stage as a one-dimensional problem. Toward
the end of this section we comment on two-dimensional effects, however. .As we shall see,
in two-dimension we get essentially the same results as we obtain from the one dimensional
model. |

We start from the two-fluid model equations of plasma and the Maxwell equations,
neglecting  the displacement current. We assume the adiabatic law of states for both

electrons and ions. The basic equations read as follows:

—at—’ TV (njv;) =0 (30)
d . .
mjnj_dit]— =nje; (E + ch— X B) - Vpj, (31)
4m )
VxB=2Y njev; 32
x B - Zn]e]v], (32)
] .
V-E= 47anjej, (33)
F
10B :
E=--2 34
VXE=--—, (34)
%?% +v; - Vp; +p;div v; = O, (35) .

where j denotes the species of particles and ~ is the ratio of heat capacity which is related
to the degree of freedom of the system f as y=1+ % The appropriate choice of ~ in
Eq. (35) depends on individual cases and models we use. For example, the explosive pro-
cess observed in the kinetic simulation showed a strong one dimensional (one directional)
acceleration, which gives rise to one degree of freedom of motion f=1 and thus to y=3.
On the other hand, in the MHD simulation, the adiabatic constant v for electrons was

fixed to be 2.
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During explosive coalescence, there is no specific scale length. The scale length
characterizing the current sheet varies continuously in time without deformation of global
structure of current sheet. If one looks at the evolution of the system locally in time, the
system undergoes the rapid field and temperature rise, compression of plasma,,‘ change of
the reconnection angle etc. in a certain specific fashion which was detailed in Sec. II. It
one looks at the same system locally in time a little later, the system undergoes these
changes with different magnitudes, but still in the same specific fashion. That is, the
relations (laws) that govern the explosive céélescence themselves are invariant under the
change of time scale. This was the manifestation of the presence of self-similarity in the-
system during explosive coaleécence. This may be called universality in time, as opposed
to the conventional universality in space such as in Kadanoff’s spin block problem?®! and in
Kolmogorov’s turbulence spectrum.®? A similar sifuation also arises in the general theory

of relativity in which the scale factor a plays the Hubble expansion of the universe.. Such

a physical situation may best be described by self-similar solutions in which scale factors

vary continuously. Search for a self-similar solution can often be a quite powerful method,
leading to an essentially correct solution to a set of complicated equations where otherwise
no manageable solution may be obtained in highly nonlinear situations. In the present
paper the self-similarity is not just a theoretical assumption for solution, but it has been
demonstrated by the computational experiments as described in the previous section and
Table I

We introduce scale factors a(t) and b(t) as follows,

Sa
Ver = —Z, ' (36)

-z, | (37)
where a dot represents the time derivative. An ansatz is imposed here that the velocities
are linear in z. The linear dependence on z of the velocities implies that particles flow in
the opposite direction around the center of current sheet, z=0. The scale factors a and
b will be determined from the above basic eQuations. From the continuity equations of _

electrons and ions, Eq. (31), we obtain
ne = ng/a, - (38)
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n; = ng/b, _ (39)
where ng is a constant. Equatiqns (38) and (39) show that the densities of ions and electrons
are nearly homogeneous in space and vary only in time during coalescence. The self-similar
solutions obtained here are local solutions in space whose properties are dominated by the
physical process near the current sheet. We therefore neglect the higher order terms in
space proportional to z3 and higher hereafter. The current J, in the sheet is nearly
constant. This means that as n is nearly constant, v, is} also approximately""c;)nstant in
space. Neglecting the term with z® in Eq. (32), we obtain

Bo(t) 4meng vi(g) v§2) | .
N ¢ b a ) (41)

where we assumed the magnetic-field B, varies as B, = By (t);, where A is the magnetic
field scale length. This ansatz is consistent with the assumption that the sheet current is

(nearly) constant in space.

- From the y-component of Eq. (34) and the z-component of equation of motion for

electrons Eq. (31) we obtain :
Ezl

3, = 2c—22 | 41
BO ¢ )\ b ( )
ZB2 a.Bo(t) 2
Z 4z = 42
(0)
Ove € :
= ——F,, 43
ot Me 0 (43)
where
2
x
E, = E,(t) + Ezl(t)ﬁ- (44)
Equations (41) and (42) yield o
Bo(t) = — (45)

where By is a constant. From the z-component of equation of motion for ions, we get

o e
From Egs. (44) and (46) we have
o =@ (47)

1
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From Eqgs. (43), (47) and (41), we get for 29 and E,

(49)

o =T (45)
4mengAa? <£ + T—:) .
E — Bood.’vz meCBoo d b
=T cad) 4mnge? )\ dt o (b me
a — —_—
a m;

Assuming that the electrostatic field E, varies like E, = Ey(t)z/), we obtain from Pois-

son’s equation (33) | ' :

a

Furthermore, the equations of state for electrons and jons give rise to

_ Po. _ Po. 33_2
T @Y 2072 )2’

(51) .

. _Pu Py a?
T 22 a2

(52)
We now go back to the z-component of equations of motion for electrons and ions

in order to obtain the basic equations for a(t) and b(¢). Substituting Eqgs. (50), (51), (52),
(45), (38) and (39) into the equation of motion Eq. (31), we finally obtain

2 a Bgob POe (53)

a=-w (— — 1) — 4
Pe\p 4ﬂ.men0>\za3 (b + &> meno)\Za'w

a ms;

. 'l 2 12 . .

