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Abstract

Differential rotation characteristic of the tandem mirror central cell is shown to have a
significant stabilizing effect on the rotation and unfavorable curvature driven drift modes.
Stability boundaries and parametric dependence of the growth rate and frequency of the
m=1 and m=2 modes are given as a function of the passing electron density fraction,

wall-to-plasma radius and rotation speed.




I. Introduction

The low frequency fluctuations with low aximuthal mode numbers and rotating in the ion
diamagnetic direction with speeds near the eqﬁilibrium E x B drift velocity are observed
i numerous tandem mirror experiments and have attracted considerable attention. In
Ref. 1 Horton and Liu suggest the possibility that the low m rotation driven drift modes
may be responsible for the fluctuations. The conventional FLR-MHD, rigid rotor modes
studied in Ref. 2 for the axisymmetric tandem mirror are stable at the low plasma pressure
in the experiments where the modes are observed due to the magnetic energy required for
bending the magnetic field. The flute-like drift modes called trapped particle modes by
Rosenbluth® and Berk et al.* are driven unstable by the plasma pressure gradient acting
across the unfavorably curved magnetic field in the transitional regions at the ends of the
central cell and are another candidate for the observed low m oscillations.

In the present work we extend the rotationally driven drift mode model of Horton

- and Liu® to include the effects of the pasing electron-population and the effect-of differential - -

rotation in the plasma equilibrium. The drift modes have frequencies greater than the ion
transit frequency and less than the electron transit frequency over the length of the central
cell. To keep the analysis simple, while anticipating the need for future nonlinear studies of
the unstable system, a reduced hydrodynamic description of the system is used including
the finite ion gyroradius fluid equations and two-component electron fluid equations.

The stability analysis is given first for the solid-body or rigidly rotating plasma
which permits an analytic solution and secondly by using a shooting method eigenvalue
code to determine the modes of general radial profiles with differential rotation. The
eigenvalue analysis allows consideration of profiles which have free energy from both radial
gradients and sheared rotation. We show that contrary to a simple free energy argument
that a mildly sheared rotational flow is a substantial stabilizing effect. The stability arises
from the fact that the interchange of plasma pressure from the inner high pressure region
to the outer low pressure region is inhibited by the differential rotation in analogy with
the well-known stabilizing effect of magnetic shear. The free energy in the sheared flow of
differential rotation is released by a different kind of eigenfunction working on the radial

mixing of the angular momentum gradient rather than the pressure gradient. Since the dy-
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namics represented by the eigenfunctions of the pressure gradient and sheared ﬂow n’iodes
are rather different, there are more stable plasma configurations with both monotonically
decreasing density and rotational profiles.

In Sec. II we derive the reduced rotational drift mode equations including the
ﬁnite Larmor radius stress tensor and passing electrons. In Sec. III we investigate the
stability of solid-body rotation with a Gaussian density profile. We present formulas for
the threshold and cut-off passing electron density ratio as a function of rotational speed,
effective gravity, the wall radius, and the ion-to-electron temperature ratio. In Sec. IV we
present the numerical study of stability with the shooting code. In Sec. V we present the

summary and conclusions.

II. Trapped Electron Mode from Fluid Equations

~ In this section we use hydrodynamic equations with the finite ion gyro radius stress tensor
in the ion fluid and a two-component electron fluid consisting of trapped and passing
components to derive the equations for the trapped electron mode in a cylindrical model
of the axisymmetric tandem mirror. The two-component electron fluid model has been used
for trapped particle modes by Rosenbluth® for tandem mirrors. The analysis shows that
this hydrodynamic description gives a good simplified description of the modes compared
with that given by the Vlasov description used by Kesner and Lane.> The hydrodynamic
description given here is valid for modes with frequencies greater than the ion-transit
frequency and less than the electron transit frequency. We restrict considenation here to

the electrostatic approximation.




A. Ion Hydrodynamic Equations

The finite Larmor radius fluid equations for the ions are the continuity equation

on,;
87‘: +V. (nivi) =0 (1)
a;—ld the momentum-balance equation
dv; .
min; — 7 + V. =emn; <E + Vi X B) —T;Vn; + m;n;g (2)
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where we use the constant ion temperature approximation to close the hierarchy of moment
equations. The gravitational force is taken as g = —VU where U includes the effects of rf
ponderomotive forces and the magnetic curvature within the cylindrical model. In Eq. (2)
7 is the well-known finite Larmor radius stress tensor. o “
Solving Eq. (2) for the flux n;v; by expanding in 1/w.; where w,; = e;B/m;c we

obtain

cmqing

where the ﬁrst two terms are of order en;vip,; and the third and last terms are of order
€3n¢vth,i where € = v ; Jawe; = p; /a is the finite gyroradius expansion parameter. We
may write the first order ion fluid velocity as

v _ X VY

-~ (4

with the stream function ¢ given by
T.
v=9¢+ e—fﬁn n;.
1

By iteration we calculate the polarization drift and the finite Larmor radius stress tensor
with vz(-l) to obtain the nonlinear flux in Eq. (3) correct to third order in . We then
compute the divergence of the flux and express the results in terms of the Poisson brackets
defined by [f,g] = £-Vf x Vg. After considerable algebra® we obtain the reduced nonlinear

ion continuity equation
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We separate Eq. (6) into its mean and fluctuating components by writing

