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Abstract

~An appropriate canonical perturbation theory to correctly deal with general elecé .

tromagnetic field perturbation is developed, and is used to set up plasma kinetic theory in
action-angle variables. A variety of test problems are solved to show the unifying power
~of the method Basic linear, quasilinear, and nonlinear equations are derived which can

serve as the starting point for a whole range of plasma problems.




I. Introduction

Action and angle variables have often provided a very convenient coordinate sys-
tem in which the problems of classical physics can be formulated and solved. In celestial
mechanics, for example, this. approach. has been extensively. used to. determine the effects
of small perturbations on the motion of the planets. It is a bit strange that this obviously
powerful tool has not found much currency amongst researchers in plasma physics. Apart
from a few initial studies,!~2 the use of action invariants to solve the Vlasov equation
in complicated geometry was attempted only recently by Kaufman,® and then by other
workers* who primarily used and extended Kaufman’s formalism. Unfortunately, the basic
formalism is fundamentally flawed, and when vapplied to deal with time-dependent mag-
netic field perturbations, it leads to incorrect results even for the linear Vlasov theory! (see
Sec. IV for details.) The formalism, however, yields correct results for strictly electrostatic
perturbations which defines the domain of validity of the analysis of Refs. 3-4.

- . It is surprising that a method based on the well-known time-dependent canonical
perturbation theory (Kaufman’s) would lead to such inconsistencies. In this paper, we
show why a mechanical application of the standard perturbation theory is not possible in
the presence of the electromagnetic perturbed fields (EMPF). We also develop a modified
perturbation theory which can correctly handle the EMPF. Arguments leading to, and the
formalism, are presented in Sec. II.

The remaining sections of this paper are devoted to the formulation of plasma
kinetic theory in terms of action-angle variables using our modified perturbation théory.
The Vlasov equation in the new phase space is derived in Sec. ITI, while some examples in
the linear theory are worked out in Sec. IV, where we show that our results are identical
with standard results, and are different from the results of the earlier theory.® After having
shown that our theory has corrected the inadequacies of the earlier theory, we go ahead
and develop quasilinear and nonlinear aspects of plasma kinetic theory in action-angle
variables in Secs. V and VI. Expressions for the quasilinear diffusion coefficient, and the
convection coefficient are derived in Sec. V, while Sec. VI is essentially devoted to a formal
description of the renormalized nonlinear theory. A brief discussion, which includes some

comments on the importance of this work, is given in Sec. VII.
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II. Modified Canonical Theory for EMPF

An essential step in setting up the time-dependent or t.he canonical ﬁerturbation
theory® is to obtain motion invariants of the corresponding unperturbed system described
by the. Hamiltonian Hy.. Provided that the found invariants o’s and their conjugates
P’s constitute a complete set to form a new phase space, a generating function G must
exist which can perform a canonical transformation (p and g are the original phase space

coordinates)
G(a,d) . =
(.0) 5 (a,5) (1)

with the result that the motion of the total system is'simply along a constant line in the

new phase space (&, ﬁ), ie., the Hamiltonian Hj is independent of the 3’s.

For the perturbed system, the transformation Eq. (1) is still employed, and then
the Hamiltonian H can be expressed as a sum of two parts; the formally unchangeds:f
independent Hy, and h which is a function of (p,q) as well -as (&, ﬁ) Clearly, the a’s -

change only due to A,

. oOH .
G = T —Oh(a, f5,t)/0B;. (?)

Equation (2) provides a basis for a perturbation theory. The first step in the approximation
scheme is to substitute the unperturbed constant values of the o — @40 in the right-hand
side of Eq. (2) (after taking the §; derivatives). The equation of motion then could be
integrated to obtain the perturbed time dependent o;’s. Notice that the invériant actions
J or J; are to be identified with @;, and the conjugate angles g or f; with 3; in the
action-angle formalism.

Although this procedure is standard and widely used, it runs into considerable
difficulty when applied to the treatment of magnetic field perturbations (EMPF). We
must point out that there is nothing theoretically incorrect with the method. In fact, the
phase space (&, E) obtained from transformation Eq. (1) is canonical, and does reduce
to its counterpart in the corresponding unperturbed system, which seemingly fulfills the
requirements for a perturbation theory. However, an important technical problem arises

when magnetic field perturbation is present; the generalized momentum (e, m and v are
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the charge, mass and velocity of the particle respectively, and A is the vector potential)
e
p=mv+-A (3)
¢

contains the perturbed vector potential explicitly. .Consequently, the coordinate system
(&, E) obtained from (p,q) by a canonical transformation also contains the EMPF (in
the rest of this paper, the abbreviation EMPF will be used for the perturbed magnetic
fleld, perturbed vector potential etc.). The use of such a coordinate system to describe the

motion of any dynamical system must necessarily suffer from severe intrinsic disadvantages.

1) Generally, the object of a calculation will be to determine the EMPF. Thus the
meaning of the coordinates will remain quite obscure till the problem is solved.

2) The coordinate frame is, by definition, not the same as its counterpart in the

unperturbed system. This confuses the situation because a cornerstone of the

perturbation theory is that we do have the knowledge of the unperturbed 'system

“and its phase-space variables ;o and B;0. The confusion between (o, 8;) and

(a0 and Bip) can lead to serious errors as in the linearized solution of Ref. 3. We

discuss this point in detail in the next section.

3) Because the coordinate system has fast variation caused by the varying EMPF,
it is no longer practical to solve systems like Vlasov equation by decomposing
 the perturbation into Fourier Harmonics; the superposition is no longer valid, and
the resultant Fourier transform of the eqﬁation will have convolutions even in the

linear analysis.

It is thus strongly indicated that we must look for a different coordinate system
in order to exploit the powerful and elegant machinery of canonical perturbation theory.
A logical choice will be the coordinate system which contains only the equilibrium elec-
tromagnetic fields, given by the vector potential Ay, and the scalar potenﬁal Dq, i.e., the

generalized canonical momentum
e
Po = mv + “C'Ao (4)

should replace p. It is from this new set pg and qg = q that we obtain the appropriate
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0o and 50 by a generating function G,
Po;q0 L') ° (aOa /30) (5)

. Notice that the transformation given in Eq..(5) is exactly equivalent to solving the equa-
tions of motion of a particle in the equilibrium fields. We, of course, assume that this
problem is solved for all cases under consideration. For example, Kaufman® has implic-
itly solved the equilibrium motion of a guiding center plasma in a torus, while Hazeltine,
Mahajan and Hitchcock® have obtained explicit expressions for the special case of a high
aspect-ratio torus.

We wish to point out here that in the absence of the EMPF (A = 0), po is
identically equal to p, and thus the two coordinate systems will be equivalent, and the
standard perturbation theory will yield correct results. Clearly, the results of all the
previous papers following this approach are correct for purely electrostatic perturbations -
(A =0, #0). ‘

These new var.iables, however, do not form a canonical conjugate pair with respect
to the total Hamiltonian H, (A # 0) i.e., co; 7% OH/8P0;. This fact is of crucial impor-
tdnce, because it is the identification of &o; with dH/8P0; that constitutes the principal
mistake of Refs. 3-4. For our case, we shall have to find appropriate expressions for the
rate of change of actions and angles in the presence of perturbations. We must remark
that although &g and ,50 are not 'canonical (for H), they are obtained as a canonical‘trans;
formation from po, qo which label the unperturbed state described by the equilibrium
Hamiltonian Hy. Thus (&, Eo) will retain some .of the crucial properties of canonical
variables.

The nonrelativistic Hamiltonian for a charged particle in an electromagnetic field
is given by '

H=—(p- EAt)2 + ed, | (6)

where the scalar and the vector potentials &; and A; include both the unperturbed

(o, Ao) and the perturbed ($, A) components, i.e.,

th:@()—i—@,
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A;=Aq+ A.

By making use of the relation
] ‘
Po=p—-A (7)

- which follows from Egs. (3) and (4), the Hamiltonian H can be written in the form

H=Hy+h
where
1 e
Hy = %(Po - EAO)z + ePo, (8)
h =ed.

It may seem peculiar that the troublesome perturbed vector potential A has com-
pletely disappeared from the scene; it appears explicitly in neither Hy nor k. The effects
of A, hbwever, will reappear when we make the transformation from (p,q) to po, qo:

 As we remarked earlier; th’e'ﬁrs’tvst'ep”in' the development of the canonical pertur-
bation theory is the solution of the unperturbed problem. We assume that the unperturbed
‘problem has been completely solved: the invariants &p, the conjugate angles Eo, and the
generating function G(qo, &) which mediates the canonical transformation of Eq. (5),
have all been obtained. Since @ are the invariants of the unperturbed system, the Hamil-

tonian Hy is a function of & alone, i.e.,
Ho = Ho(do) (9)

a property which will be extensively used later, and which is a major source of simplifica-
tion.

