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ABSTRACT: Nonlinear equations describing the flute dynamics of rotating plasma
are derived and solitary vortex solutions are obtained. The solution takes the form of

a shielded dipole vortex, similar to that found for nonlinear Rossby waves. The non-

ml_{I;e;z;;ﬁdispersion”réla.tioﬁ; rélating —i)ropdgation sp(;,’e;c»l— tovortex radius isw(;i;fainéd._
Vortex speeds are shown to take values complementary to the phase velocities of the
linear modes of the system. The E x B circulation velocity of the plasma trapped
in the vortex is comparable to the diamagnetic drift velocity in the equilibrium

plasma.




1.Introduction

The solitary vortex solution obtained by Larichev and Reznik for nonlinear
Rossby waves! has also been applied to oceanography as a model for gulf stream
rings??® and to drift waves*®, flute-interchange and other modes”’~12 in a magnet-
ically confined plasma. At the same time, laboratory experiments have confirmed
the existence of these vortices in rotating shallow fluids'®~!®, numerical experi-
ments have indicated the robustness in strong interactions of the solutions %19,

and linear stability for certain special cases has been proved?®. Based on these facts

it could reasonably be expected that solitary vortices will play as essential a role'in

| two-dlmen—smnal fluids as thecla.ssu:a.l sqli.’—c;; does in thg-;)ne—'dimgrvlsional c::xser1 .
In this paper we will show that a low §, inhomogeneous, rotating plasma column
- immersed in a constant axial ﬁagnetic field can exhibit solitary vortex solutions as
well. These vortices take the form of a shielded dipole, the vorticity falling off expo-
nentially at large distances. They travgl in the azimuthal direction with a consvtant
velocity. We obtain the relation between the velocity, the core size of the vortex
dipole,ana various system pzirameters, which we refer to as the nonlinear dispersion
relation by analogy with the corresponding relation between linear phase velocity
;r;d wavenumber. The nonlinear dispersion relation shows that the velocities of the

vortices and the phase speeds of the linear modes occupy complementary regions of

parameter space. This complementarity also holds true for most one-dimensional
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) ,'.soli.t.o,n systems, as.well as the other-cases-for which solitary vortex solutions are

known.

The arrangement of this paper-as follows:.in section 2 we give the derivation
of the equations; in section 3, the solitary vortex solution and nonlinear dispersion
relation; in section 4, a discussion of the properties of the vortices, and finally in

section 5 we give the summary and conclusions.

2.Derivation of Equations

Suppose a dense plasma column is immersed in a constant axial magnetic field

B = B,z. The equilibrium density and electrostatic potential of the plasma are

Mo (X) = no(r), ¢o(X) = do(r) respectively '(é'eé Fig. 21)To imitate the curvature

of magnetic field lines which always exists in magnetic confinement devices, we

introduce a fictitious gravity
g(r,0) = -VU(r,9).

Taking the ion and electron temperatures as constants , VT;,. = 0, the two-fluid

macroscopic equations are:

On.s
oLy, (njv;) =0 (2.1)
ot
av, 1 ;
mjnj—?j =n,q;(E + Vi % B;) = Vp; =V -TIY) —m;n, VU (2.2)
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p; =n;T; ‘ (2.3)

We treat low-f plasma so we can suppose that the perturbation is electrostatic. We
also assume the plasma to be quite dense so instead of the Poisson equation we use

the quasineutrality condition

> g =0 (2.4)

To-close the system of the equations we assume the plasma to be collisionless

and that the viscosity tensor IT only to contain gyroviscosity. In the flute approxi-

mation the components of this tensor in cylindrical coordinates are:

: : : T Ov 1dv v )
@) =), == ti C%  10Ur Vg
I 5 2we; * Or r 06 r

n;T;  Bv, ~ 13,00 ~ 2r—)‘(j) (2.5)