$(r,0,1) = do(r,t) + Y _ dm(r)e'mi= 5!
i (6)

n(r,0,t) = no(r,t) + Z P (r) €O 10

and averaging Eq. (5) averaged over 6. The first order and third order mean components

of Eq. (5) give
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where v, and vg are the r, components of vg = ¢2 x V¢/B and (rw,y) =

(T:/2we;)(ni(rdrv, — Bgvs — v,)). In the limit T; = 0 Eqgs. (7) and (8) reduce to the
quasilinear Egs. (49) and (50) in Ref. 1. The fluctuating component of Eq. (5), neglecting

mode-coupling terms is
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We define the Doppler-shifted frequency in the local rotating frame & = w — m2(r).




B. Electron Fluid Equations

Fc;llow.ing Rosenbluth® We aéséribé tﬁé relect&)n ﬂu‘id byrn - n! ‘-}- n’é’ whe;e né is the rdenéit};
of electrons trapped in the central cell and n? is the density of electrons passing through
the central cell to the plugs or end cells.

. Neglecting the collisional mixing between the two components we have

i,p
ag: + V- (neve)b =0, (12)
The trapped-electron component E x B drifts with the local potential of the central cell
¢ T,
(nve)t = cges X Ve — ceBes x Vnl (13)

and the passing component E x B drifts with an average potential obtained from averaging

¢ over the central cell L, B., n. and the plug plasma L,, By, n,. The precise definition
and calculation of the electron-averaging operator requires the use of kinetic equations.

Here we follow Rosenbluth® by taking the simple approximation that

T

. <1 / %¢> Pt

In Horton and Liu® a similar approximation is made by introducing the constant eigenvalue
X of the bounce-averaging operator £; however, no attempt is made in Ref. 1 to evaluate
A in terms of the central cell and plug plasma parameters.

In addition to the convective change in the trapped electron density given by

4
p_ _me dng, - 15
bne = =158 dar °% (13)

there is an adiabatic change arising from the rapid transit motion given by

ngee(6¢ _ 6&) (16)
T,

as is well known from kinetic theory. The total passing electron density fluctuation is

nb e(6p—6¢)  mc dnb,
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and the trapped electron density fluctuation is
me dnt
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C. Radial Eigenvalue Equation
For low-frequency drift modes the electrostatic potential is governed by the condition of
quasineutrality

n;=nt+ nt. : (19)

E;valua,ting the fluctuating part of Eq. (19) with Egs. (9), (17), and (18) yields

me dno;
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Using no; = nf, + nf, and Eq. (10) for V - (6nivi),(,f) yields the radial mode equation
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Equation (20) includes the potential average term (6¢) which we need to model in
order to make the two-dimensional integral-differential equation mathematically tractable.
For modes that are essentially flute-like in the central cell with the fluctuating potential

dropping to a small value in the plug the bounce average is approximately

L.

I.+1,°° (21)

Lép = (88) = A6 =

- which gives 1 — A = L, /(L. + L,) < 1. For strong mirror ratio at the end of the central
cells R = B,/B., assuming essentially mirror confinement for the bulk of the electrons,
the density of passing electrons is small with

nhe 1 _ B <1
nge 2(R+1) 2B, '

Taking these estimates into account the charge separation from the passing electrons in

Eq. (20) may be written as

p
enge [ NG, L, .
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assuming that wse = wﬁe (ch /reB)(d@n nOe/dr)
Introducing a dimensionless parameter A, measuring the ratio of the charge sep-

aration from passing electrons to that from the polarization current gives

2 2nb,\ (a*wim; L, . a? L, ~ a2BCLp. (22)
R T, L.+1L, P\2)\I.+L,) = B, L.

By using Eqs. (21), and (22) we rewrite Eq. (20) as
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Equation (23) with proper boundary conditions 6¢,,(r — 0) = r™ and given 6¢,,

or db¢,/dr at r = b determlnes the spectrum of elgenvalues for glven radlal proﬁles of
' no(r) and ¢o(r). -
In the limit in which the density gradients are weak compared with the potential

gradients equation (24) reduces to
md [1d
wrdr [r dr( .Q)]

1/& term describes the interchange of vorticity ¢ =

24,

V366 + { } 6¢ = 0. (24)
d(rin) _ d(rvg)
rdr  rdr
there is a restoring tendency of the perturbed flow discussed in Sec. IV.B.