The equation of evolution of any dynamical quantity @ (for example & and ﬁo
labelling the trajectory of the charged particle) is governed by the total Hamiltonian H,

and is
_ 9@

Q= 5 + (@, H(p,q) (10a)

(p;q)

where
_0f 8¢ Of 9¢g

— — 106
dq; Op; Op; Og; (106)

[7,9]
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is the Poisson bracket. In Eq. (10b), we have used Einstein’s summation conve_ntion over
repeated indices; this convention Willvbe used throughout the paper.

| - Our aim is now to transform Eq.- (102) to- the coordinate system defined by the
equilibrium invariants, and their conjugate angles (&o, ﬁo). To do this, we must first

transform the equation to the coordinate system po, qo because it is only these (and not

(p,q)) which are related to (ap, ﬂ_'o) by a known canonical transformation [Eq. (5)]. This

step is the distinguishing feature of our analysis. The primary source of error in the earlier
analysis (Refs. 3-4) is that they failed to distinguish between (p,q) and py, qo.

The details of the transformations (p,q) — po, qo — (&o, Eo) are worked out in
Appendix A. Here we simply give the trajectories of the charged particle in terms-of the
action-angle variables, dp = J, ﬁo = §. The evolution equations are

08 e 83 3A]-_E[8J BHo_i_<8J 'ch,)g}A_
86 cdpoj At ¢ |Opy; OF 8«9_" dpo; 6J ) agl "’
dpo; A0

J=-

OO = O T = ey ~ Capy 3t 6

aF S\ 0
— 2 ) — . 12
* <ap01' )aJJA] (2)

0% e 00 04, e[aiﬁi

where & = &(J, (}:t), and A = A(J,i,t). The quantities (8J/8po;), (80_'/8]90]-) and
8Ho/8F = (3(J) are known functions of J and § from the solution of the unperturbed
problem. Since J’s are the invariants in the equilibrium fields, their evolution is due to
the pefturbed fields only; é, however, has the additional equilibrium frequencies 7 (J). We
remind the reader that Hy is independent of g.

It can be easily recognized that the first two terms on the right-hand side of Egs.
(11) and (12) reflect the effect of the perturbed electric field (both static and inductive),
while the last term is due to the Loréntz force. The effects of the unperturbed fields is
contained in the equilibrium quantities (8J/8po;), etc..

A very important feature of Eqs. (11) and (12) is the linear dependence of J and g
on the perturbed fields @ and A. Notice that this would not be the case if the coefficients of
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transformation (0J/dpo;) etc., depended upon the perturbed fields. This feature assures
the validity of the superposition rule. |
The rest of this paper is devoted to the application of this method to plasma

kinetic theory.

ITI. Vlasov Equation in Action-Angle Variables

In this section, we set up the Vlasov equation in action-angle variables. The
treatment of this section is quite general with the added feature that actions J are the
invariants of the equilibrium system. In fact, the invariance (or adiabatic invariancé) is
the only reason to prefer (J, 0_) to any other systems of coordinates.

To put things in perspective, we deal with a guiding-center plasma in an axisym-
metric toroidal configuration. Kaufman has very elegantly solved the equilibrium problem

for this system. We request the reader to consult Ref. 3 for details. The essentiali results

are that the guiding-center motion can be described in terms of three adiabatic invariants: =

M = (mc?/e)u proportional to the magnetic moment u; P,, the canonical angular mo-
mentum (this action is an absolute invariant for an axisymmetric system); and Jp which
is proportional to the flux enclosed by a drift surface. These actions have associated
conjugate angles 4, ¢ and 6 respectively.

- Throughout this paper, we shall use the condensed notation:
J= (Ma P<P’JP)

and

6'= (95, o, 0) | (13)

to denote the action-angle variables. It is also important to define the triad of frequencies

0H,

=733

= (w, Wy, ) | (14)

where Hyo = mv?/2+e®d is the equilibrium Hamiltonian. Notice that for a toroidal plasma,
04(wg) is like a gyro angle (average gyro-frequency) ¢(w,,) is a toroidal-like angle (average

toroidal frequency), and #(wg) is a poloidal-like angle (average poloidal frequency). The
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generating function G which mediates the transformation from Po, do to (J, 8) is given
and discussed in Kaufmén’s paper. Having Brieﬂy delineated the solution of a typical
equilibrium problem, we proceed to deal with the Vlasov Equation.

In the new variable system, the Vlasov equation becomes

" dF, - O8F : 8F . OF

2 (J,0,t) = — +6-— - —— =0, 15
or equivalently
oF o9 . a = ‘
= L = —-(6)=0 15b
- CHEEN0 (15%)
which follows from the divergence identity
7]

. o .
— . (J — . (8) =0
5 @+ =)
derived in Appendix A. Note that for purely canonical variables, the relation

d. 9. . :
ng i+ %Hz- =0. [No summation convention)]

holds for each covmpo‘ner‘lt i. For these non-canonical variables J and 9, it is only the total
divergences which cancel. The Hamiltonian takes the form

H = Hy(J) +e(J,0,1). (16)

The distribution function is to be decomposed into its equilibrium part fp, and the fluc-

tuating part f
F=fo+ f(3,0,1). (17)

Clearly, the equilibrium part f, satisfies the equation

ﬁ . a—f_c,) =0 (18)
implying the simple solution .
fo= fo(J) - (19

which is clearly a result of our proper choice of the coordinate system. The equation

governing the fluctuating or the perturbed distribution function f is obtained from Egs.

(11)-(19),

of = Of . 3dfo ~ of . of
95 el J9Jo NE I ) 20
ot T a3t 5 (89)- 2779 33 - (20




where we have not explicitly substituted expressions for J and (50_) ‘We shall continue

developing the formal theory implicitly, and use detailed forms only where we deal with

* particular cases. In Eq. (20), all the terms on the left-hand side (right-hand side) are

linear (nonlinear) in the perturbed quantities. f, & and A.
Now we exploit another important characteristic of our coordinate system, the
cyclic nature of the 0_"5, to expand all the perturbed quantities as Fourier series in §. A

typical perturbed quantity g is decomposed as
9(3,0,t) = > g7 ,(3) exp(—iwt + il - §) (21a)
lw
where the Fourier transform g; _(J) is given by

1 - - T |
07 ,(3) = W/dadt 9(3,0,t) exp(~+iwt — - ),  (21h)

,‘dndf_ is a triad of integers labelling the Fourier harmonics. Making use of Eqgs. (20)-(22), .
we obtain [QZ »(J) =gz, the index w, and the argument J will be generally suppressed in

the rest of the paper],

S o
~i(w — £ n)fZ+JZ-T$‘= —N; (22)
where the nonlinear term N 7 1s the convolution
T = : P ' ’
Ng=D_[i(6=8)- (60 fz5+3g-5305a]- - ®)

7

Notice that both J 7 and (667) 7 are extremely complicated terms obtained by taking the

Fourier transforms of Egs. (11) and (12), and are given by

J;=—ie [e“qsz+ Y K@i~ Z’)A«},J, (24)
7
= | .0 17 /
(66) ;= —ie [—zﬁ@gﬂ- YLl 0 - ?)A‘;,J : (25)

. 1 : = ]
K/ = = [—le_~ + 2 x (T%‘—Z X Z’)}, (2601)




— ' a

. 1 . o -
L= ‘[“*’Sf?_zr + (é’-n)s%_ i(12- T} )6J (260) -

c

where Ti; and Siw are the Fourier transforms of the known quantities. 8J/8po; and a9, /Opoj
respectively. Equation (22) is the main result of this section, and is an expression of the
exact, nonlinear, Fourier transformed Vlasov equation in the presence of fully electromag-
netic perturbations in a general magnetic field geometry. The formally simple structure of
this equation shows the power and elegance of the action-angle variable approach which
allows the Vlasov equation in a complicated geometry to look exactly like the Vlasov equa-
tion describing a field-free plasma. This formal equivalence follows from the fact that in
the invariant action-angle space, the particle trajectories are always straight liﬁes (as in.
the field-free case). The result is a unified formalism to deal with a whole class of plasma
problems; we do not have to begin with a different .looking Vlasov equation every time we
change the equilibrium geometry. All formal manipulations can be carried out on Eqs.- (22),

and depending on wha.t J 67) we use, 1t could, for example descrlbe the 1nﬁn1te homoge- '

" neous ﬁeld-free plasma or the response of trapped pa.rtlcles in a tokamak The translatlon :

(J, 0) « (Po, Qo) Is, of course, given by the solution of the equilibrium problem.