0, =10, =
6 o 2wy ( or r 06 7

Equations (2.1)-(2.5) are the basic equations describing our system. We now

- make the following physically reasonable assumptions for simplicity and mathemat-

ically tractability:
(a) Neglect electron mass, me/m;=0.
(b) Hydrogen plasma, ¢; = —g. = e.
" (c) Flute approximation, all physical quantities are z independent.
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(d) Low frequency.perturbation,.the -typical frequency of perturbation w < ion
.gyrofrequency w,;.
Under these assumptions, we can reduce the basic equations to a pair of non-

linear equations of the unknown functions n(r,0,t) and ¢(r,0,t)

Bn

at [d)» ] - '(2'6)

22V {n s Vgt Snlp, Ve + S} + —mUj=0  (27)

B wg;

dma,tes it can be expressed as

1,0f38¢g Ofdg

9] = (575(5_ 205,

The function n(r,8,t) = ny(r) + én(r,0,t) is the number density of the plasma, and
¢(r,0,t) = do(r) + 66(r,0,t) is the electrostatic potential.

The equations (2.6) and (2.7) are, in fact, the electron continuity equation and
the quasineutrality condition respectively. Comparing with equations (24) and (25)
of Ref.14, it is easy to see that in (2.7) we have included the lowest order FLR effect
of the ions through the term %;i[n, V).

For a closed system one can prove that the nonlinear equations (2.6) and (2.7)

conserve the following quantities :

where [ f, ] =z X V f- Vg is the Po1sson bracket or Jacoblan In cylmdncal coor-




(1) Total number of particles in plasma

d
7 nrdrdf = 0.

(2) Total entropy
J .
s / ZS(nj)rdrdé’ =0,
j

where S(n,) = —n;ln (anjg), (7 =1,e).

(3) Total energy

d (V¢)? _
p nmz[T + Ulrdrdf = 0.

(4) Total angular momentum

% rnvgrdrdf =/angrdrd0,

Where Vg = %g—f,Fg = ——%

g—g. Usually Wé take U = U(r), so Fy = 0, the angular

momentum is conserved. In the expressions of energy and angular momentum we

neglect the contribution of the electron component since m,/m; ~ 0.

If the equilibrium E x B drift of the plasma column is a uniform rotation about

the Z axis, then

B0

$o(r) = E’IJ + constant, ‘ (2.8)

where the plasma rotation frequency N=constant.
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- Transforming the equations (2.6) (2.7) into the rotating frame yields

8577. <
BV - {15 V66 + 2nl66, V6] + L{n, V64} — 2oL (n, 54
PR U (2.10)

ct

The linear global mode analysis of (2.9) and (2.10) was reported in Ref.13. (for
T; = 0) and Refs.12,14 ( for T; # 0) for specific equilibrium density and potential

profiles. Their results showed that when the azimuthal wave mode number is:small,

~—m<3;-the-modes-are-quite global; but-when -m>4-the linear modes-are-basically -~~~ -

localized around the edge of the plasma column [seg Fi.g.2.2]. The linear analysis
also shows that for low ion temperature T; < T, i.e.the ion FLR effect is not very
strong, then the high m modes have much higher growth rate than low m g]o.ball
modes. Based on those results we propose that the nonlinear interaction between
the local high m modes at the plasma edge is dominant at a certain stage of the
nonlinear evolution. During this stage, we can suppose the characteristic length of

the perturbed density and potential is small, i.e.

| dlnén -1, dindg e
' dr

In this case, equations (2.9) and (2.10) reduce to

Bﬁ cT, 1 on, 8¢ _ T,
ER Be n, Or rd0  Be

dlnno -1

7, ¢] (2.11)
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~ O cT. 1 0n qu
24 ot e - Z70 7T
A 2wc1 Ben, Or rof

lcT(a R iano e,
we; Be "0t miwe; n, Or 1ol

il — v — 2.12
(@ +9()) 56 = B! ¢,9+ 77 (2.12)
. ~ 65¢
where n = , =
no() ¢ Te

Since the small-sized perturbations are localized around the edge of the plasma
the cylindrical geometry of the configuration is less important, and we can use