. For the case éS #0
dr

To find the relation between Eq. (23) and the Rosenbluth-Simon equation? we use

the linear Lagrangian displacement {,,(r) from

d¢ cEy
es _ 25

dt B (25)
and rewrite the first-order ion-density fluctuation as

= ’—Em@_q

where §,,(r) = (mc/r&B)6¢,(r). The nonlinear Lagrangian displacement is analyzed in

Sec. IV.C.




Rewriting Eq. (23) in terms of &,,(r) yields

1d . d o
T dr <r3n0w(w - W*i)%) + [(1 - mz)now(w — we;)
r dr a

The boundary conditions on ¢ are {(r — 0) =~ r™~! and given £(b) or d¢(b)/dr. For the
Ap = 0 case Eq. (26) reduces to the well known Rosenbluth-Simon’ equation for flute

modes in a cylindrical plasma.

Equation (26) is the generalization of Eq. (28) in Ref. 1 for the electron drift
mode in a rotating plasma when the axial eigenvalue A from the electron bounce averaging
operator in Eq. (24) of Ref. 1 is related to A, through 1 — A = 2a24,. With this relation,
Eq. (24) of Ref. 1 is the same as Eq. (23) in this work. For large A, values, 4, ~ 1/202,
the passing electron contribution dominates and gives the electron drift wave with @ ~
wkeAp/(Ap + Vm,n). The electron dissipation 16, (k) retained in Ref. 1, but neglected in

| thevprvesent» work, drives the electron drift wave unstable.

ITI. Analytic Solutions for Solid Body Rotation

Here we summarize the dispersion relation® for solid body rotation {2 =constant, with the

Gaussian density profile and linear gravity
no(r) = noexp(~r?/a?) , g(r) = gor/a.

The eigenvalue Eq. (23) reduces to

d?6¢ 1 2r) dég 2 m?
—— =) — Y = 27
dr? +(r a2) o \&V e 6¢=0 ( )
where we define the eigenvalue v by
viw,m,2,Ap,90/a,T;/T.) = - sz <!22 + g_o) + &(2mi2 + wx;)
) ) k) D k] (:)(LD _ w*z) a
+ Apo (& — wee) |- (28)




The solution of Eq. (27) is given by either 6¢,, ,(r) = Amg exp(r?/a®)W, ,(r?/a®) where
Wy,q(z) is the Whittaker function® with p = (Vm,n +1)/2 and ¢ = m/2; or equivalently

the confluent hypergeometric function

r\™ m r?
5¢TTL,7L(T):Am,n <E) 1F1 <5+1_Vm,n,m+l;ﬁ>.

The eigenvalues determined by boundary conditions é¢,, »(b) = 0 are
Umn(b/a) = m+ 2n+ f(b/a) (29)

and are shown in Fig. 1. The index n = 0,1,2,... is the radial mode number of §¢,,(r),
- and fm »(b/a) is a monotonically decreasing function with the limit 8/a — oo, f(b/a) — 0.

The dispersion relation following from Eq. (28) is

A*+Bo+C=0 (30)
- A=vmat A
B =2mf) 4+ wki(l1 — vmn) — Apws, (31)
C =m? (!22 + g_o) .
a

The quadratic Eq. (30) gives instability for C > 0 driven by the centrifugal force of
rotation. The stabilization arises from B # 0 due to the charge separation from the Coriolis
force, the finite Larmor radius effect?:®:7 and the axial motion of the passing electrons.3—5
The passing electron contribution has the opposite sign to the finite Larmor radius effect
whereas the Coriolis force effect can reinforce either the passing electron (12 < 0) or the
finite Larmor radius effect (2 > 0).

The effective gravity go may be due to either the ponderomotive force from radio
frequency fields or the curvature of the magnetic field lines. For the case where g is

dominated by the curvature of the axisymmetric magnetic field lines we remove the scaling

of g by introducing go = (cZa/L?)§ with the dimensionless § given by

2 1 dB 2
sath (Ez‘i-:) dz "
97 22 2 dz (
fl EE

10




_rwhicvh is order unjty in terms of the gyroradius and aspect ratio scaling., The maximum
value of § is given by the infinite parabolic mirror field B = Bg(1 + 22/L?) and where
§ = 3a*/4L%p2. ‘ -

In this analytic model the frequency and growth rate are functions of the six
dimensionless parameters

. b
man’ g, Ap’ ;