IV. Linearized Vlasov Equation

Setting N; = 0 in Eq. (22) leads to the linearized Vlasov equation

. . 3 |
—t(w — )fe-l-J aj}—-o (27)

which is readily solved to obtain

Q

PR
[ A (28)
T w - - 12)
Notice that our clever choice of the coordinate has resulted in making the linear solution

f7 independent of 60 7

A. Free Freld Limit
One of the main reasons for this paper was to correct the errors in the earlier

formulation of action-angle variable theories. Let us see how our new linear results compare
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with known standard results. The simplest check is to obtain the field-free (Ao = O,
@ = 0) limit of Eq. (28). This is easily accomplis'hed by the transformations J — p, the
ordinary conserved momentum, § — x, £ — k(8/086 — 8/8%), and {7 — v. The results

are

TS — 865 6,0 | (29)

where €; is the unit vector along the direction ¢, the operator,

.1
K/ — -~ {—wéi&'j +v X (& x k)5ij] o1,k (30)
c : :
. 1
J;— —ie{k@k + " {—WAI: —v x(kx Ak)} }’ - (31)

and finally (p = mv, Ex and By are respectively the perturbed electric and magnetic

fields)

e —i[kdy — LA, — Ly x (k x Ay)] 8fo
Mmoo v (2]
_ e (Bx+{vxBy) af (52
m o w—k-v) ov :

which is precisely the required result.® By using Faraday’s law By = (¢/w)(k x Ey), we

can rewrite Eq. (32b) purely in terms of the electric field

e [wEx+vx(kxEy)] df

fk:imw w—k-v ov
e (V-Ek)k (9fo ‘
= — . . 2
imw{Ek—i_w—-k-v] av (82¢)

We have derived this form of fi to compare it with the linear result, Eq. (26),

SHHI,w)l- 5k

w—~0-1

67T, w) =

of Ref. 3. Using the standard prescription to go to the field-free case, we obtain

Sfi = — (v-Ex) (k- 52)

imw  (w—k-v) (33)

which does not agree with Eq. (32¢); Eq. (33) lacks the first term in the square brackets
in Eq. (32). The mistake was made in Eq. (25) of Ref. 3 where 6J = —0H/80 =
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—0(Ho + 6H)/80—'= —06H /06 was used. As pointed out earlier, (J, 0) are not canonical
variables for the total Hamlltoman H, and therefore 6J is not equal to —86H /08. By
using the correctly derived expressions for J and 4 [Egs. (11) and (12)], we do indeed
reproduce the standard results. After this demonstration, we shall no longer belabor the

point that the earlier treatments using action-angle variables were incorrect.

B. Low-Frequency Trapped Particle Response in Tokamaks
We now show how Eq. (28) can be readily used to obtain low-frequency gyro-
averaged, bounce-averaged, response for deeply trapped particles in a tokamak. For sim-

plicity, we derive only the electrostatic limit for which [see Eq. (24)]

jZ: —ie[@z . (34)
leading to .
—ed- . 2o
fr=—L 81 (35)
Cw—£L-02 :

- where £'= (L4, Lp345) with €y, £y, and €4 the gyro; toroidal and bounce harmonic numbers :
respectively. The gyro and bounce averaged response is obtained by simply setting £, =
0 = £y, |
fe= _e¢e—ap¢ (36)
" .

where £, = £. We must remind the reader that these harmonic numbers are in action-angle
space and not in real space. Since Maxwell’s equations are simple in real space, we will
need to convert f;’s to real space harmonics before we can use them to calculate perturbed
current and density. This translation mechanism is adequately discussed in Ref. 4.
Before ending this section we would like to point out that tremendous calculational
simplification occurs for a very important special class of distribution functions fo. (J) which
depend on J only through the Hamiltonian Ho; the Maxwellian distribution belongs to

“this class. For fo(J) = fo[Ho(J)],

9fo _ 8fo 0Ho _ 5 3dJo
oJ  0Hp 9J dHy (57)

which results in the simplification

je«.%——zﬁ [@_—ZTZ . e,} ofo (38)

oJ 8Hy
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Further simplification is possible only when one knows Té - which depends upon the

particular problem being investigated.

V. Quasilinear Theory

A. General Theory
A very important application of the action-angle formalism is the development of
the quasilinear transport theory for complicated geometries. In fact, Kaufman’s original
paper was precisely intended for this purpose.
The principal object of the quasilinear transport theory is to obtain an equation
for the slow evolution of the équilibrium (or averaged) distribution function fo in fespdnse
to the perturbing electromagnetic fields. The calculation is carried out in two distinct

steps.

fo (Jv,t) 50 fihat Eq. (15b) becémés

ofo  df = Of 8 . - ATy
Sttt s =gy G n) - ((60)1) (39)

Averaging over the angles § yields (FY = fo)

9fo 0 . .
% 0 ife+in) (0)

because the fast § variation gives zero average for the terms linear in the fluctuating part
f. Notice that although J is linear in the fluctuating fields & and A, it has been retained
in the equation because the coefficients 0J /dpo; can also have 7 dependence which could
give nonzero average J. However, we must state that the factors (0J /8po;) can have only
slow equilibrium dependence in a quiescent plasma, and therefore the term proportional to
(J) will contribute only for very low £ number part of the fluctuation spectrum. Equation

(40) can be written in the form

dfo 2 - :
e 1+ @), ()

where f is still the exact fluctuating distribution function, i.e., the solution of Eq. (20).

14

1) The equilibrium distribution function fo is given a time dependence. fo =




2) Approx1mat1ng the total fluctuating f by its hnear value fL is the essential

assumptlon of the quasﬂmear theory, and leads to

B =L + @)l (42)

Using the definition
— Z f[ eiéve,
Z
the definition of J _7»and Eq. (28), we can write Eq. (42) in the equivalent forms
4 !

L5 |7 -Bwn) (430)

ot 83
or
0fo _ 9« 8fo -« 9o '
= J) — 43b
3 a3l a3 T s | (430)
_ which requires the use of
J - J o 0 . .
(59)+ (G5 ) =35
In Eqgs. (43a) and (43b), :
. — jzj_e-'
sle “

is the coefficient of quasilinear diffusion, and

. . ie
() =T =—— [—wT? 5+ 3 x (17

] x O) ] A, (45)
el

denotes convection in the action-angle space. Notice that the origin of the convective term
is entirely due to the electromagnetic perturbation AT,
At this stage, it is pertinent to point out that the quasilinear equation (43) pre-

serves the particle conserving property of the exact Vlasov equation, i.e,

ON, 0 0o 0o
o=l fan=[al. P h+wm]m (46)

Other conservation laws can be derived by the standard procedure.
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If the perturbation were pure electrostatic (A = 0), the convective term vamshes,

and the evolution of foin actlon space becomes purely diffusive,

0fo 0 <= 0

9 _ 90 5 9. 47
ot ~ a1 Degzh | )
where [use of Eq. (24) for J]
’ e D7D
Dee=ie?S 70 —L=L. (48)
7 w—4£-0

Since it is the presence of the magnetic perturbation A that destroys the canonical nature
of J and @, the convection term (3) will be a functional of A alone.

From the analysis in the preceding section, it is quite clear that the quasilinear
transport theory becomes considerably more complicated when electrorﬁagnetic perturba-

tions are present. The change is not only quantitative, but qualitative also in the sense

that the evolution of fy-is no-more purely diffusive in the- a@tlon—a,ngle-space—’llhe—relatlve——

importance of diffusion, and convection terms would clearly depend upon the details-of:the

- situation. Equations (43) and . (44), the main results of this section, provide the starting.

equations to develop, for example, a theory of radial transport in tokamaks caused by

electromagnetic fluctuations.

Nonlinear Theory

Equation (22) is the fully nonlinear Fourier transformed equation for the fluctu-
ating distribution function. It can serve as a basis for developing a general renormalized

turbulence theory for a Vlasov plasma in arbitrary geometry.