Cartesian coordinates:

Tn
ré
— — Yy
Tn
" Using a dimensionless time 7, -
PsVs
t
rn2 "
equations (2.11), (2.12) become
on 8¢ - :
— 4+ = =7 -(2.13
ot o =[] (213)
T 8 (o= 8¢ o o 1 Ti.
—— e — — ~ e _— = v s e 2.14
(5~ 73V + 05t o = (926,84 17 (214
where
2Q0 A
Ve = Dev5 = 20
Tr2




v, is Coriolis drift, v, represents the centrifugal and- gravitational drift. We take

- the localized value of v, as constant in further calculations. Also

Vs |

1
) 2y Ps = .
my Weg

The equations (2.13) and (2.14) are the nonlinear equations for which we seek the
solitary vortex solution. Before proceeding to the solution it might be worthwhile
to mention that:

(i) Equation (2.13) and (2.14) are very similar to the equations derived by Rahman

and Weiland?! for high # plasma, exéept for the second term of (2.14)which

...comes from the Coriolis.force. in the rotating frame. Heuristically, since plasma ... . .

in toroidal devices experiences poloidal rotation in certain situation, the anal-
ysis of our problem may give some insight into that case as well.

(ii) Compargd with the equations gi‘ven by Pavlenko and Petviashivili 7, our equa-
tions differ from theirs by two terms: the first one is the Coriolis term intrinsic
to the rotating frame while the second one is the second nonlinear term in
equation (2.14) which they missed by error as pointed out by Mikhailovskii et

allo,




3. Solitary Vortex

We seek a stationary solution of (2.13) and (2.14) in the form of
fi(z,y,t) = 7i(z,y’)

é(z,y,t) = ¢(z,y) (3.1)

where y' = y — ur, u=const. is a free parameter.

Substituting (3.1) into (2.13), (2.14), we have

8 b .
B_y’(¢ ~ ui) = [f, ¢] (3:2)
L. o BN a" e T s

In the remainder of this paper we drop the tildes on n and ¢ for convenience.

To solve (3.2), (3.3), we divide the z — y’ plane into two regions
Region I: 2% +¢'? < r,?

Region II: z% + ¢y'2 > r,?

where r, is a constant parameter characterizing the size of the vortex. We look for
‘solutions which satisfy the following conditions:

(1) In Region I, n and ¢ must be finite at r = (22 + y’2)§ =0.

(2) In Region II, when r — co, n and ¢ must decay to zero.
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(3) On the border between Region.I and Region II, where r = r,:
..--{a) -The stream function must be continuous, (qS)‘I = (¢)11-
(b) The velocity field must be continuous, Z X (V¢)r = £ X (V) 1.
(c) The vorticity must be continuous, (V2¢)r = (V29);;.
(d) The density perturbation must be continuous, (n); = (n)rr, where sub-
scripts I, II denote the corresponding quantities in Region I and Region II.
After some algebra we find that to satisfy conditions (1),(2), the simplest so-
lutions n, ¢ should satisfy following equations

In Region I (r <r, )

. n=dt-dis B
V= —p’¢+ Cz | | (3.5)
- C = (ve + dvg) + p*u (3.6)
In Region IT (r > r,) | | |
n = % (3.7)
Vi = k¢ (3.8)
2. V4t Y (3.9).