38

k]

and units of frequency are c.p,/a?.
The dimensionless frequency and the dimensionless growth rate given by the

quadratic dispersion relation (30) in the laboratory frame are

A m ~ Tl .
w=mll+ l/m,n-f—Ap {AP—D— E(I/m’n—l):,

- T 07 1/2 (33)
g = m [(Vm,n + AP) (02 + g) - <.ﬂ + T:(Vm,n - 1) - Ap> ]

The discriminant determining stability (in the dissipationless limit) is given by

. T 2 .
D= B2 —4AC = 4m2 { [H + E(Vm,n - 1) - Ap:' - (é +n2) (l/m,n + AP)} ° (34)

‘The stabilizing condition is given by D > 0. From (34) we can give the stabilizing
condition as

. s T;
43 - [n(n +2) + 5422 (Upnyn — 1_)] Ap

- [(um,; ~1) <f2 - (u},,/,'il +1)) <f2+ % (u,‘,{,'; - 1)) + um,ng] >0. (35)

€

33

For given m, (2, g, we can determine critical A, for stability. We find that a good
approximation for the critical density, above which the drift mode is stable in the absence

of electron dissipation, is

PN R T;
(Ap)crit = A; = D(D + 2) +4+ 2?17(Vm,n(b/a) - 1)' (36)

€

The stability boundaries determined by (35) are shown in Figs. 2-7. We discuss

the different effects on stability as follows.
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A. Effect of Passing Electrons

For low rotational speeds there is in general both a critical or threshold value A7 and a
cut-off value A; for the passing electron density. For unstable modes A, <Ap < A;. For
Ay, below threshold Ay the stable region in 12 is determined by finite Larmor radius effects
through (T;/T.)(vm,» — 1) and the value of §.

For reference parameters we take § = O which implies just enough quadrupole or
rf stabilization to balance the bad axisymmetric curvature, T;/T. = 1, and b/a = 3. The
stable region determined by competition between the passing electrons and the FLR effect
for m=1 and 2 are shown in Fig. 2(a). For m=1, when A, 2 0.1, the window, —2 < n<o,
is stable. As shown in the detail, Fig. 2(b), when A, is very small, say 4, < 1072, the
stability of the system is determined by the FLR effect. For A, = 0, the stable window is
032 <2 As A, is increased, this window becomes narrower, vanishing altogether for

Ap > 1.5 x 1072, The stability boundaries for m=2 are similar to those for m=1 except

~in-scale: The Ap < A;‘-'sta'ble"win'dow for-the-m=2-case doesnot vanishuntil Ay~ 1Tdue

to the stronger influence of the FLR effect. When A, > A3, given by Eq. (36), the stable
region determined by passing electrons appears.

For § = +1, a typical value for an axisymmetric system with no rf stabilization,
there are unstable regions for all £2 for 0 < A, < 2 for the m=1 mode and for 0 < 4, < 4
for the m=2 as shown in Fig. 3.

For § = —1 corresponding to a strongly quadrupole or 7f stabilized system the
m=1 mode has a stable window for —2.7 < 2 < +1.2 for all A, as shown in Fig. 4. The

m=2 mode is stable for —1 < 2 <1 for all Ay,
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B. Effect of the Ratio of the Wall-to-Plasma Radius
Now we consider the effect of varying the wall-to-plasma radius ratio b/a. Decreasing b/a
may be viewed as the relaxation of the original plasma profile from the-instabilities or
from other transport processes. In the analytic model used here there is an edge or wall
plasma density given by n(b)/n(0) = exp(—b%/a?). For the values of b/a = 3,2, 1 the edge-
to-central density ratios are 1074, .02 and .37, respectively.

We use § = 0 and 2 = —4 as the reference values for varying the plasma-to-wall
radius. In Fig. 5 we show the effect of decreasing b/a. As the wall is brought into the
plasma, the m=1 growth rate increases as (v,0(b/a) — 1)!/2 whereas the finite Larmor
radius stabilization increases as (T;/Te) (v1,0(b/a) — 1). For small b/a first the m=3 and
finally the m=2 mode become stabilizied; however, the =1 mode remains unstable until
b ~ a. The effect of the wall-to-plasma radius on the threshold density is shown by
éomparing Fig. 6-7 for b/a = 1 with Fig. 3-4 for b/a = 3. For § = +1 the A, required for

-- stabilization of the m=1 mode increases from A;(b/a = 3) = 2 to-A5(b/a =1) = 10-shown--

in Fig. 6. The same tendency is shown in Fig. 7 for the § = —1 case.