. . 2hy?
a Mi ) 4rmino\2a (% + %> m;ngA2b

5 4rnge?
i = . If we neglect the small terms of the order of the

Me my
mass ratio m./m;, we obtain

5 - 4mng e?

where Wy = and w

BgO POe

. _ 2 - _
@ “pe (b ) drmenoi2a?2  men.A2a’ (55)
2 0z
=2 (12 ) 4 —2% 56
b=wy; (1 a> + T (56)
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Furthermore, assuming that the plasma is quasi-neutral n; = n., i.e., a=b, by adding

Egs. (55) and (56)
2 C 2 :
o UA Cs L
@= T 202 T A\2g° (57)

where
B3
drng(m; + me)

and & = (Foet Foi)
3 (me + mi)no

Vg =

In Eq. (57) the first term of the RHS corresponds to the J x B term. This is the term
that drivves magnetic compression (collapse). The second term corresponds tb the pressure
gradient term. This term may eventually be able to balance the magnetic colla,psev when
v=3. The condition y=3 means that the plasma compression takes place in a nearly one-

dimensional fashion so that the degree of freedom of the system f becomes unity. When

=3, we obtain

2 ' 2
w Vy c
= ok o &
~ when v=2(f = 2), on the other hand, we obtain . ..~~~
o _
a= _M. (59)

A2q2

Once the behavior of the scale factor a(t) is determined from the above equations,
we obtain various kinds of physical quantities as follows, in the quasi-neutral plasmas, and

'negleéting the mass ratio (E — 0) ,

m;
Boo T
m; v4 Py x
E,=(-—24 e )= 61
“ ( ey ad + eAa‘*no) A ( )
Boodmz Boomecd :
E, =— — (62
cad\ 4drnge?Aa? ( )
cBgo ;
— _ . {63
Vez drengAa (63)
'Uim.: Vez = gw (64)
a
n; = Ne = o (65)
a .
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where the electrostatic field E, in the quasi-neutral plasmas is determined from the equa-
tion of motions _for ions, not from Poisson’s equations. In Eq. (61), we neglected the term
Viz X By, because of the order of ;Z—e |

From Egs. (60) and (61) We% find a result that in the explosive phase (¢ — 0) the
electrostatic field [E; o (a3 +a~*)] grows more rapidly than the magnetic field (B, o

a~?%) does. This effect comes into playing a pivotal role for high energy particle production,

which will be discussed in Sec. IV.

Now we invesﬂigaté the global time behavior of coalescence by making use of the

first integral of Eq. (58). Equation (58) is rewritten as

&:_ax;_‘(:), | o (e8)

where the effective (Sagdeev) potential V (a) is given by

2 2

Vi) = - + 7 (67)

" A2g | 222027 :

where the first term may be reminiscent of the “gravitational potential” while the second

of the “centrifugal potential.” The schematic graph of the effective potential is drawn in

Fig. 14. The value a which satisfies V(a;) = 0 is given by

: 2
1

a; = ——=-. (68)
| 2v% .
The minimum of the potential, Vmin, obtained from 0V /da = 0 is
: 4
Vinin = YOk (69)

at a=2a;=c2 / "’,24‘ The potential becomes deeper when the ratio of the kinetic to magnetic
energy densities decreéses. This means that the driving force J X B is dominant compared

with the pressure term. The first integral of Eq. (66) is given by

202 02
.2 A
=32 gz T & (70)

where & is the initial (Sagdeev) “energy” (dimension: 1/time?®) in space of stretching

factor a.

202 c2 '
_ 2 A .
& =do- Nag T AZZg' (71)
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As seen from Fig. 14, the explosive magnetic compression corresponds that the scale factor
a(t) rapidly changes in time by orders of mé,ghitude and nearly vanishes. We méy call this
an explosive magnetic collapse.. Such an explosive collapse can be realized (i) when the
effective potential has a sharp and deep potential well and this means that 8 = ¢Z/v% is
very small; (ii) when the initial total energy £/2 is nearly zero. On the other hand, when
£/2 is close to —Vyn, we have oscillations near the potential minimum and no ekpldsive

collapse.

Figure 15 shows an example of numerical solutions of Egs. (53) and (54). The -

initial conditions in Fig. 15 are: a = b = 100, ¢ = 1, b = -1, vg/wped = 0.01,

(POe/wgemeno)\z)l/z = 0.01, a.nd'(.Poi/t.¢)§em¢7'z,0/\2)1/2 = 0.01. The normalizations in

Figs. 15(c) and (d) are such that E, =b! —a™" for Eq. (50) and By = a™? for Eq. (45)."

Increase of (POe/wgemino)\z)l/z and (P,Oi/wgemino)\z)l/z up to 0.3 does not change the

result much. In this example the system is not quasineutral and we observe thatib is

slowly changing with b(¢) roughly proportional to ¢, while a(t) shows some oscillations. If

b(0) =0, on the other hand, b(t) ~ constant.
If the total energy is given in Eq. (70), we can find the period T,s of nonlinear
oscillations by integrating Eq. (70)

@e2 ada
Tos = 2‘/‘1;1 i vz 2 ,02 Cz 1/2
Pot _A ) _ A s
[ (‘““ 5A2> )2 Az}
”?4 —3/2,-2

where a1, aiz are roots of the equation which gives a=0:

2 2 .
RV . - (73)

EN2 Exz 7

and t4 = A/v4. In the limit of £ — — Vi, we find the minimum period Ty, as
Tnin = 271',83/215,4. ' (74)

Equation (72) indicates that the period 7, of nonlinear oscillations becomes longer when

£ tends to zero.
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Let us examine the time history of various physical quantities based on the quali-

tative time behavior of a(t) derivable from the effective potential V(a). The magnetic field

energy is proportional to BS, which is given by

B2 = Boo (2’
vooat \ )
If the scale factor @ becomes smaller, B; must increase. The maximum is given by
oB?
¥y O,
ot
which yields =0, namely a=a;;. After the maximum, 32 decreases again and reaches
minimum at a=as2. The oscillatory behavior of the magnetic field energy is schematlcally
drawn in Fig. 16. The period of the oscillation is given by Eq. (72).
The electrostatic field F, is given by Eq. (61). The time history of the electrostatic

field energy, which is propositional to Eﬁ, is analyzed by investigating

OE2 0
5 =0
This condition is equivalent to
50 = 0, (75(1)
or
A&, :
— =0 ' 75b
at 3 ( )
m; ’1)31 POe fe e
where E(t) = —— 2% . The first condition £;=0 occurs at a=az =

el a®  elnga?