The standard renormalization procedure’ consists in breaking up the nonlinear-

ity Ny into three terms; the first is proportional to (coherent with) f7, the second is
proportional to the perturbed electromagnetic fields, and the third is called the fully inco-
herent term. The effects of the electromagnetic fields are contained in (50_) and J in our

formulation. Thus we seek the decomposition of the nonlinear term as
Ny=Dyfy+ Cyz- (60) 7+ Cpp- 3o+ Nz (49)
where N 7 is the remaining incoherent part of Nj after the coherent parts have been sub-

tracted. Clearly, the term D;f; will renormalize the linear propagator on the left-hand

~side of Eq. (22).
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Detalled expressmns for Dy, C’1 3 and C,; are obtamed by the following simple
procedure We add D;f; to both sides of Eq ( 2) to obtam the formal solution

9o

) (50)

fr=g7|+dz

where

1
i(w— €17 +1iDp)
is the renormalized propagator. Substituting Eq. (50) into the nonlinear term Eq. (23)

(51)

Z:—_

leads to

L b . o . afo .
Ng= Z[Z(E =) - ()7 + 3 ﬁng_z’ [Nz_z' s 5y - Dz_z'fz_er o (52)

Iz

where % operates on all quantities on its right. It is straightforward to see that the terms
coherent with f; and A can come only from Ny ; , because ¢ = 0 is not permitted.

Denoting this part by Ny, and substituting Eq. (23) into Eq. (52), we obtain |

. . . 0o |
[Z(e_e ~ &) (80)g. Sz 5_p + 35 - ﬁfz_z/_@.'} )

&
it 60+ 2 (54
- L L E .,
Cup- (00 = =i Y [i(0= 1) (603 + 35 37| (0.0 (60)g)  (69)
and ' o
a 7
Carlp= L [i€- 1) 6l +35 - 2| (o752 3¢ (50

By making use of expression for (50) 7and Je, one can easily express C, ;- (66);+ C,;- (j)Z

as a; $;+ by - Ay . Renormalized Eq. (22) reads

fz=gzﬂ(aa?) "’Cze} je+Cle'(5;)z+ Ne}- (57)
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In the coherent renormalization theories, N 7=0,and Eq. (57) serves as a formal nonlinear

solution of the Vlasov equation.

VI1I. Discussion and Conclusions

We have shown that a mechanical application of the canonical perturbation theory
can lead to erroneous results when magnetic field perturbations (A) are present. The
principal reason is that for A ## 0, the invariant actions and their associated angles (derived
for the unperturbed system) cease to be canonical variables of the total Hamiltonian H,
i.e., J # —0H/ 867, and 5 # OH/0J. We have also derived approximate expression for the
orbits J and 4 for a _charged particle moving in general electromagnetic fields (perturbed

and unperturbed) to develop a modified perturbation theory which is used to formulate the

kinetic theory of plasmas in the action-angle variables. Simple tests of the correctness of

our theory are provided by comparing our results with standard known results. The general

- formalism is used to derive basic kinetic equation for the study of linear, quasilinear, and

renormalized nonlinear theories.
As stated earlier, the great advantage of the action-angle variable approach is to
unify the treatment of such diverse plasma problems as the determination of fluctuating

distribution function for a field free plasma, and for trapped particles in a tokamak. The

entire formal structure is the same, because in the invariant action-angle space, the particle

trajectories are always straight lines. We believe that our Eqs. (28), (43)-(44), and (54)-
(57) can be used as starting points for a wide variety of kinetic plasma problems.
The application of this formalism to specific problems of interest will be the subject

of a later paper; this paper is intended to be a general delineation of the theory.
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Appendix A — Equations of Motion and Particle Conservation Law

We first defive a genérai perturbation formalism for the evolution of equilibrium
invariants of a charged particle. The Hamiltonian H of the particle is given by Egs. (6)
and (8), and the variables (po, qo) and (07'0,50) are described by Egs. (4) and (5) and (7).
The equation of motion of ag; is [Eq. 10a]

8 (8457

Yoi = ot l(p,q) * [aOi,H} (p.a): (4~ 1)

From Eq. (7), and g = g9, we derive the transformation coefficients,

apOj 3€I0j
= 6;; =0
- Op; Y7 9p;
Opo; edA; 3490
— == = ;5 A—2
dq; ¢dq ~ Og ’ _ ( ) _
which are used to obtain »
(90[01' € 80&01' BAJ e
= —- —_— A~ 3
9t lpa)  cOpoj Ot B ( . )
[aOi,H](p,q) = [‘a0i,H]p(,‘,q(, + <a01,H)P0,Q() (A - 4)
where the bracket { ) po, qo is defined by
e : of : dg
' f’ 0, Qo0 = — AJ’ 0,90 .. AJ’ 0,90 9. [ * A—5
{ g)p q p [ g]p ,a Bpo; [ f]p q dpo; ( )

Since both the brackets [ | and ( ) are linear in their arguments, Eq. (A4) can be split

into four terms
[aOi’ H] (P,q) = [0{01, HO]meo + [aOi,h]Po,QO
+ <a0i’ HO)P(),QO + (aOi’h>p0,QO' (A - 6)
Since the perturbed Hamiltonian A = ed is independent of pg;, the fourth term of Eq.
(A-6) vanishes | ‘
<a0ia h’)P();Q() = 0.

Since (&'o,ﬁo), ﬁhough not canonical variables for the total Hamiltonian H, are obtained

as a canonical transformation from pg, qo, the Poisson bracket remains invariant, i.e.

[fag]pn,Q() = [f’ g]&(),ﬁ()
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which immediately leads to

[QOiaHO]pu,Q() = [a0i’HO(&O)]&(>,ﬁ() =0.

In order to apply the invariance of Poisson brackets to other terms, we need
probably do a formal treatment of both the electrostatic field & and eléctromagnetic field
A. We assume that we have obtained the explicit solutions from the transformation Eq.
(5),

a0 = q0(&o, Bo)
Po = Po(&o, ﬁo)- (A - 7)

Since the ap’s are motion invariants of the particle in the unperturbed situation, we use

them as labels to mark the particle. The fields acting on the particle are expressed as

—_

Ba0(Bo,t) = B(ao(Go,B0), 1)

: A&O(Et):A(po(&o go)t) | . (A _8)

oo With this understanding, Eq. (A-6) can be further simplified:

od
[et0i, Holpg,q0 = —€ ABo;

0Hy }
0,80 310'0]'

€ . o ds" : .
(O‘OiaHO)Po,Q() = _z{ [AJ,HO] @o,B0 apgj - [A],am’]

_ e { A7 8H, dap; OA’ 8H, 8aok}
c | Bor Oapr Opo; 9Boi Oaor Opoj

where Einstein’s rule is obeyed (and the same in the rest of the paper). Finally, we find

G =

. 09 . edag; A7 B E{aam 8H, 8
0Boi c¢Opo; Ot ¢ |9po; Oaor IPok

e vy (4-9)
3100]' Oapr  0Bo;

or equivalently (the subscript 0 if suppressed for o and 3)

0P e da 0A; e[ aa <3H0 o > ( oa 3H0> 3] }A’l
e__, - - - - M — - M —: Rm— -
88 c¢Opo; Ot ¢ [ Opo; Opo; Od

"
o= —

oa '35 Bl
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Equation (A-9) is the evolution equation for an 1nvar1ant under the influence of electrostatlc

and electromagnetic perturbed field.

Following a similar procedure, an equation for the conjugate Sy, is readily obtained

aHo aqs e 0 OA

= ‘96 copy; Ot
8f (0H, o 8d B8H\ 8 | ,;
= L= .22 A-10
{3P0y ( da aﬂ) i <3poJ' da )304}A ( )

Although the variables & = J, and ﬁ = § are not canonical with respect to the
total Hamiltonian H, the equations of motion A-9 and A-10 [or equivalently Egs. (11) and
(12)] satisfy the extremely important divergence relation

a . 8 = 81, 94,
§=55 U+ 50 =57+5

il

=0. (A—11)

The proof of (A-11) is a bit tedius, and requires making use of several relationships between

Po, 9o and J, §. Two of these useful identities are

g : aqoy . : (A_ 12)

3P0g‘ 89_'
a0 Pgoy .
= — A—13
which can be readily derived by remembering that § = 8H, /83, and J ‘ = 0. Taking

Hy
the appropriate divergence of Egs. 11 and 12, and using (A-12) and (A-13), we obtain

25:51+52 (A —14)

where

S1=-

P [aqoj BA]} ﬁ_[aqa BAj]

aJ; | 96; Ot 06; | aJ; ot
3Aj] [ aA]} :
— (905 » &7 = 4907 » —&; =0 (A~15)
[ ’ ot 5,.1 ! ot q0,P0

because A; is independent of pg, and
o = 0 [0y () 047\ (5 Bass) 04y
aJ; | 90, o9 a0 ;

0 |0qo; ( = PA; dqo;
— |22 n. ) L
T a9, { oJ < a0 g Bl




Using the facts
~ " 0A;  0A; Oqom
30_‘ a 9qom (90_’ ’

and . (A — 16)

GA] . 8A] 8q0m '