Thus we find that as b/a decreases from 3 to 1 the finite Larmor radius effects
opens up a stable window for —2 < 2 < 2.5 and Ap < A; ~ 4 but for 2 < —2, typical
of tandem mirror rotations, there is a substantial increase in the A, required for stability,
Ap > Aj(b/a), with decreasing b/a. The results with A, = O agree well with those of
Pearlstein and Freidberg.®

The result of varying b/a has an important implication for the quasilinear evolution
of the system. As the quasilinear relaxation in Egs. (7) and (8) takes place, the plasma
radius becomes a function of time a(t) and increases toward b. The stability analysis
implies that in the final stages of evolution only the m=1 mode is unstable and that there
may be a marginally stable quasilinear steady state for a(t — o0) ~ b. In this final state

the plasma is poorly confined with n(b)/n(0) ~ 1/3 for the Gaussian density model.
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C. Effect of Varying the Quadrupole or RF Fields
The effect of varying the quadrupole or rf fields is parameterized by the value of §. Chang-
ing the system from a strongly unfavorable eflective gravity § = +1 to a strengly favorable
effective gravity § = —1 is shown by comparing Figs. 3 and 4. For § = +1 the system is
unstable to m=1 and m=2 modes for all {2 unless the passing electron density parameter
Ap exceeds the cut-off value A, > A7. For strongly favorable § there is a stable rotational
window for |2 < 1 for m=1 and m=2 for all values of A,.

For faster rotational speeds (2 > |g| the value of § is of secondary importance

compared with the values of A, and b/a in determini}lg the stability of the system.

IV. Differential Rotation and Passing Particles

For general profiles of density and potential that evolve from background transport pro-

~cesses the stability analysis must be performed numerically. In this section we use the =~~~

well-known shooting method to find the eigenvalues and wavefunctions from Eq. (23). In
this study we restrict consideration to the simple boundary condition é¢,(r = b) = 0.

The profiles used in the study are Gaussian and parabolic for the density
ng(r) = noexp(—r?/a?) (37)

np(r) = no(1 — r*/b%) (38)

and the inverse tangent for the rotational speed -

2(r) = ¢y tan™! (r ;:l> +c2 (39)

where ¢; and c, are given in terms of the central rotation frequency 2o = 2(r = 0) and

the edge rotation frequency {2, = 2(r = b) by

[ — 2o
‘= b—1ry r
-1 -1 ({1
tan ( Ar > + tan (Ar)
¢ =f+ ¢, tan_l <%) .
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~and Ar is the parameter controlling the steepness of the gradient in £2(r). The potential
¢o(r) and rotational f2(r) profiles used in the study are shown in Fig. 8.

The accuracy of the eigenvalue solver is tested by taking the limit-2, = 2o which
gives ¢; = 0 and f2(r) = f2y=constant and comparing the results with the analytic solutions

given in Eq. (34) for a Gaussian density profile.

A. Differential Diamagnetic Drifts

For the parabolic density profile (39) the diamagnetic drifts w;ge(r) are strongly increasing
functions of radius. In this subsection we keep the E x B rotation rigid at {2 = {2y and show
that the change from a Gaussian to a parabolic density profile is strongly stabilizing for
comparable mean density gradients. (As usual in changing a profile, an exact comparison
1s not possible since it depends on choosing some arbitrary constraints.) The decreased

growth rate is expected from the local approximation since the dispersion of the wave

_frequency wx(r) with radius weakens coherence of the modes. For the parabolic density .. .. . . . .. ..

we note that although w«(r) — oo as r — b the function n(r)w«(r) in Eq. (23) remains
finite for 0 <r<hb.

The unstable modes in the spectrum m = 1—10 are shown in Fig. 9. The width of
the unstable spectrum is limited by FLR effects that are enhanced by the radial dispersion
from wx(r). A similar result is given by Bowers and Haines!® when they take a cut-off
 Gaussian density profile and f2=const in their numerical solutions.

In the presence of wx(r) the modes develop radially outgoing and incoming wave
components given by k, = (2¢)"(6¢* 8,66, — ¢m0,64%) which, in contrast, is zero
(standing wave) for the we=constant Gaussian profile. The wavefunction for the parabolic
profile is peaked closer to the plasma in radial position than the Gaussian wavefunction
consistent with the local approximation. The change in the wavefunction is shown in
Figs. 10(a,b) which compares the m = 1,2, 3 modes for the parabolic and Gaussian profiles
and gives their respective frequencies and growth rates. The preferred stability of the
parabolic profile suggests that quasilinear relaxation may drive the system toward states

with variations in we(r) subject to the constraints imposed by particle sources and sinks.
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B. Differential E x B Rotation

For the Gaussian density profile with constant w«, we decrease the speed of rotation of
the outer plasma by varying (2, from (2 to zero. A smaller (2, than {2 is observed in the
experiments!! and may result from collisional ion viscosity in the edge plasma or charge

exchange collisions with the higher edge neutral density component.