Here k,p,d and C also are real constants related by equations (3.6),(3.9).
Solving equations (3.4)-(3.9), and imposing the matching conditions 3(a),(b),
(c),(d), we obtain the solﬁtions
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““where J and K are Bessel and McDonald functions. ™~

( k%r, Jy (pr) k2

[—— +(1+ = )urcos (r <r,) :
To K, (kro) cosf  (r>r,)

k2 w(uk? — Ve) roJ1(pr)
[—2- (1= =) +1Jrcosd (r<r,)
n=y 2 i rJi(pro) (3.11)

rocosd (r>r,)

where § = tan™! %’, k is real parameter defined by (3.9). Parameters k and p are

- related by
1 Kz(k?’o) . iJz(PTo)

— = — 3:12
kr, Ky (kro) pro J1 (pro) ( )

From (3.10)-(3.12) we can see that both n and ¢ have the form of a vortex péir '

‘moving with constant velocity u in the y direction,i.e. in the azimuthal direction
around the edge of the plasma column. The radial size of the core of each vortex
is characterized by parameter r,, and the strength is a complicated function of two
independent free parameters u and r,. In the exterior region (r > 7o) the vortices

— L
decay to zero as e %" /r3.
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4. Properties of the Vortices

- In this section we consider (1) the nonlinear dispersion relation, (2) the bounds
of propagation speeds, (3) the complementary phase velocities of the linear modes,
and (4) spatial structure of the vortex flows.

(1) Nonlinear dispersion relation

The vortices derived in section 3 are a two parameter family of exact solutions
to the field equations. The free parameters are taken either as the coré size r, and
speed u, or the core size r, and exterior scale size k. Equation (3.9) relatés the; two

alternative choices of parameters speed u or exterior scale size k, conventionally: we

call it nonlinear dispersion relation. The requirement that the vortices decay to

zero in the exterior region constraints the speed u of the vortices to be within the

bounds determined by &*(u) > 0, i.e.

) + v ’
g p2= eV 4.1
wlu + T3)T) (41)

For this reason we find it more convenient to parameterize thve vortices as shown in
Fig.4.1 with the core size r, and exterior decay rate k.

- The vortices are computed by specifying the plasma parameters 0,9,T;/T. and
the vortex parameters r,, k. The relation (3.12)which relates p with k is solved for
the principal branch of pr, = f(kr,) defined by 1 < pro < «, where 7; is the

first nonzero root of Jy(z) and -y is thé first root of Ja(z). For each k the two

branches of the solutions of equation (4.1) for vortex velocities u (k2, T}/ Te,ve,vg) "
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_ are computed and then the vortex fields (3:10) and (3.11) are determined.
- _1(2)~_Propagation. speeds of the vortices
- - The vortices can only propdgate in-certain bands of speeds that are determined
by the plasma parameters (2, g and T;/Te.

The limits on the vortex propagation bands are determined by inequality (4.1)

which is equivalent to the inequalities

T
uv, + vy >0 and ulu+ Tz) >0 (4.2)
€
or
T
uve+vy <0 and u(u+ ?) <0 (4.3)
€

T "FO'I"""d'iﬁeréﬁt""di'i‘_e"c't_i_()'ﬁs_"(')'f"]':‘)']a’s'ﬁfia_I"'C)'ta"jt'i'on the conditions ('4'.'2') and” (4.’3’)" g'fvé"

- different propagation bands which are shown in Fig.4.2.
(i) Inward equilibrium electric field
For radially inward equilibrium electric fields (2 > 0), zero or bad curvature

ve > 0 and vy > 0. The regions of vortex propagation are

u>0 (4.4)
aﬁd
—% >u>—%i~, iof %< %‘Z— (4.5)
or
—Z—Z>u>—%, if %>% (4.6)




(ii) Outward equilibrium electric field
. .- For.radially outward equilibrium electric fields (2 < 0)and bad curvature v, <

0, vy > 0,the vortex propagation bands are

s w0 (4.7)
,UC
and
T.L' .
i 4.8
v<-T (45)