8F  dgom O0J

and straightforward-manipulation, we can show that

d aqO]‘ =~ Oom 5} aqu = Oqom
So=—|Tip, —=00 - ——| — |T;m - =
? aJi{ T a6 | a6; '™ 8J; EY)
= |q ,Tmn — — ’Tmﬂ A—17
l: o o0 §,J 10729 99 Q0,Po ( )

where T}, is the antisymmetric tensor

0A; J0A
Ty = J _ m. A—18
- 990m  Odqo; ( » )
Noticing |
{—2* aQOm..; ﬁ 8.] - 8H,o,,,.:. oJd S 3Ho .
n o0 Opom 03  Opom  Opom’
we expand Eq. (17) to yield
. 21 ‘
82_% 1o} aHo_ 8H0 -0 (A—lg)

— Z 1,220 g, 20
dgoe Opoe ’™ Bpom ™ dpoepom

since (82H0/8p0g8p_m) is symmetric in £ and m. Thus we have proved that for our
action-angle variable Eq. (11) is valid, which allows us to write the Vlasov equation in an

equivalent form

OF = 8F . OF O8F 8 - o . |
4 IS4 = L (0F) + — . (JF) =0, A—20
ot + a0 + od ot +aa ( )+8J (JF) ( )

which is clearly more suitable for the explicit demonstration of conservation laws associated

with the Vlasov equation. It is obvious that the Vlasov equation conserves particles because

AN '
=0 : A—21
5 ( )

where

N:/deo"F. (4 —22)
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Abstract
An appropriate canonical perturbation theory to correctly deal with general elec-

tromagnetic field perturbation is developed, and is used to set up plasma kinetic theory in

.. action-angle variables. A variety of test problems are solved to show.the unifying power - ... ... .

of the method. Basic linear, quasilinear, and nonlinear equations are derived which can

serve as the starting point for a whole range of plasma problems.




I. Introduction

Action and angle variables have often pfovided a very convenient coordinate sys-
tem in which the problems of classical physics can be formulated and solved. In celestial
mechanics, for example, this approach has been extensively used to determine the eflects
of small perturbations on the motion of the planets. 14 is a bit strange that this obviously
powerful tool has not found much currency amongst researchers in plasma physics. Apart
from a few initial studies,!~2 the use of action invariants to solve the Vlasov equation
in complicated geometry was attempted only recently by Kaufmann,® and then by other
workers? who primarily used and extended Kaufmann’s formalism. Unfortunately, the
‘basic formalism is fundamentally flawed, and when applied to deal with time-dependent
magnelic field perturbations, it leads to incorrect results even for the linear Vlasov the-
ory! (sec Sec. 1V for details.) The formalism, however, yields correct results for strictly
electrostatic perturbations which defines the domain of validity of the analysis of Refs.

3-4.

It is surprising that a method based on the well-known time-dependent canonical
perturbation theory (Kaufmann’s) would lead to such inconsistencies. In this paper, we
show why a mechanical application of the standard perturbation theory is not possible in
the presence of the electromagnetic perturbed fields (EMPF). We also develop a modified
perturbation theory which can correctly handle the EMPF. Arguments leading to, and the
formalism, are presented in Sec. II.

The remaining sections of this paper are devoted to the formulation of plasma
kinetic theory in terms of action-angle variables using our modified perturbation theory.
The Vlasov equation in the new phase space is derived in Sec. III, while some examples in
the linear theory are worked out in Sec. IV, where we show that our results are identical
with standard results, and are different from the results of the earlier theory.® After having
shown that our theory has corrected the inadequacies of the earlier theory, we go ahead
and develop quasilinear and nonlinear aspects of plasma kinetic theory in action-angle
variables in Secs. V and VI. Expressions for the quasilinear diffusion coeéﬁcient, and the
convection coefficient are derived in Sec. V, while Sec. VI is essentially devoted to a formal

description of the renormalized nonlinear theory. A brief discussion, which includes some

2




comments on the importance of this work, is given in Sec. VII.

II. Modified Canonical Theory for EMPF

An essential step in setting up the time-dependent or the canonical perturbation
~ theory® is to obtain motion invariants of the corresponding unperturbed system described
by the Hamiltonian H,. Provided that the found invariants o’s and their conjugates
B’s constitute a complete set to form a new phase space, a generating function G must
exist which can perform a canonical transformation (p and ¢ are the original phase space

coordinates)
G(g,&) ,, =
(p.0) (@) ()

with the result that the motion of the total system is simply along a constant line in the

-

new phase space (&, f), i.e., the Hamiltonian Hj is independent of the §’s.

For the perturbed system, the transformation Eq. (1) is still employed, and then

* the Hamiltonian H can be expressed as a sum of two parts; the formally unchanged, § =~

independent Hp, and A which is a function of (p,q) as well as (&, E) Clearly, the a’s

change only due to A,

& = —ZZ = _oh(as, ir1) /0. (2)

Equation (2) provides a basis for a perturbation theory. The first step in the approximation

scheme is to substitute the unperturbed constant values of the a; = ¢4 in the right-hand
side of Eq. (2) (after taking the §; derivatives). The equation of motion thén could be
integrated to obtain the perturbed time dependent o;’s. Notice that the invariant actions
J or J; are to be identified with o;, and the conjugate angles § or g; with B; in the
action-angle formalism.

Although this procedure is standard and widely used, it runs into considerable
difficulty when applied to the treatment of magnetic field perturbations (EMPF). We
must point out that there is nothing theoretically-incorrect with the method. In fact, the
phase space (@, ,5) obtained from transformation Eq. (1) is canonical, and does reduce
to its counterpart in the corresponding unperturbed system, which seemingly fulfills the

requirements for a perturbation theory. However, an important technical problem arises

3




when magnetic fleld perturbation is present; the generalized momentum (e, m and v are

the charge, mass and velocity of the particle respectively, and A is the vector pdtential)
e
p=mv+-A (3)
¢

contains the perturbed vector potential explicitly. Consequently, the coordinate system
(&, ﬁ) obtained from (p,q) by a canonical transformation also contains the EMPF (in
the rest of this paper, the abbreviation EMPF will be used for the perturbed magnetic
fleld, perturbed vector potential etc.). The use of such a coordinate system to describe the

motion of any dynamical system must necessarily suffer from severe intrinsic disadvantages.

1) Generally, the object of a calculation will be to determine the EMPF. Thus the
meaning of the coordinates will remain quite obscure till the problem is solved.

2) The coordinate frame is, by definition, not the same as its counterpart.in the

unperturbed system. This confuses the situation because a cornerstone-of the

- perturbation theory is that we do have the knowledge of the unperturbed system

and its phase-space variables a;o and f;0. The confusion between (e, #;) and

(050 and Bip) can lead to serious errors as in the linearized solution of Ref. 3. We

discuss this point in detail in the next section.

3) Because the coordinate system has fast variation caused by the varying EMPF,
it is no longer practical to solve systems like Vlasov equation by decomposing
the perturbation into Fourier harmonics; the superposition is no longer valid, and
the resultant Fourier transform of the equation will have convolutions even in the

linear analysis.

It is thus strongly indicated that we must look for a different coordinate system °

in order to exploit the powerful and elegant machinery of canonical perturbation theory.

A logical choice will be the coordinate system which contains only the equilibrium elec-

tromagnetic fields, given by the vector potential Ay, and the scalar potential @, i.e., the

generalized canonical momentum

e .
Po =mv -+ ZAO (4)
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should replace p. It is from this new set pp and qo = g that we obtain the appropriate

&g and ,50 by a generating function G,
G(qo, &) ,, =
po,qo (2 (do, Bo)- (5)

~Notice that the transformation given in Eq. (5) is exactly equivalent to solving the equa-

_tions of motion of a particle in the equilibrium fields. We, of course, assume that this
problem is solved for all cases under consideration. For example, Kaufmann® has implic-
itly solved the equilibrium motion of a guiding center plasma in a torus, while Hazeltine,
Mahajan and Hitchcock* have o’btained explicit expressions for the special case of a high
aspect-ratio torus.

We wish to point out here that in the absence of the EMPF (A = 0), pd is
identically equal to p, and thus the two coordinate systems will be equivalent, and the
standard perturbation theory will yield correct results. Clearly, the results of all the
previous papers following this approach are correct for purely electrostatic perturbations

(A=0,0%£0).