In Fig. 11a we show the m=1 growth rate as a function of decreasing edge plasma
speed {2;,. With the central plasma rotating at 2o = 2w*i(f2 = —4 for T; = T.) the solid
body growth rate is y; = 2 [pscs/a2] for A, <2 as given by Eq. (33) and shown in Fig. 11a
at (2, = 29. As the edge speed drops to zero the growth rate decreases even for A, = 0.
Part of the decrease in the growth rate is accounted for by the decrease in the average
equivalent solid body rotational speed defined by a comparison of the profiles at constant
rotational energ; or constant angular momentum. The remaining stabilization arises from
the differential rotation.

~ Figure 11b shows the same parameter variation for the m=2 mode which has the
solid body growth rate v, = 4 [pscs /a2] for 2, = 2. Again the growth rate decreases
strongly as {2, goes to zero.

Changing to a parabolic density profile combines the stabilizing effects of w«(r)
and 2(r) and is shown in Fig. 12a for m=1 and Fig. 12b for m=2.

The stabilizing effect of the differential rotation on the interchange instabil-
ity driven by the centrifugal force acting on the density gradient is understood from
the change in the topology of the eigenfunctions. As the interchange of the plasma
from én = —£0no/0r takes place to release the energy density 6W = %m,ﬁnrﬂzf =

—%mir(ano/ar)ﬂzfz the tongues of displaced plasma are wrapped back in azimuthal an-
gle (entrained) which decreases the amount of interchanged plasma. Mathematically, the
falling behind or entrainment of the tongues is given by the phase shift that the eigenfunc-
tion develops from the dispersion in & = w — mf2(r). Comparison of Figs. 10(a) and (b)
shows an example of the phase shift.

We take the wavefunction 6¢,,(r) as real in the interior of the plasma and

write |6¢,,|cos[mf —wt + B(r)] for the phase shift arising from the complex wavefurnc-
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tion 6¢m(r) = |6ém|exp [if(r)] for r > 0. We may estimate the value of 8 by integrating
Eq. (26) across the resonant layer defined by Re(w) = mf2(r,,) while neglecting 8(r) in all

terms except the second derivative term. These approximations lead to _

dé¢m  d ) _dﬁ
dr dr]6¢m| + 1/66m| dr

Fol6ml
w — mi2(r)

for r sufficiently near the resonance 2(r,,) = Rew/m. Integrating through the resonance
gives 3(r) = mF,/m|d2/dr| where Fp, is a constant. This simple calculation of B(r)
is useful for understanding the origin of §, but the value of B(r) is computed from the
‘arg [5q5m_(r)]. )

The change in the topology of the wavefunctions is shown in Figs. 13 and 14,
which give the contours of constant ¢(r,8,t) = ¢qo(r) + [6¢m(r)| cos [mb + B(r) — wt] for a
typical (25%) amplitude of the wave. The spiraling of the tongues of plasma develops in

the vicinity of the resonant layers. In contrast for solid body rotation the wavefunction is

 purely real (8 = 0) and the tongues or arms are pure radial displacements with symmetry

about the radial axes of the arms at 8, = 27n/m with n = 1,2,...m.

A dynamical picture of the stability effect of the differential rotation follows from
the vorticity theory of instability given by Lin.!? In this argument the flow Vy = r2 is
decomposed into the sum of flows from vortex filaments. The interchange of a strong
and weak vortex filament is shown to result in a perturbed flow that restores the original
configuration provided the gradient of the vorticity does not vanish. In our problem, the
effective vorticity is ¢ = d(rVy)/rdr and the non-vanishing gradient condition is equivalent
to F = d¢/dr # 0 which follows from the stabil‘ity analysis of Eq. (24).

The free energy stored in the sheared flow is destabilizing only for reversed flows
where 2(6)12(0) < 0 as shown in Figs. 11 and 12. The states with 2(b) ~ 0 are approx-
imately the most stable states between the limits of the solid body rotational instability

and the Kelvin-Helmholtz instability.
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C. E x B Transport

From the particle point of view the favorable effect of the sheared rotation on stability
is related to the confining of the E x B excursions of the interchanged particles by the
sheared rotation.

As shown in Ref. 1 the linear plasma displacement ¢ = cmé¢,, /r B& obtained from
d¢/dt = cEg/B fails for |r — rn| < Ary where Ary = (¢ /rB|d2/dr|)'/2. The plasma in
this region becomes trapped in a vortical flow due to the E x B convection in the resonant
layer. The situation is similar to the rapid transport across a sheared magnetic field due
to a resonant magnetic perturbation.