.. 0& . "y
Poe /mingv?y = c?/v%. The second condition —— gives two conditions, namely

ot

(i) @ = 0, which occurs at a=ay;, a2

4

=38

It¢

4 Py,
'(ii)a:a4=———0 5 4
3 m;nguy 3v

h;mlmnm

The above considerations give us the schematic time history of the electrostatic
field energy E? as drawn in Fig. 17. Figure 17 indicates a triple-peak structure in the

electrostatic field energy. When the plasma £ is small, az and a;; are close. In this
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case, the triple-peak structure in the electrostatic field energy would become double-peak
structure. The maximum value of the electrostatic ﬁeld; Erax, achieved at a=ay 1s giveli
by

1/3 8 m; 03 m; v4 T
Enaax: o Az §01—1—4— . 76
4 <4> e 8 A el 33 A (76)

The induced electric field E, is given by Eq. (62), which shows that E, becomes zero,
when a=0. E, changes its sign around a=0 because =0 is the point where the magnetic

field achieves maximum or minimum.

Next, the time behavior of ion temperature T;, is examined. In the early stage
of coalescence, the plasma should be adiabatically compressed. However, as the ﬁagnetic
field energy increases near the peak and approaches the peak, the ion flow energy becomes

dominant over the thermal energy. From the consideration that v? gives maximum or
2

minimum, namely ——5'7:8 = 0, we find two conditions for the extrema; (i) v, = 0, which
 gives a, (i) "‘%’4:’6,'4wlhich gives A
ai = 42, (77)

When the explosive coalescence takes place (£=0), we estimate the condition (77) as

2¢2 2
(1,:(1525;)%:-3-,8

After a=as, the kinetic energy must decrease, which means that the plasma is in the state
of colliding phase, see Fig. 7. The above considerations give us the schematic time history of
the ion temperature, which is,shéwn in Fig. 18. Figure 18 shows a double-peak structurev
in the ion temperature. In the limit of quasi-neutrality, we can estimate the dominant
term governing the explosive phase where the adiabatic compression is predominant. The_::
temperature T is given by T'=P/n, while the dominant term in pressure changes in til_ne%

as P ~ a™° when y=3, P ~ a~* when v=2, while n ~ a~!. Therefore we find

T=P/n=— (vy=3), (78a)

1
= (r=2) (78b)

"~
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We investigate in more detail the explosive phase of the coalescence in a case where
we can neglect the effect of plasma pressure: it only acts as a saturation mechanism.
Héwever, if we take y=2, the pressure does not take the role of a saturation mechanism as
seen in Eq. (59). In the explosive phase, therefore, we can neglect the second term on the
right-hand side of Eq. (58); ,

== | (79)

Furthermore, we need a second condition for explosive collapse, namely the initial total
energy £ must be close to zero. For example, if the oscillation period of magnetic energy
is of the order of the transit Alfvén time ¢4 = \/vy, we can estimate the total energy &

by making use of Eq. (72) as

T, =2mE 7322 1y, (80)
which gives :
g~ BT
ta

The solution of Eq. (79) with small £ is given by

a(t) = (—2)1/2 <UTA>2/3 (to = £)*/° +0(£), (82)

where we neglect the order of £ and g is the explosion time. Once the solution a(t) is
given by Eq. (82), we can find the various physical quantities as follows, which is valid in

the explosive phase of the coalescence;

2 T
z = Vizg = Vez = —7 83
Vg = v 3=t (83)
9\ 1/3 A2/3n,
(9> w23 (to — 1)2/3
2m; x
=2 —, 85
B 9 e (to _t)Z ( )
B _ (g>2/3 BOOAl/sm (86)
4 9 ,Ui/3(t0 _ 75)4/3’

30

w0




7 3\9 vi/3c(t0—t)7/3 3\9 w;exl/%i/l%(to —-t)5/3

The explosion time %g is related to the initial condition. From Eq. (83) we find

the initial velocity v,o at =0 as

do 2z

_Go _ 88
Vg0 ao Z 3t0 ’ ) ( ) :
‘where ag, Go are the initial values of @, & at t=0. From Eq. (88) we find
L2 ap
fg=———(>0 . 89

where ap must be negative when magnetic collapse occurs. On the other hand, ag and ao

are related to the initial total energy as

202
2 A
£=8~ g (90)
‘when the pressure term is neglected. If £ ~ 0, we obtain from Egs. (89) and (90)
V2
1o ~ ?ao\/&otA. (91)

Combining Eqgs. (85) and (86), we find that in the explosive phase the electrostatic field
E; « (to — t)™2 more rapidly grows compared with the magnetic field B, o (tp — t)_4/3.
This fact becomes importdnt when we consider the high energy particle production By E,
during the explosive phase of the coalescence.

Let us compare the theoretical results obtained here for the explosive phase with
the computer simulation results. The global structure of the magnetic field energy, elec-
trostatic field energy, and ion temperature in the z-direction observed in the simulation is
well explained by the theoretical model obtained here. Especially, the double—i)eak struc-
ture in the ion temperature and the triple-peak structure in the electrostatic field energy
are also observed in the simulation (see Figs. 2 and 3). Table I summarizes the results of
comparison of the explosion indeces between the theory and the collisionless simulation.

In Table I we show the index m of explosiveness [the exponent to the time (¢g —

t)~™]. Table I shows a good agreement between simulation and theory in the electrostatic
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energy. When the toroidal field becomes comparable with the poloidal field (B;/B, =1
case), there appears two-dimensional‘ motibn, plasma rotational motion (Fig. 6), which
makes a more complex electrostatic field configuration. When B,/B, = 1, the magnetic
time behavior of field energy also deviates from the one-dimensional analysis for the same

reason. For the ion temperature we find its explosiveness from Eq. (77) as _

1 1
T~ e (92)

when y=3. The above scaling also is close to the results obtained in the simulation, except

for the.case of B;/B, = 1. If we use y=2, we find from Eq. (78)

1 1 ‘ |
Tr—~— » : 93

which may correspond to two-dimensional adiabatic compression. (However, we still have
some small discrepancy from the simulati611.) In Fig. 1, the eléctrostatic field energy,
magnetic field energy, and ion temperature are well explained by the one-dimensional
model of the explosive collapse; | |
Comments are made on two-dimensional effects. As shown in the one-dimensional
analysis, the neglect of electfon mass (me/m; — 0) is justified. The current J, is main-

tained only by the electrons. Furthermore, the magnetic force for ions are also of the order

of the mass ratio. We introduce four scale factors a(t), b(t), c1(t) and d(t) as follows

a
Vig = —&,
a
b
Uiy gya
1
Vex = — T,
€1
d |
Vey = Y- (94)
From the continuity equation we find
L)
n, = —
ab’
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Ne = cl_d | (95)

From the Maxwell equation, we obtain

Vez = __cad_ (i — i) . (96)

dmrenog) \ ¢ d?