These new variables, however, do not form a canonical conjugate pair with respect
to the total Hamiltonian H, (A # 0) i.e., &o; # 0H/dPBo:;. This fact is of crucial impor-
tance, because it is the identification of &g; with 0 H/df; that constitutes the principal
mistake of Refs. 3-4. For our case, we shall have to find appropriate expressions for the
rate of change of actions and angles in the presence of perturbations. We must remark
that although &g and ﬁo are not canonical (for H), they are obtained as a canonical trans-
formation from po, qp which label the unperturbed state described by the equilibrium
Hamiltonian Ho. Thus (dj, ﬁo) will retain some of the crucial properties of canonical
variables.

The nonrelativistic Hamiltonian for a charged particle in an electromagnetic field
is given by

1

H = %(p - SAt)2 -+ 6@15 » (6)

.-~ where.the. scalar and the vector-potentials ®; and A; include both the unperturbed

(®0, Ao) and the perturbed (&, A) components, i.e.,
®; = 9o + (I)a

5




A, = A+ A.

By making use of the relation
e
Po=p~— -A (7)

which follows from Eqgs. (3) and (4), the Hamiltonian H can be written in the form

H=Hy+h
where
1 e
Ho = '2—m"(Po — 2A0)2 + €@y, (8)
h=¢ed.

It may seem peculiar that the troublesome perturbed vector potential A has com-
pletely disappeared from the scene; it appears explicitly in neither Hg nor h. The effects
of A, however, will reappear when we make the transformation from (p,q) to po, go.

-As-we-remarked earlier; the first step in-the-development of the canonical pertur-- -
bation theory is the solution of the unperturbed problem. We assume that the unperturbed
problem has been completely solved: the invariants &g, the conjugate angles ﬁo, and the
generating function G(qo, @) which mediates the canonical transformation of Eq. (5),
have all been obtained. Since &g are the invariants of the unperturbed system, the Hamil-

tonian Hy is a function of &g alone, i.e.,
Ho = Ho(&o) (9)

a property which will be extensively used later, and which is a major source of simplifica-
tion.

The equation of evaluation of any dynamical quantity @ (for example & and Eo
labelling the trajectory of the changed particle) is governed by the total Hamiltonian H,

and is

. 1o}
Q= % + (@, H](p,q) (10a)

ot (p,a)

where
_9f dg 9f d¢
~ dg; Op; Op; g

[7.9] (108)
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is the Poisson bracket. In Eq. (10b), we have used Einstein’s summation convention over

repeated indices; this convention will be used throughout the paper.

-.--Our aim is now to transform Eq. (10a) to. the coordinate system defined by the -

equilibrium invariants, and their conjugate angles (&, ﬁu) To do this, we must first
transform the equation to the coordinate system po, qo because it is only these (and not
(p,q)) which are related to (&, ,[70) by a known canonical transformation [Eq. (5)]. This
step is the distinguishing feature of our analysis. The primary source of error in the earlier
analysis (Refs. 3-4) is that they failed to distinguish between (p,q) and po, qo-

The details of the transformations (p,q) — po, 9o — (&o, ﬁo) are worked out in
Appendix A. Here we simply give the trajectories of the changed particle in terms of the
action-angle variables, dg = J, ﬁo = §. The evolution equations are

8_@_53.]814]’_5[8.]81{0_2_<33.3H0>2]A'
85 Capo]' ot ¢ 8170]' aJ (9(9-' apOj aJ 35 ’
_82 e 03 0A; ¢ ( 0J y %)

J=—¢

= —¢@ =

R X ~
- -80. . .¢Opg; Ot ¢ . . \Opo; 86

9

(50)50—0—_——65]‘—‘28])0]. By P

o -\ 0
N )—=1A,. 12
* <Bpo]~ >3J} ! (12)

where @ = @(J,g,t), and A = A(J,O_',t). The quantities (8J/dpo;), (85/6p0]-) and

9% e 86 A, e[ a0

OH, /8T = Q(J ) are known functions of J and § from the solution of the unperturbed
problem. Since J’s are the invariants in the equilibrium fields, their evolution is due to
the perturbed fields only; é, however, has the additional equilibrium frequencies ﬁ(J ). We
remind the reader that Hy is independent of g.

It can be easily recognized that the first two terms on the right-hand side of Egs.
(11) and (12) reflect the effect of the perturbed electric field (both static and inductive),
while the last term is due to the Lorentz force. The effects of the unperturbed fields is
-contained in-the equilibrium quantities (8J/dpo;), etc..

A very important feature of Egs. (11) and (12) is the linear dependence of J and 9_'
on the perturbed fields ® and A. Notice that this would not be the case if the coeflicients of
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transformation (8J/0po;) etc., depended upon the perturbed fields. This feature assures

‘the validity of the superposition rule.

. .- The rest of this paper is devoted to the application of this method to- plasma

kinetic theory.

II1. Vlasov Equation in Action-Angle Variables

In this section, we set up the Vlasov equation in action-angle variables. The
treatment of this section is quite general with the added feature that actions J are the
invariants of the equilibrium system. In fact, the invariance (or adiabatic invariance) is
the only reason to prefer (J, 5) to any other systems of coordinates.

To put things in perspective, we deal with a guiding-center plasma in an axisym-
metric toroidal configuration. Kaufmann has very elegantly solved the equilibrium problem

for this system. We request the reader to consult Ref. 3 for details. The essential results

are that the guiding-center motion can be described in terms of three adiabatic invariants:

M = (mc?/e)u proportional to the magnetic moment u; Py, the canonical angular mo-
mentum (this action is an absolute invariant for an axisymmetric system); and J, which
is proportional to the flux enclosed by a drift surface. These actions have associated
conjugate angles §,, ¢ and 0 respectively.

Throughout this paper, we shall use the condensed notation
J=(M, Py, JP)

and

6= (6, o, 6) (13)
to denote the action-angle variables. It is also important to define the triad of frequencies

= 0Hp
= ﬁ-‘ = (wg,wp,wg) (14)

where Ho: = mv?/2+e® is the equilibrium Hamiltonian. Notice that for a toroidal plasma,
f4(wg) is like a gyro angle (average gyro-frequency) ¢ (w) is a toroidal-like angle (average

toroidal frequency), and 6(wy) is a poloidal-like angle (average poloidal frequency). The

8




—

generating function G which mediates the transformation from po, qo to (J, ) is given
“and discussed in Kaufmann’s paper. Having briefly delineated the solution of a typical
«.equilibrium problem, we proceed to deal with -the Vlasov Equation.

In the new variable system, the Vlasov equation becomes

dF .~ . 8F + 8F . 3F

30—+ 0=+ == =0, 15
while the Hamiltonian takes the form
H = Ho(J) +e®(J,0,1). (16)

The distribution function is to be decomposed into its equilibrium part fo, and the fluc-
tuating part f
F=fo+ f(J,6,1). | | - (17)

Clearly, the equilibrium part fo satisfies the equation

q. %% _g (18) |
implying the simple solution
fo = folJ) | (19)

which is clearly a result of our proper choice of the coordinate system. The equation
governing the fluctuating or the perturbed distribution function f is obtained from Egs.
(11)-(19),

of = 0f

——+ 0= +J

oo _ 50y 9% 1 5.90
ot 83 83

—|(60)- =% +3

og '~ 87 (20)

—

where we have not explicitly substituted expressions for J and (56) We shall continue
developing the formal theory implicitly, and use detailed forms only where we deal with
particular cases. In Eq. (20), all the terms on the left-hand side (right-hand side) are
linear (nonlinear) in the perturbed quantities f, ® and A.

Now we exploit another important characteristic of our coordinate system, the
cyclic nature of the 9_"5, to expand all the perturbed quantities as Fourier series in g. A

typical perturbed quantity g is decomposed as

—

g(3,0,t) = ng ,(J) exp(—iwt + il - §) (21a)
£ w

9




where the Fourier transform g7 _(J) is given by

97 W (J) = (231_)4

—_

/ df dt g(3,0,8) exp(+iwt —il-0), (218)

~and £is a triad of integers labelling the Fourier harmonics. Making use of Eqs. (20)-(22),
- we obtain [gg o (J) = g the index w, and the argument J will be generally suppressed in

the rest of the paperJ,

) - . Of
—z(w—é'ﬂ)fé*—l—JE-%g:—Nz (22)
where the nonlinear term N 7 is the convolution
N T .9 |
Np=) [i(=0)-(60)z frg+3z o57e5| (23)

2

Notice that both jg and ((55)5 are extremely complicated terms obtained by taking the

Fourier transforms of Eqs. (11) and (12), and are given by

By e+ Y I, E-2)43), 24)
2
= 1.9 P T 4d
(59)52—26{—25@54— ZLJ(?,K—f)A},Ja (25)
el

with the vector operators K’ and L7 defined by

. 1 : — ;
K/ = ZI:—-UJT‘%_Z; + 0 x (T%—Z’ X Zf)j'a (26)
VRl B ~Y) 7. J — T —_—
L/ = c[ WS, + (@ d)ss , —i(f T,;_g,)aJ] (27)

where T“} and Sé are the Fourier transforms of the known quantities. 8J/dpo; and £l /9po;
respectively. Equation (22) is the main result of this section, and is an expression of the
exact, nonlinear, Fourier transformed Vlasov equation in the presence of fully electromag-
. netic perturbations in a general magnetic field geometry. The formally simple structure of
- this equation -shows the power and elegance of the action-angle variable approach which
allows the Vlasov equation in a complicated geometry to look exactly like the Vlasov equa-

tion describing a field-free plasma. This formal equivalence follows from the fact that in

10




the invariant action-angle space, the particle trajectories are always straight lines (as in
the field-free case). The result is a unified formalism to deal with a whole class of plasma
problems; we do not have to. begin with a different looking Vlasov equation every time we
change the equilibrium geometry. All formal manipulations can be carried out on Eq. (22),
and depending on what (J, 5) we use, it could, for example, describe the infinite homoge-
neous field-free plasma,.or the response of. trapped particles in a tokamak. The translation

—

(J,0) < (po, qo) is, of course, given by the solution of the equilibrium problem.