Knowing the linear eigenfunctions it is straightforward to study the transport

across the sheared layer by integrating the equations of motion d§/dt = vg for the test

fluid cells. Here we analyze the fluid trajectories close to the resonance. Finding all orbits

for a given ¢(r,6,t) is equivalent to solving the continuity equation, Eq. (1) to first order

_in e, for the density n(r,6,t) given the initial distribution n(r,6,0).. . .

Introducing I = r2/2 as action variable the equations of motion 7 = vg,, rf = vEg

are a 1-1/2 D Hamiltonian system with

dI E
a ‘%a_j - %;mlqﬁm(rﬂ sin [m — wt + (r)] (40)
B o292 0+ 225 (6m(r) ] cos [mb — wt + ) (41)

&~ Bar T pa L
where r = (2I)!/2. For a single mode the motion is integrable and reduces to the pendulum

equation for |fvgg| < rf2. In this approximation we transform to the waveframe with

¥ = 6 — wt/m and obtain

dy w an

Ft" =[] - -’% = -—-r— rmAr(t) | (42)
dér  cm|pn,| .

- ml 43
i~ B Snmyt ) (43)

where B, = B(r,,). For df2/dr < 0O the motion (42) and (43) has stable fixed points at
Y = (27pBm)/m with p=0,1,2,...,m — 1. The reduced Hamiltonian is

air(an) = 3 () o= g ottt ) 4
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where the effective mass of the fluid particle increases with shear. The equation for the

separatrix between trapped and circulating motion is

_ clem| 1z . (mY+ Bm -
ATS:(‘(,b) =42 (m) Sin (T) ) : (45)

and the characteristic frequency w{fe for convection around the vortex is

) v . (46)

Global stochasticity occurs either from the presence of a second wave!3:14 with

dan
dr

w{,‘e = mr;

an o clom|
dr mB

wl & |w; — ws| or the resonance w?*

=~ nnv||/L due to the overlapping of the nonlinear
resonances. Lhe situation is mathematically similar to the enhanced transport due to the
overlapping of magnetic islands produced by magnetic perturbations in a sheared magnetic

field.

-.Even _in_the.presence of a_single.mode. the.radial.excursions Ar.=.£Ar(sp). with .. .. .

frequency wg“z of the E x B drifting guiding centers will produce an enhanced collisional
transport from the broken symmetry of the equilibrium. The drift mode enhanced trans-
port can exceed the quadrupole induced transport for a critical value of the wave amplitude.
Formulas (44)-(46) show that differential E X B rotation not only tends to stabilize the
modes, but reduces the anomalous transport produced by the modes.

In the limit of solid body rotation the Hamiltonian becomes simply

H® =nI+ = Z(pmn cosmﬂ—wt+ﬁ0) (47)

with ¢, (r) real and 2 and B2, constants. The E x B transport for this type of system is
studied by Kleva and Drake!® and Horton.!4 They show that the motion, which at small
©mn is bounded by the nodes of @, (r), becomes globally stochastic when a generalized
resonance overlap criterion is satisfied. For the low m modes the width of the radial
convection increases from that given in Eq. (45) with Ar ~ a(¢/Ado)!/? for sheared

rotation to Ar ~ a for solid body rotation.




“ V Summary and Conclusions
In this work we analyze the drift mode stability of the rotating plasma including the effect
of differential E x B rotation, sheared diamagnetic drifts and the role of passing electrons |
in stabilizing the rotational instabilities of a tandem mirror system.

The basic stability equation for the system is derived from the ion and elec-
tron hydrodynamic equations with a two component electron fluid description given by
Rosenbluth® describing the trapped and passing electron dynamics. The mode equation
contains the finite Larmor ion radius, the Coriolis force and the passing electrons as sources
of charge separation that influence the stability of the centrifugal force driven interchange
mode. The equation is shown to be related to that given by Horton and Liu! with a
reinterpretation of the axial eigenvalue problem and that given by Kesner and Lane® from
a fluid limit of the electrostatic Vlasov-quasineutral system of equations.

The stability analysis shows that solid body rotation with a Gaussian density pro-

--file; whichallows analytic-solution;-is-substantially -more unstable than the profiles with -~ =~

differential rotation with E x B and diamagnetic drifts. For sufficiently strong shear the ra-
dial gradient of the angular momentum will drive a Kelvin-Helmholtz type of instability;**
however, sheared flows stronger than those expected for the tandem mirror are required
for the onset of these modes as shown in Figs. 11 and 12 for particular examples. Below
the onset of the sheared flow instabilities the change in the topology of the interchange
wave function, as shown in Fig. 13 and Fig. 14, produced by the differential flows greatly
reduces the effectiveness of the density gradient or pressure gradient driven interchange
instability.

The critical passing electron density required for stability A;(£2,b/a, T;/T) is given
approximately by Eq..(36) which agrees well with the exact results given in Figs. 2-4, and
6-7.