Similarly we get from Poisson’s equation

A .
o = A1z 4meng <l - i) , (97)

where

Ll (2 07, o

The magnetic field is given by

_Boy
T2 )y
. Boo T

From the equations of motion for electrons and ions we finally obtain for a, b, c;, and d

A 1 a | '
a2 2 -
&= pi (Al n A2> (b c1d> (100)
. M 1 b
b= w2 LR 01
i (Al n >\2> <a cld) (o)

A c 1 v? d 1 :
w2 2 _1 ) YA e -
1= e <A1 n A2> (ab d) A2 (cg d) - (102)

. A d 1 v2 1 ¢ '
d=— 2 1 - Ae [ = H1 .
“pe (A1+A2> (ab c1> DY <c1 & - (103)
where
Bz
2 _ a0
Vde = 4’7’[’7’&07’7’1,«;.

If we assume the quasi-neutrality (n; = n.) in the above equations, which imposes that

“Wronskian” equal to zero, ab=c;d, we find

5 .
v Vp d 1
a--%(5-3). (104)

€

33




a2 \e 1 d2 i
These equations were first derived by Imshenik and Syrovatskii.3® As noted in their paper,

in the limit of ¢ — ¢y, we have approximately
c1 = (to — t)2/3 and d =~ constant.

This just reduces to the one-dimensional results discussed in the above. Roseneau also
obtained self-similar two-dimensional solution.34
Finally, comments on the effect of non-quasineutrality are due. In the explosive

phase, we can neglect the effect of pressure terms in Eq. (55) and Eq. (56):

i = —w? (9 - 1) _ e B (106)

Z%:wz.v -2, B (107

From the analysis of numerical calculations b_f Egs. (106) and {107), we can conclude that

b is slowly varying in time during the variation of a. Therefore if we use the result of

b o~ bo=const. in Eq. (106), we find the effective potential V(a) as

. 0V(a)
= fa -
’ 2 2
.2 E_ _ _ vAe
V(a) = wp, (260 a> 2o (108)

The schematic graph of the potential is given in Fig. 19. Here we write the effective
potential including the effect of plasma pressure. The curve that incorporates the pressure

effect is shown as the broken line near a=0. Figure 19 shows a second minimum at a=amin

which is caused by the effect of charge separation. When the J x B force dominates, the

charge separation effect is unimportant. Such is the case of explosive phase of coalescence
(where charge neutrality is maintained to a good degree). However, after the coalescence in
the late stage of amplitude oscillations, the J x B force becomes weaker. Then the charge
separation may become important. In this stage electrons can be trapped and oscillate in

the potential well near the second minimum in Fig. 19. The electrostatic field oscillations

34
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are similar to the dipole oscillations near the current sheet. Such dipole oscillations may be

‘able to radiate the electromagnetic wave (w ~ wpe Or wp;), if the plasma is not evanescent.

The simulation results obtained show certain high frequency oscillations in the frequency
range of w ~ wpe,wrm (the lower hybrid frequency). The detailed comparison will be
reported elsewhere. Omnce other effects such as the two-dimensional curvature effect' are
included, it might be possible to have additional minima in the effective potential and thus
for the systeni to be temporarily trapped in the potential well and exhibit pulsations that

are found in Figs. 8 and 9.

IV. Explosive Acceleration

We have found that in the magnetic collapse the electrostatic field can be explosively
generated and can grow more rapidly than the magnetic field. The explosiveness of the
electrostatic field E, ~ (t; —t)~%, and magnetic field By ~ (to—t)"% 3 agree well withthe

results obtained in the simulations (see Figs. 1-3). As shown later, the kinetic simulation

finds that, in the explosive phase, ions and electrons are simultaneously accelerated in the.

z-direction, opposite each other. When a particle moves across the magnetic field driven
by the electrostatic field E,, the particle can be accelerated in a direction (z-direction)
perpendicular both to the electric field (z-direction) and the poloidal magnetic field (‘y-
direction). This a.ccelerétion mechanism was considered by Sugihara et al.?” and Dawson
et al.?® On the other hand, Sagdeev and Shapiro?® discussed the same physics from another
point of view, namely the large amplitude wave damping due to trapped electrons. These
previous works are applicable to the cases in which the large amplitude electrostatic waves
can propagate across the static magnetic field. In the explosive phase durihg magnetic
collapse, a similar situation can be realized; now both the magnetic field and electrostatic
field can vary in time and space.