From equations (4.4-4.8) we see that there is wide region of propagation in the

direction of the plasma rotation, but only a limited region in which the vortices

ma,ytrajvel 1r:t1_1e opﬁosi‘teﬁd.irecti;-l;; This behé.vibi; of theplasma, Vo‘rtice‘s‘i”s -si'-Iﬁilar
to the situation observed in the rotating shallow fluid experiments1®—18,
(3)Complementary regions of linear modes
In the gaps where vortices do not propagate, the linear wave modes of the
system propagate with the phase velocity u, = w/(kyVye) = rw/(mVg.).
Retﬁrning to the field equations (2.13) and (2.14) and looking for the linear

modes in form of e(#8=2+7k,¥~11) we ohtain the dispersion relation
lcﬁzl_cp(c]i7 + T;/Te) + veep + vy =0 ‘ (4.9)

where ¢, = w/(kyVge) and ki = k2 + kz > 0. Alternatively, one may return to the

full radial equations (2.11) and (2.12) and solve for the eigenmodes @,y (r)e(?0—wt)

15




for the rigid rotor equilibrium. In this case one also.obtains equation (4.9) with
,cé = aw/(mVga), k% — .u(m,n,b/a) where vy, , are eigenvalues of second order
differential equation y" + ( ;1:— —z)y'+ (v —m?/z?)y = 0 with the boundary conditions
y(0) = y(b/a) = 0, where a,b are geometric parameters of the rigid rotor equilibi‘ium
[for details see Refs.14-15]. The eigenvalues vy, , are discrete and positive definite
so that in this case the phase velocities ¢, lie in the continuum between the vortex
propagation bands. Thus, equations (4.1) for the vortices and (4.9) for the waves
cover all values of external wave number or decay scale as shown in Figs. 4.2.

" The wave dispersion relation (4.9) predicts exponential growth for parameters

,g,T / T Whlch make a negatlve dlscrlmmant B? —4AC < 0 for the quadratlc : '

" equatlon Ac +Bcp—i—C’—O WhereA—lc_L ,B—k_LzT/T +vc,C:vg In the

unstable parameter region the phase velocity is ¢, = —B/2A. The unstable regions
are analyzed in details in Refs.14-15.

(4) Spatial structure of the vortices

We now consider the variation in the vortex fields with the vortex parameters.
We show that the vortices propagating in the electron or ion diamagnetic direction
have different behavior (for convenience we call them electron or ion diamagnetic
vortex respectively). The jon diamagnetic vortex requires considerably larger energy
for excitation than the electron diamagnetic one for comparable vortex parameters
r, and k.

As a reference system we consider a plasma column rotating in the ion diamag-
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netic directiqn with a speed twice the ion diamagnetic speed, § = 1, and a core size
1/5 the density gradient scale length r, with-T; = T, = T. The speed of propagation
of the two branches.is shown in Fig. 4.3. For comparison, we also give a similar
Fig. 4.4 for a plasma column rotating in electron diamagnetic difection with the
same speed.

For vortices with external scale sizes, 1/k, comparable to the density gradient
scale length r,, the speeds of propagation are large compared with the diamagnetic
drift speeds. Strictly speaking, due to the conditions we gave in the derivation of
equations (2.11) and (2.12), our analytic solutions are not appliable for these large

vortices.

For vortices Wlth érﬁéﬂ exfernal s;:ale sizes compare.d fo Trs .‘vche speeds of prop-
agation afe close to those of the linear modes of the system. At large k the speeds
approach the limiting spee&s as 1/k2.

In Figs.4.5 and 4.6 we show the variation of the electron and ion diamagnetic
vortex fields with k for the reference parameters used in Fig.4.3.

The electron diamagnetic vortex has a maximum of the electrostatic potential
at r =~ r,/2 with edmas /T =~ 2.3r,/k for k = kyr, > 1. This maximum of the
potential is consistent with the mixing length for modes for E X B convective satu-
ration, Vg ~ Vy, or e¢/T. =~ 1/(kz7,), which we know to apply to drift waves and
their turbulent spectra.