IV. Linearized Vlasov Equation

Setting Ny =0 in Eq. (22) leads to the linearized Vlasov equation

. = . dfo
o= L) 143 S (27)
which is readily solved to obtain
g
fim L 8T 28
¢ iw—2-0) (22)

Notice that our clever choice of the coordinate has resulted in making the linear solution

f7 independent of 50 z

A. Free Field Limait
One of the main reasons for this paper was to correct the errors in the earlier
formulation of action-angle variable theories. Let us see how our new linear results compare
with known standard results. The simplest check is to obtain the field-free (Ao = 0,
®o = 0) limit of Eq. (28). This is easily accomplished by the transformations J — p, the
ordinary conserved momentum, § — x, £ — k(8/86 — 8/8x), and €1 — v. The results
are

T‘% — éi&g’j 51(’0 (29)

where €; is the unit vector along the direction 7, the operator,

. 1
K7 — = —wéiéij +v X (éi X k)61-]- 51;,1{/, (30)
C

11




. ) 1
J;— —ze{k@k + = {—wAk -v X (k x Ak)] }, (31)
. C : .
and finally (p = mv, Ex and By are respectively the perturbed electric and magnetic

fields)

e —1[k®y — LA, — v x (k x Ay)] 8fo
- I} C i s m ———m YT 32
fo=— (w—k-v) v (32¢)
Ex +ivxB
- i( 1’<+ -V X By) _ 9Jo (32b)
m  tlw-k-v) ov

which is precisely the required result.® By using Faraday’s law B = (c/w)(k x Ey), we
can rewrite Eq. (32b) purely in terms of the electric field

e [wEx+vx(kxEx)] afo

fx =

1MW w—k-v ov
e (v-Ex)k] 9o
= - . . 32
imw{E +w—k-v ov (32¢]

We have derived this form of fy to compare it with the linear result, Eq. (26),

§HAJ,w)e- &l
____6.fz(.J.,<_+z)_;,.,,.,,.e( W)t 53

—

w0
of Ref. 3. Using the standard prescription to go to the field-free case, we obtain

e (v Ex)(k-5R)
mw (w-—k-v)

6/ = (33)

which does not agree with Eq. (32¢); Eq. (33) lacks the first term in the square brackets
in Eq. (32). The mistake was made in Eq. (25) of Ref. 3 where 6J = —8H/86 =
—~3(Ho + 6H) /86 = —06H /00 was used. As pointed out earlier, (J,J) are not canonical
variables for the tota] Hamiltonian H, and therefore 6J is not equal to —96H/d§. By
using the correctly derived expressions for J and 6 [Egs. (11) and (12)], we do indeed
reproduce the standard results. After this demonstration, we shall no longer belabor the

point that the earlier treatments using action-angle variables were incorrect.

B. Low-Frequency Trapped Particle Response in Tokamaks
We now show how Eq. (28) can be readily used to obtain low-frequency gyro-
. averaged,.bounce-averaged, respohse for deeply trapped particles in a tokamak. For sim-

plicity, we derive only the electrostatic limit for which [see Eq. (24)]
J;= —ield; (34)

12




leading to

e —e@g[-%@
¢ w24

where £ = (£y,L,,25) With £, £y, and £g the gyro, toroidal and bounce harmonic numbers
respectively. The gyro and bounce.averaged response is obtained by simply setting £, =

0 = 4y,

8 f
fe= —e@e—aﬂ"-— (36)

where £, = £. We must remind the reader that these harmonic numbers are in action-angle

space and not in real space. Since Maxwell’s equations are simple in real space, we will

need to convert fy’s to real space harmonics before we can use them to calculate perturbed -

current and density. This {ranslation mechanism is adequately discussed in Ref. 4.
Before ending this section we would like to point out that tremendous calculational

simplification occurs for a very important special class of distribution functions fo(J) which

-.depend on J only through the Hamiltonian Hg; the Maxwellian distribution belongs to.

this class. For fo(J) = folHo(J)],

0fc 0Ofo 8Hy =29/
.0J J0Hy 0J 0H, ( )

which results in the simplification

. afo _ = g w 7 7 afo
el
Further simplification is possible only when one knows Tg_ 7 which depends upon the

particular problem being investigated.

V. Quasilinear Theory

A. General Theory
. A very important.application of the action-angle formalism is the development of
the quasilinear transport theory for complicated geometries. In fact, Kaufmann’s original

paper was precisely intended for this purpose.




The principal object of the quasilinear transport theory is to obtain an equation
for the slow evolution of the equilibrium (or averaged) distribution function fq in response
-to the perturbing electromagnetic fields. The calculation is carried out in two distinct

steps.

1) - The equilibrium- distribution function f; is given a time dependence fo =

Jo(J,1) so that Eq. (20) becomes

0fo , 0] 5. 0f 5 9fo_ [; 9f af
TRl R A e + (86) - Py (39)
Averaging over the angles 5yields ((f) = fo)
0o _ iy 8o _ 5 80y i 01
— _(jy. %0 _5.91 9 (s -
=) 57 T 570+ <faé' (60) (40)

because the fast 0 varlauon gwes zero average for the terms hnear in the ﬂuctuatmg part
| f Notlce that although J is hnear in the ﬁuctuatlng ﬁelds @ and A, it has been retained
in the equation because the coefficients dJ/dpg; can also have 7 dependence which could
give nonzero average J. However, the factors (0d/0po;) can have only slow equilibrium
dependence in a quiescent plasma, and the fluctuations, in general, are characterized by
large Z_; it is quite safe to set () = 0 for most practical problems. In the context of the

preceding discussion, we can write the general equation

8o . 9f 5 - .
9 _5.Y 2. (56)), ' 41
o (3 S + (12 60 ()
where f is still the exact fluctuating distribution function, i.e., the solution of Eq. (20).

2) Approximating the total fluctuating f by its linear value f is the essential

assumption of the quasilinear theory, and leads to

3 fo -8fL 9 .=
5= —(J )+<fL - (66)). | (42)

Using the definition

0.5
=> fz &,
z
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the definitions of j_e” and (60)_;, and Eq. (28), we can write Eq. (42) in the equivalent

-7
form
dfo 0 <« dfo - 9o ‘ :
o _ 7. 249 A 3
o a1 Poar T s (43)
where ..
—— JJ_z
D =1 —_— = 440,
zz:w—ﬁ-ﬂ ( )

is the coeflicient of quasilinear diffusion, and

) — il (66)_)3;

—i
— 44b
7 A (440)

i Z [(563 J -z
~ w

2
denotes convection in the action-angle space. Notice that the origin of the convective term

A is entirely due to the non-canonical nature of J and g. For canonical variables

J . 0 = 0 oH 0 oH
Jo+ =60, = - )+ —=- =0, 45
oJ. 0. 3Jc( aac) a8, (3Jc) (45)
or e(jui\?alently | | “ - |
0 . oo
53, -(Jc)_z— z£~(5ﬂc)_£—:0 (46)

which is precisely the term that determines A.
If the perturbation were pure electrostatic (A = 0), the action-angle variables will

be canonical, A (electrostatic)= 0, and

Ao 0 <= d ’
o _° g, 2 47
ot ~ a1 P Jo | (47)

where [use of Eq. (24) for J,]

(48)

Since it is the presence of the magnetic perturbation A that destroys the canonical nature
of J and 5, the convection term A will be a functional of A alone.