Figures 20 and 21 show the distribution functions of electrons and ions in the
coalescence simulation from the electromagnetic particle code. In Fig. 20 we compare'the
distribution of electrons and ions before the explosive coalescence and the distribution after
that. The upper four frames [(a), (b), (&), (f)] are the distribution functions just before the

coalescence, while the lower frames [(c), (d), (g), (b)] are after the coalescence. It is clear
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that the distribution functions have very rapidly changed during the explosive coalescence
and strong heating of ions in the coalescence direction has occurred during this time. It
is also observed that there is a very small but energetic population of electrons has been
created in the z-direction perhaps due to the inductive acceleration. A similar pattern is
observed in the ion distribution in the z-direction with the appropriate parity difference
because of the charge difference between electrons and ions. Electrons are accelerated in the
negative z-direction, while ions are in the positive z-direction. Ions are strongly heated in
the z-direction, i.e., in the direction of coalescence, as seen in Fig. 20(g) in comparison with -
Fig. 20(e). (In these frames a maximum or minimum of the distribution corresponds to the
extrema of the horizontal abssissa. Therefore, in Fig. 20(e), for example, although Wleb do
not see a clear tail, there exist electron hot tails up to £12mc). In Fig. 21 we replotted the
data from Figs. 20(h) and 20(f) in logarithmic scales. From Figs. 21(a) and (b) it is learned
that the ion distribution in the z-direction has _three regimes, the bulk, the hot part, and .
the highly accelerated part. The hot distribution goes like either f;(p,) « eP=/Po op p;3s.
 From Fig. 21(c) the hot electron distribution in the z-direction goes like f,(p,) o e™P/Ps
or hot Gaussian. It should be noted that the explosive coalescence produces extremely
energetic ions which form a relatively flat and long plateau: Some particles are accelerated
with kinetic energies up to their rest mass. These observations may be explainable in the
following discussion.

In this section we study particle acceleration by examining a test particle motion

under the explosive electromagnetic fields during magnetic collapse. By means of the

electromagnetic fields, Egs. (85), (86) and (87), we obtain the equations of motion of a

test ion
dvm €Ew0 T eByO TV,
= — 109
dt m; (to—t)2  myc (to — )43’ (109)
dv, _ eEzo z? 4 9 eEzoczv'vi/g : eByg oy . (110)
dt  m; (to—1)7/3 " 2 miX23w2, (tg — 1)8/3 * mye (to —t)4/3
where we define
2/8 1/3
A 2 /2 BgoA 2 By
= 2m. R et _“ _
Ezo m;/9¢ , Ey 3 <9> cv4A/3 3 o " (111)

36




Particular attention is paid to a particle which is driven by the electrostatic field in
Eq. (109). Such a particle can be accelerated in the z-direction without Larmor motion.
One may say that the particle has an infinite Larmor radius, while background plasma
particles have (riearly) zero Larmor radius and zero acceleration. Even if the velocity v, is
small in the initial stage, v, can increase by ev, x By /c of Eq. (110) through the increase
of v,. This acceleration can proceed till E, becomes cémparable with v, B, /c. After that
the particle takes a gyratipg motion. The maximum Velocity Vymax Dy this accelel;ation
mechanism is expressed as |

cF,

Vzmax = B

(112)

Y

The dynamo force ev, B, /c that accelerates the particle in the z-direction depends on the
sign of charge, so that the electron and the ion are accelerated in directions opposite to
each other. The maximﬁm velocity depends neither on the charge nor on the mass of the
particle as in Eq. (112). Therefore the maximum energy of ions is larger than that: of
__electrons by the mass ratio. . .

We examine eQuations of motion (109) and (110) for the test particle. Transform-

ing the time ¢ to 7=tq — ¢, we find

dvg _ eBy =z eByo zv, _ (113)

dr m; 1 myc 7437
where we used the relation E,q = 2B,0/3c, as we have seen in Eq. (111). We also find

dv,  eBy [2 z2 6 xz dzx

- — — 114
dr mic |377/3 + r5/3 143 67|’ (114)

where § = 9c2vi/ 5 / 2w§e )2/3, Since ions are accelerated mostly by the electrostatic field

E. (eE, > ev,By,/c), ions are approximately determined by

dvg eF.o =
_ _Elw 115
dr m; T2 (115)
The solution of Eq. (115) is given as
T = 017'2/3 + c27'1/3,
2 .
Vp =& = §c17'_1/3 -+ 1/3c27_2/3, (116)

37




where ¢y and ¢y are determined from initial conditions
c1 =3 <’u0t;/3 — mot;2/3> ,

o =3 (xot; V8 _ yetl! 3) : (116)

Equation (116) implies that the ions with non-zero ¢; and ¢, can be explosively accelerated -

in the z-direction.

By means of the solution (116) we find the solution for v, from Eq. (114)

__eByo ca+ 3.5 ciCa '
vz = m;c ( 272/3. + T3 ) (118)

Equation (117) indicates that the ion with a particular initial condition, ¢; 75 0, can be
~ explosively accelerated in tile z-direction. The dominant term in Eq. (118) is the first term
with ¢; in the limit of 7 — 0. From Eq. (114) with condition E.o < v,By/c we obtain
§ < ¢z and from Eq. (109) with condition E, > v,B,/c we have ¢z S vi/3/2ﬂf>\2/3 in this

the v, x B mechanism. The second relation c; S 'ui/ 3/ 202)3/2 corresponds to E, 2 %= B,.
This means that the ion can be initially accelerated without gyrating motion. The ion
with ¢ S vi/ ¥/ 202)2/3 can be accelerated until the explosion time (7 — 0), because the
electrostatic field always exceeds the magnetic force v, B,.

If we consider a test electron, we find the velocity in the z-direction as

2 2
Vze = _e_q%, <%r”"”3 + 267“2/3 +dydyr 3 4 -‘12—27"“‘1/3> ‘ (119)
M :

where
, p=(1+ 877‘%'/9""7@)1/2 )

_ 1-—- _
dy = [vot(()l Wiz Lz—p)woto (1+;4)/2} |

g — [(#‘2"1)m0t8;¢—1)/2 —vot((,l*")/z] .

The constants d; and dy are determined from the initial conditions for the electron. Since
i > 1, the main term in Eq. (119) is the last one. From this it is learned that the electrons

with nonzero dy can be explosively accelerated in the direction opposite to the ions.
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The ions can be accelerated during the explosion period, while the electrons can

be detrapped from the electrostatic field at =74 before the explosion time

2 eEmo eByo —2
TA= | =
a2 \ m. MeC

At 7=74 the electrons gain the maximum velocity V}3** given by

3/(1-3u) :
' (120)

max __ __ 2
sze -

o [ S
N
9]
3'@5
LS
O |e
~
|
=
|
[y
~
w

A
| o T :
_d (eBy 2 (eF.o eByo . (121')‘
T2 \Umee dZ \ m. MeC ’

This is of the order of ¢E, /B, as already indicated by Eq. (112). The degree of explo-

siveness (Ver o ror-1/ 3) of electron acceleration z-direction is higher than that of ion
(viz o< 77%/3):  the index of explosion for ions is p + 1/3 > 2/3.