The stability analysis shows that there are a number of combinations of differen-
tial flows and passing electron density values that produce stable system when electron
dissipation is neglected.

For the low m modes considered here it is shown that the growth rate begins-to

increase from the free energy in the sheared rotation only after the flow becomes reversed
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‘at radial boundary. Similarly the introduction of differential rotation in the diamagnetic
drift frequencies by a broader density profile distorts the wave function and substantially
reduces the growth rates. For example the change to a parabolic density profile gives the
growth rate spectrum shown in Fig. 9 which has +,, monotonically decreasing with m and
only m=1 and m=2 modes unstable for T; = T..

We observe that stabilization by large A, > A4;(12,b/a,T;/T.) tends to push the
wave frequency in the laboratory toWard zero which is detrimental for plasma confinement
since the m=2 asymmetries of the laboratory plasma then resonate with the wave.

Diflerential E x B rotation with small A, may be the preferred method of stabi-
lizing the interchange modes. An analysis of the E x B transport of test fluid particles or
guiding center motion of the particles is given which shows the importance of differential
E x B rotation for the control of anomalous transport. For comparable wave amplitudes

the cross-field transport in the presence of differential rotation is confined to resonant

.- layer-of width --Ar---'-‘—'---a-(¢’§-,ﬁ--/-A¢g)-1/-2-f»compa,red-w-ith---‘t-hat--'from---solid'-'v-body"-rotation which — ]

extends over the whole width of the plasma once the amplitudes exceed a small critical
value depending on the wave frequency @ in the plasma rest frame.

In conclusion, we suggest that a plasma starting with constant {2 and wx profiles
will tend to be strongly unstable and would evolve through quasilinear relaxation and
mode coupling, as constrained by background transport and injection processes, towards
more stable configurations with substantial differential rotation in the profiles. We note
that only small changes in the potential profile are required to produce substantial changes

in the stability of the plasma.
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- Figure Captions

1.

2a.

2b

10a.

10b.

11a.

11b.
12a.

The lowest eigenvalues v, »(b/a) of the Whittaker equation for solid body. rotation
and a gaussian density profile. -
The stability boundaries in the plane representing passing particle density, Ay, and
solid body rotation frequency, {2, with § = 0, T;/Te=1,b/a =3,and m = 1,2.

. Small A, detail of the m=1 stability boundaries showing the stable window for
Ap < A} which was not visible in Fig. 2(a).

The same as Fig. 2 with an unfavorable radial well, § = +1.

The same as Fig. 2 with a favorable radial well, § = —1.

The variation of the low-m growth rates with wall-to-plasma radius r;atio, b/ a, for
solid body rotation, 2 = —4, and Gaussian density profile.

The same as Fig. 3 with § = +1, but b/a = 1.

The same as Fig. 4 with § = -1, but b/a = 1.

" Typical profiles of the equilibrium potential and the sheared rotational frequency, =~

12(z), used in the study of differential E x B rotation. Here, the on-axis rotation
rate is f2o = —4, the edge rotation is /2, = 0, Ar/a = 0.1 and r;/a = b/2a.
Low-m spectra for solid body rotation, 2 = —4, Gaussian density profile with
T:/T. = 1,2 and parabolic profile with T; /T, = 1.

The wave functions vs. z = r/a for m = 1,2, 3, with solid body rotation, 2 = —4,
T;/T. = 1, and a Gaussian density profile. The imaginary parts of the wave
functions vanish.

The real and imaginary parts of the wave functions vs. £ = r/b for m = 1,2,3,
with solid body rotation, 2 = —4, T; /T, = 1, and a parabolic density profile.
The real and imaginary frequencies versus the edge plasma rotation frequency, {2,
for the m=1 mode and varying 4,. The density profile is a Gaussian with b/a = 2,
Arfa =0.1,r1/a =1, and T;/T. = 1. The central rotation rate is 2o = —4, so
that 2, = —4 corresponds to solid body rotation.

The same as Fig. 11(a) for the m=2 mode.

The same as Fig. 11{(a) for a parabolic density profile, m=1 mode. The shear

parameters here are scaled to the plasma radius, Ar/b=0.1 and r{/b = 0.5.
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12b. The same as Fig. 12(a) for the m=2 mode.

13. The contours of constant potential in the laboratory frame which are the instan-
taneous flow lines of the (clock-wise) E x B guiding-center motion. Shown is the
m=2 mode of the solid body rotating plasma for a Gaussian density profile. The
amplitude of the perturbation is taken as max(6¢),, = 0.25¢¢(r = 0).

14. The same as Fig. 13 for a differentially rotating plasma. The rotational profile is

as shown in Fig. 8.
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