- From the analysis in the preceding section, it is quite clear that the quasilinear
transport theory becomes considerably more complicated when electromagnetic perturba-

tions are present. The change is not only quantitative, but qualitative also in the sense
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that the evolution of fy is no more purely diffusive in the action-angle space. The relative
importance of diffusion, and convection terms would clearly depend upon the details of the
situation. .Equations (43) and-(44), the main results of-this section, provide the starting
equations to develop, for example, a theory of radial transport in tokamaks caused by

electromagnetic fluctuations.

Nonlinear Theory

Equation (22) is the fully nonlinear Fourier transformed equation for the ﬂ.uct_u—
ating distribution function. It can serve as a basis for developing a general renormalized
turbulence theory for a Vlasov plasma in arbitrary geometry.

The standard renormalization procedure’ consists in breaking up the nonlinear-
ity Nz into three terms; the first is proportional to (coherent with) f the second is
proportional to the perturbed electromagnetic fields, and the third is called the fully inco-

-t

herent term. The effects of the electromagnetic fields are contained in (66) and J in our

- formulation. Thus we seek the decomposition of the nonlinear term as -

N;=Dyzfy+ C,z- (60) 5+ Cpp- Jo + Ny - (49)
where N 7 is the remaining incoherent part of N after the coherent parts have been sub-
tracted. Clearly, the term Djf; will renormalize the linear propagator on the left-hand
side of Eq. (22).

Detailed expressions for Dy, C,; and C,; are obtained by the following simple

procedure. We add D;f; to both sides of Eq. (22) to obtain the formal solution

. 3],
fe=97 +JZ-8—JO+NZ——De-fZ (50)

where
1

i(w—£-Q+1iDp
is the renormalized propagator. Substituting Eq. (50) into the nonlinear term Eq. (23)

(51)

97 =

leads to
- T .
Np=) [2(5 ~0)- (68)5 + 3, - 53]92_@ [Nz_zl tdis 5y ~Deales| (52)
7
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where % operates on all quantities on its right. It is straightforward to see that the terms

coherent with f; and A can come only from Ny 7 , because ¢ =0 is not permitted.

Denoting this part by Nz and substituting Eq. .(23) into Eq. (52), we obtain

_ e o 5 . 0
Np= [z(ﬁ—ﬁ’)-(é‘ )7+Jv-5ngz_@
7,
Y 7 2 y 4
{z(ﬁ = =00 (60) s fo g+ T Bj‘fe_'_@_@l} (53)

7
: 8
Zﬁ (50) Z_;_i_']—e"ﬁ f“, (54)
3 S E
C,; (59)5:.-12[@(54) (66) 7 +J@~5j} <ge_e,f_e,€_7 (5‘9)z> (55)
and
. P > . d Bf_z; .
Cop Iz = Z {Z(f — &) (60)z +Jz - 5} <gz_zlw 'Jz>- (56)

By making use of expression for (5&‘7)e~and jZ’ one can easily express C, ;- (50—')2-1- C,;- (j)[
as a; ®;+b; - Ay . Renormalized Eq. (22) reads

fg=gg{[(%{;—o) +CZZ~J -Je+Cle-(55)Z+ Ne.} (57)

In the coherent renormalization theories, NV 7=0,and Eq. (57) serves as a formal nonlinear

solution of the Vlasov equation.

VII. Discussion and Conclusions

We have shown that a mechanical application of the canonical perturbation theory
~can lead to erroneous results when magnetic field perturbations (A) are present. The
principal reason is that for A # 0, the invariant actions and their associated angles (derived

for the unperturbed system) cease to be canonical variables of the total Hamiltonian H,
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ie.,J #* —8H/8§', and 575 0H/0J. We have also derived approximate expression for the
orbits J and 6 for a chang’ed‘particle moving in general électromagnetic fields i(perturbed
...and unperturbed).fo develop a modified perturbation theory which is used to formulate the
~kinetic theory of plasmas in the action-angle variables. Simple tests of the correctness of
our theory are provided by comparing our results with standard known results. The general
formalism is used to-derive basic kinetic equation for the study of linear, quasilinear, and
renormalized nonlinear theories.
As stated earlier, the great advantage of the action-angle variable approach is to
unify the treatment of such diverse plasma problems as the determination of fluctuating
distribution function for a field free plasma, and for trapped particles in a tokamak. The

entire formal structure is the same, because in the invariant action-angle space, the particle

trajectories are always straight lines. We believe that our Egs. (28), (43)-(44), and (54)-

(57) can be sued as starting points for a wide variety of kinetic plasma problems.

The application of this formalism to specific.problems of interest will be th_e»subje_ct. o -

of a later paper; this paper is intended to be a general delineation of the theory.
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Appendix A

We first derive a general perturbation formalism for the evolution of equilibrium
-.invariants-of-a charged particle. The Hamiltonian H of the particle is given by Egs. (6)
and (8), and the variables (po, qo) and (&o,ﬁo) are described by Egs. (4) and (5) and (7).
The equation of motion of aq, is [Eq. 10a

. 3C¥0i
Go; =
o Ot l(p,q

) -+ [am,H](p,q). (A - 1)

From Eq. (7), and ¢ = qo, we derive the transformation coefficients,

dpo; — 5 94qo; —0
Op; Opi
i I (4-2)
94 ¢ 0¢g; 9g;
which are used to obtain _
dap; =_g<9a0i3_4’_’ (4 —3)
ot i(p,a) ¢ Opo; Ot
.[ao‘i,Hv]v(p,q) = [ao‘ll,H]po,Qt) + <a0i,H>Po,Q() (A - 4) :
where the bracket {( ) po, qo is defined by
=_°¢ 7 _af_ — (47 99 A—-5
<f, g)Po,Q() - c {[-A ,g]pu,qn apOj [A 7f}P(),q0 3100]' : ( )

Since both the brackets | | and ( ) are linear in their arguments, Eq. (A4) can be split

into four terms

[aOi’H] (p:a) — [aOi’HO]Pu,QO + [aOi,h]Po,qo
+ <a0i7H0>P0,qO + <a0ia h)Po;Qo‘ (A - 6)
Since the perturbed Hamiltonian h» = e® is independent of py;, the fourth term of Eq.
(A-6) vanishes
<a0i7h>PmQO =0.

Since .(do, Eo),-». though not canonical variables for the total Hamiltonian H, are obtained

as a canonical transformation from pg, qg, the Poisson bracket remains invariant, i.e.

[f: g]p(),QU = [f’ g]&'(),ﬁo

. 19




which immediately leads to
{O‘OiaHO]Pu,QU = [aOi’HO(&O)]&n,ﬁu =0.

In order to apply the invariance of Poisson brackets to other terms, we need
probably do a formal treatment of both the electrostatic field ® and electromagnetic field
A. We assume thal we have obtained the explicit solutions from the transformation Eq.

(5) b

do = %(550750)
po = po(do, Ao).- (A1)

Since the ag’s are motion invariants of the particle in the unperturbed situation, we use

them as labels to mark the particle. The fields acting on the particle are expressed as

—

®s0(Bo,t) = ®(qo(@o, o), 1)

B AmdEm R T ule

With this understanding, Eq. (A-6) can be further simplified:

FoXi
‘L"H 0,90 —
[Oto O].P »q eaﬂOi

<aOz,HO>Po,qu T { [A ’ HO] o0, 8])0]' [A ’Oéoz] @0, Bpoj

6{ 8A'7 BHO 8&01; _ 8A7 aHo aaok}
0for Oaoxr Opo; OBoi Oaor Opos

c

where Einstein’s rule is obeyed (and the same in the rest of the paper). Finally, we find

4 8% eday OA7 e{BaOi 0H, 0
0 =

_e — — . — - .
0foi c¢Opo; Ot ¢ | Opo; Oaok Ofok

aaok aHo d } . .
. : : A A—09
Opo; Oaox P ( )

or. equivalently (the subscript 0 if suppressed for « and £3)

0® e Oa 0A4; e{ oa (3HO _3_) B < oda aHO)i:IAJ'
8p0j . .

ea_ﬁ B E&poj ot c

a=-—

o9& 8§
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Equation (A-9) is the evolution equation for an invariant under the influence of electrostatic

and electromagnetic perturbed field.

.Following a similar procedure, an equation for the conjugate Bo; is readily obtained

0Hy 3% e 88 OAI

oa  “9d copy oL

ef 0 (0Hy @ 0d 9Ho\ 9\ ,;
o (2= e Py V't ~ 10
c{apo]- < Ex 3ﬁ) * (apoj EE )a&}A (4 =10

G =
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