We compare theory with the results of simulation. Figure 20 ShbWé the distribu-
tion functions for ions and electrons in the early stage of the coalescence and after the
coalescence. In the z-direction high energy tail particles (both electrons and ions) are
‘observed, accelerated in the opposite directions. The maximum velocity is estimated by
use of the maximum value E, given by Eq. (76) at a = 4/3c2/v%. At this value of the

magnetic field By is given as

4 c? 3v% ‘2

Therefore we obtain vmax as

cE, _ 3vj

max — = 123).
Umax = B T 16N )2’ (123)

where ; = eBgo/m;c. The maximum velocity normalized to the ion thermal velocity. 18

obtained by use of Eq. (123) as

2 2 2
Vmax VA vAa _2 .
= 0.035 — . 124
(sz') ° <Qi>\> (’UT«i> & (124)
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In the simulation we observed E, /B, ~ 0.71. If the velocity is relativistic, the maximum

momentum is given by

max (Eﬁv/By)
b = 1/2° (125)

moc 2
C -G
This expression says that if E,/B, ~ 0( 1), Pmax becomes ymoc. The simulation value
E,/By ~ 0.71 implies pmax /& mgc and this is observed in the z-diréction of ion distribution
function. As was earlier, when E, becomes v, B, /c, particles begin gyrating again, thus
prohibiting 1—(E;/By)? from becoming negative. We need more study to determine what

exact value of E./B, will be at saturation.

V. Discussion

An explosive reconnection process associated with the nonlinear evolution of the coales-

cence instability has been found in the electromagnetic particle simulation and the-MHD

particle simulation. The explosive coalescence is a process of magnetic collapse, in which we

find the magnetic and electrostatic field energies and ion temperatures explode toward the
explosive time tg as shovs}n in Table I and Fig. 1. Single-peak, double-peak, and triple-peak
structures of magnetic, temperature, and electrostatic energy, respectively, are observed
in the simulation as overshoot amplitude oscillations. The heuristic model'? is extended
to this explosive coalescence in order to theoretically explain the basic process. Since the
explosive coalescence exhibits self—siﬁlilarity in time, we have searched for a self-similar
solution to the two-fluid plasma equations. The self-similar solutions have been solved
through the scale factors. The scale factors are governed by the equation of motion in a
Sagdeev potential which consists of the “grévita.tional” attractive term and the “centrifu-
gal” repulsive term. Our theory has produced the indices of explosion (exponent of the
time) in agreement with our simulation results. For the coalescence to go explosive, the
plasma (3 ratio has to be low, i.e., the 7 x B force overwhelms the pressure force Vp, and the
“total energy” £ has to be close to zero. The structure of the Sagdeev potential indicates
that the temporal evolution of the magnetic energy shows a maximum and a minimum
in one oscillation period. It also indicates that the temporal behavior of the electrostatic

energy entails that a maximum splits into a second maximum and two minima shown in
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Fig. 17. On the other hand the ion temperature has a structure that a maximum splits
into a minimum as shown in Fig. 18. The coalescence accompanies explosive acceleration
of ions and electrons. When the coalescence goes explosive, the electrostatic field diverges
faster than the magnetic field, which contributes to efficient acceleration of particles. Once
particles are trappéd by the magnetic front (this‘ may be called as a shock wave or mag- .
netosonic Wave), then they keep accelerated explosively, leading to a production of very

energetic particles.

We summarize the temporal behavior of reconnected flux for various values of the
current peakedness parameter ¢, in Table II. At ¢.=0 no chain of islands initially exists and
the system is unstable against the linear tearing instability,® which grows exponentially
with the linear growth rate v7. At a small value of €.=0.3 the chain of islands is unstable
against the coalescence mode, which grows exponentially in the early linear regime with
linear growth rate that is independent of the resistivity .17 In its later nonlinear regime
 flux grows linearly in time with the coefficient proportional to n*/2

value of €,=0.7 the nonlinear regime exhibits a faster time dependence of t™(m > 1).
Its coeflicient is approximately porportional to n/2. At a still larger value of ¢,=0.85
reconnected flux can go explosively as we have discussed. We have presented in this
article a theoretical construct of the explosive coalescence process that we found through

our numerical simulation. The theory is macroscopic in nature, neglecting the detailed

development of the singular layer.

A. Applications

There are many applications of the coalescence instability and its nonlinear stages
to fusion plasmas as well as to astrophysical plasmas. A certain class of Doublet plasma
evolution®® sometimes is characterized as the coalescence process. A compact torus for-
mation involves the coalescence of islands and ion rings.? The tokamak internal disruption
may be characterized by the m=1 resistive kink mode.5 This process has been recently
studied by Bussac et al.3” and called the “half-coalescence”. They found that the island
slips and rotates as it reconnects. This is similar to the coalescence. See Fig. 22. In

Fig. 22(a) the coalescence is shown in which two same-sense currents tend to attract each
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other. When there is a strong toroidal magnetic field present, two islands rotate during
~ the process. This rotation is related to the tilting.® The “ha,lf—coai.lescence”v37 is shown in
which two currents are in the opposite sense indicated by a dot and a cross in Fig. 22(b),
and they repel each other. In a way similar to the coalescence, two islands rotate as well
as repel eéch other. By this repulsion together with reconnection the revulsion of the inner

island could take place.

An apﬁlicati011 of the coalescence process to a certain class of the impulsive phase’
of solar flares has been suggested.!® Many aspec_té of the impulsive phase of the solar flare
observed by. Forrest et al.3® are naturally explained by this mechanism. Later Nakajirha_ et
al.?® found that a flare of different type was also well explained by the present mechanism.
The explosive coalescence process ﬁaturally accounts for (i) the rapid and expiosive nature
of impulsive solar flares; (ii) the necessity to convert a substantial portion of magnetic

energy into kinetic energy because of the large amount of observed energy release; (iii):the

~ observed motion of attraction of two objects; (iv) the amplitude oscillations observed in

the bands of y-ray, z-ray and microwaves; and (v) the observed signatures in the profile
of amplitude oscillations of the above. The explosive acceleration of particles upon the
coalescence may explain some _of. high energy particle production during the active flare
phase. It is encouraging to know that a recent experiment?® observed a fast reconnection

similar to Ref. 14.

B. Contact with Other Phenomena

The explosive process we described in the present article poésesses in common a ;»
-kind of properties found in much wider and general areas of physics. That is, the explosive
phase of the coalescence (until it saturates or bounces back) lacks any characteristic timé
scale, a form of temporal universality. Some of this type of phenomena occur in plasma
physics. In this subsection we speculate on a possible link with various areas of plasma '
physics.

One may compare the present explosive coalescence in two difnensions with, the
tokamak major disruption. The explosive process we find in the coalescence instability is

characterized by singular functions of time with a pole (or a branch point) at the explosion
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time (to—¢)~™. The tokamak major disruption has been modeled as nonlinear evolution of
unstable tearing:*! and/or resistive kink*?> modes (rﬁainly the m=2, n=1 mode and m=3,

n=2) and their destabilization of other beat modes such as the m= 5 n=3 mode and its
coupling to higher m and n’ SQ It is interesting to extract from their numerlcal simulation??

- that the toroidal voltage approximately scales as (to —t)~% toward the disruption time #g

to our best fit (Fig. 5 of Ref. 43). The toroidal voltage is related to E, in the present paper,

which has power exponents of 7/3 and 5/3 according to Eq. (87), close to 2. Fﬁrthermore,

it is of interest to note that we are unable to make a good fit of type (to —t)~™ with

the kinetic energy growth in Fig. 3 of Ref. 43: Rather, the exponent « itself explodes as

(to —t)=% to our best fit, suggesting an approximate functional form of exp|(to — ¢)™1] -

for the kinetic energy. That is, we may conclude from this study of Fig. 3 of Ref. 43 that
the singularity of the temporal explosion of the major disruption is characterized by an

essential singularity. In their model the electroStatic potential ¢ and the magnetic flux

¢ obey equatlons of quadratlc nonhnearlty Wlth smgle hehc1ty calculatlons 11: seems not

pos51b1e for us to construct temporal functlons with an essential smgulanty However,
with multiple helicities interacting with each other it may be possible to argue that a
strongly developed turbulence which is established by a cascade of many higher order beat

modes gives rise to an essential singularity in the temporal behavior: secondary processes

yielding (0, 9) o (to—t) 2, tertiary processes (beats of beats)ox (to—t) ™2, quartic processes

o« (to —t)7*,.... With a certain combinatorial arrangement which depends on individual
dynamics of turbulence, one sums up the entire energy as > .., Cn(to —t) ™™, where C},’s
are coefficients; the analytic property of such a function may be generically related to that
of exp|(to —t)~!]. [Mathematically speaking, perhaps fortuitously, it might be stated that
the analytic property of solutions to an ordinary differential equation of second order at a
regular singular point is similar to the analyticla.l property of the present explosi\;e process
in two dimensions, while that at an irregular singular point (or confluence of two regular
ones) to that of the major disruption of three-dimensional nature.] It may be aifgﬁed, on
the other hand, that the toroidal voltage is not a result of a multiplicative.proeess but an

additive one, thus resulting in the temporal behavior of a pole type as in two dimensions.

Felber discussed** self-similar solutions of a Z-pinch collapse. In his work a single
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current is pinched by its own magnetic field and the magnetic collapse is bounced back
by the plasma pressure. Such collapse and bouncing back were observed to be nearly self-
similar in experiments.?® One may further compare the present process with the explosive
h,éating observed in a computer simulation of plasma heating by the ion cyclotron resonant
heating method.*® In Ref. 46 it is observed that the magnetic energy (6B)? diverges as
(to —t)7%/2. In this cyclotron resonance heating simulation 6B « E (electric field). It
is also observed that the primary pump with mode number +7 indices a strongest “side-
band” mode with mode number +2 with weaker “side bands” with +5 and 49. Therefore,
the most unstable mode 2 might be governed by Ej « |E7|2E, while other modes are of a
quadratic nonlinear typé E, < Ep Ep_n. Combining these three mode equations we may
describe the fields as 83 E/ot® oc E4, which yields E o (o —t)~3/4.

It may be of interest to compare the present process of the magnetic collapse with
other physical processes. An obvious counterpart to this is the electrostatic collapée of
plasma waves*”® in which the ISrocess proceeds e;cplosively in two or three dimensions.?®

Note that the magnetic collapse can occur in a quasi-one -dimensional case.
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Figure Captions

1.

Explosive increase of field energies and temperature during the coalescence of two
magnetic islands: EM particle simulation results. For the case 1, = 0.2. Other
parameters are given in Sec. II. Toward the same explosion time ¢ =ty = 27(0;1),
the magnetic energy B? (a), electrostatic energy EZ (b), and the ion temperature
in the z-direction T}, (c) diverge as (to — t)“8/3, (to —t)™4, and (o — t)_8/3, as
shown in (d), (e), and (f), respectively. [We took B2 ~ 1.6 10°, B2~ 7.5x 10%,
and Tz, ~ 0.85 for the pre-explosive phase values; see Figs. 1(a)-(c)].

Temporal profiles of particle and field quantities for the coalescence process ob-
tained from the EM particle simulation. Qe = 0.2@)1,6. (a) The thick line repre-
sents the magnetic energy, the thin one the ion temperature in the z-direction.
(T at t=0 was 0.5). (b) Electrostatic field energy in time. (c) Ion tempera-
ture in the z-direction. (d) Electron temperature in the z-direction. (e) Electron

temperature in the z-direction (f) Inductive electric field (E,) in time.

Temporal profiles of particle and field quéntities for the coalescence obtained from

the EM particle simulation with Q.; = 1.0. (a) The thick line for the magnetié
energy, thin line for ion temperature in z. (b) Electrostatic energy. (c) Ion tem-
perature in z. (d) Electron temperature in z. (e) Electron temperature in z. (f)
Inductive electric field F.. ‘

Spatial structure of plasma and fields b?fore coalescence with .y = 0.2 at t =
2407 obtained from the EM particle Simulatioﬁ. (a) Magnetic field lines. (b)
Current density J. (c) Plasma density (d) Electron flow in the z — y plane. (e)

- Jon flow in the z — y plane (f) Electric ﬁgelds in the z — y plane.

Spatial structure of plasma and fields dﬁring coalescence with Qg = 0.2 at t =
280! obtained from the EM particle simulation. (a)-(f) as indicated for Fig. 4.
Spatial structure of plasma and fields during coalescence with Q,; = 1 at ¢t =
180; ! obtained from the EM particle simulation. (a)-(f) as indicated for Fig. 4.
Schematic sequence of snapshots of the :plasma and electric and magnetic fields
during the coalescence process.

Temporal profiles of the fluid energy (a) and the reconnected flux (b) for ¢, = 0.85
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13.

10.

11.

12.

14.

15.

16.
17.
18.

19.

obtained from the MHD particle simulation. A solid line in (b) is a theoretical

curve discussed in Sec. III.

. Temporal profiles of the fluid energy (a) and the reconnected flux (b) for €, = 0.7

obtained from the MHD particle simulation. A solid line in (b) ié a fit to the
simulation data. | |
Spatial structure of plasma and fields “before” coalescence with ¢, = 0.7 obtained
from the MHD particle simulation. (a) Magnetic field lines at ¢t = 20A¢;". (b)
Toroidal current density J, contours. (c) Plasma density. (d) Plasma flow veloéify.
(e) Plasma z-direction flow velocity contours. (b)-(e) at ¢ = 40Ac;': Solid lines
correspond to above-average contours and dotted ones to bélow-avéragé. ,
Spatial structure of plasma and fields “during” coalescence with ¢, = 0.7. (a)-(f)
as indicated for Fig. 10. (a)-(e) at ¢t = 7T5A¢; .

Spatial structure of plasma-a)nd'ﬁelds “after” coalescence with ¢, = 0.7. (a)-(£~) as

indicated for Fig. 10. (a) at ¢ = 140Ac; ! and (b)-(e) at ¢t = 160A¢; L.

Spatial structure of plasma and fields “before” and “during” coalescence with

€. = 0.85. (a) Magnetic field lines. (b) Plasma density contours. (c¢) Plasma flow
velocities. (d) Current density (J,) contours. (a)-(d) at ¢t = 50Ac; . (e) Magnetic
field lines. (f) Plasma density contours. (e) and (f) at t = 87.5A¢; L.

The Sagdeev potential for the scale factor of the explosive coalescence with the
eigenvalue given by £/2 and turning points a;; and ays.

Numerical solution of the scale factors a, b in Eqgs. (53) and (54) in (a) and (b).
Normalized electric and magnetic fields are also plotted in (c¢) and (d). (e) with -
different initial conditions with @(0) < O shows a case of amplitude oscillations.
The schematic temporary behavior of the magnetic field energy constructed from
the Sagdeev potential. '

The schematic temporal behavior of the electrostatic field energy constructed from
the Sagdeev potential.

The schematic temporal behavior of the ion-temperature in the z-direction (in thé
direction of coalescence) constructed from the Sagdeev potential.

The Sagdeev potential for the scale factor including the plasma pressure and the
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- 20.

21.

22.

non-neutral effects.

Distribution functions of electrons and ions “before” [(a)-(d)] and “after” [(e)-

(h)] coalescence from EM simulation. (a)-(d) at t = 240! and (e)-(h) at t =
280; . (a) and (e) the electron velocity distribution in the z-direction. (b) and
(f) the electron velocity distribution in the z-direction. (c) and (g) the ion velocity
distribution in the z-direction. (d) and (h) the ion velocity distribution in the 2-
direction. Note that unit for velocities on the left frames is w, A, while those on |
the right is ¢. The electron momenta aré measured in mw,A (or Mw,A for ions)
on the left, while those on the right in me (or M¢ for ions).

The logarithmic distribution functions of ions and electrons after the explosive
coalescence. The data are taken from Figs. 20(h) and 20(f).

Schematic comparison between the coalescence of the same sense currents (a) and

_the “half-coalescence” of the opposite sense currents (b). Currents are in the same

sense (crosses) for the coalescence, while they are in the different sense (a dot

andacross) with suggestedrotatlon byarrows in addition to the attractive and

repulsive reconnection.
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Indices of Explosion [exponents to the 1/(t; — t)] During Coalescence

Qet =0 Qet = O2wpe Qet = 10 Qet = 2.0
L, x L, L, x L, L, x Ly L, x L,
= 128 x 32 =128 x32 | =128 x32| =128 x 32
(see Ref. 26) | No formation
[NB: L, x L, of islands
= 256 x 32 -
many islands]

Magnetic (S)|8/3 8/3 2

Energy :

B? | (T) | 8/3 8/3 2* 1 N/A

Electrostatic

Energy (S) | 4 4 ,

E? (T) | 4 4 4 | N/A.

Ion Temperature '

z-direction (T) | 8/3 8/3 2 N/A

T;

Explosive

Time (S) | 24.30;! 2701 1901 N/A

to

Compressional

Alfvén , ‘

Oscillation 6.30;1 6.00;? 8.80; 1 N/A

Period |

TOS

* incompressibility is assumed. Derivation from observation might be due to
plasma rotation in ., = 1 case.

S is for simulation results and T' for theory.

TABLE I




Coalescence and Current Peakedness (e,)

€c 0 0.3 0.7 - 0.85
Process Sheetpinch | Slow Fast Explosive
_ Coalescence | Coalescence | Coalescence
tearing Sweet-Parker
instability | process ‘
Recon. flux | e n/t nt/2m n°/(to — )43
Ay | yp o /3 (m >1) |

TABLE 11
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