The ion diamagnetic vortices have larger electrostatic fields than the electron
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5. Summary and Conclusions

~diamagnetic vortices for comparable r, and k as shown by the comparison of Fig. 4.6

_..and 4.5. The electrostatic potentials have-maxima at roughly |e¢qas/Te| =~ 127, /k,

and thus have |e¢pg.| > Te for k = kyr, < 12r,. The energy required to excite

the ion vortex is large. The polarization of the ion vortex is characteristic of MHD .

motions with |e¢/T| > |6n/n|. As the exterior scale of the ion vortex decreases,
the maximum potential decreases until reaching a minimum value |e¢min / T[ ~ 2
or 3r,. The value of k at which this minimum occurs decreases from k ~ 14.5 for
ro = .05 to k ~ 6.5 for r, = 0.3. The sa,t‘uration of ¢ at dmin implies that there is

minimum excitation energy E,,;, for creation of an ion diamagnetic vortex.

In summary, in this work we have derived the nonlinear equations describ-
ing flute dynamics of low frequency electroétatic perturbations for low [, rotating
plasma in crossed electric and magnetic fields. For ﬁ closed system this set of equa-
tions guarantees the conservation of the total number of particles, total energy and
total angular momentum of the rotating plasma column. We obtained localized
solutions of the equations corresponding to solitary dipolar vortices. We discussed
the nonlinear dispersioﬁ-rela‘cion, the allowed regioné of propagation speeds, the
structure of the vortices, and the complementary regions of linear modes.

The vortex solutions given here describe the convection of density and vorticity

of background plasma on space scales small compared with the radius of the plasma
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column. The electron motion in these vortex solutions is flute-like compared with
. those given earlier.in Refs.4-5.which considered adiabatic electrons (kjve > kiu). A
principal difference is that for the drift wave vortex the electron diamagnetic drift
velocity vg4. determines the speed of propagation, whereas for the dipolar vortex
it is the Coriolis force 2m;V x {1 and the finite ion Larmor radius drift velocity
that determine the speed of propagation of the vortex. For small ion-to-electron
tempetrature ratios the speed of propagation in the direction of plé,sma rotation is
given approximately by u = 2Q/k3 r,,.

The dominant direction of flute vortex propagation is in the direction of the

plasma rotation although counter streaming solutions also occur.
We show that the scale of the maximum potential ¢,, in the vortex scales as

e¢m/T ~ 1/(kirs) consistent with the usual estimate for nonlinear ExB convective

motion in an inhomogeneous plasma. We show that vortices propagating in the ion

diamagnetic direction have a larger maximum potential (by a factor ~ 5) and a

much larger vorticity than those propagating in the electron diamagnetic direction.
The difference in the strength of the vorticity arises from the partial cancellation of
the convective derivative proportional to u+ T /T, for the jon diamagnetic vortices.

We note that monopolar vortices of the form K,(k r) with r = (2 + y'?)1/2

are not exact solutions of the equations as the dipole vortices are. A monopolar -

vortex!® may occur either as a transient structure decaying in time due to coupling
¥

to the wave components of the fields or may be driven by externally imposed sheared
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rotation.

.+ Finally,-we -remark that although the nature of the vortex-wave interaction

dynamiés remains to be investigated theoretically, the experimental evidence from
Refs.16-18 as well as the computer simulations in Refs.5,6,19 show the importance
of the interactions between these two components of the field. A vortex with its
four parameters z,, y,, (initiai position of the vortex core) amplitude and speed
contain an infinite spectrum of coherent k modes. We suggest that a theoretical
description based on field containing both vortices and wave modes may be more

nearly diagonal than a pure modal description.
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2.2

. Figure Captions
(a).,Con.ﬂguration, of magnetic-field and equilibrium electric field in a plasma
column. (b) Equilibrium density and electrostatic potential profile of plasma.
Radial function of electrostatic perturbation f<;r Gaussian dénsity profile n(r) =

noe_rz/ 2* and solid body rotation, where m is the azimuthal mode number,

- and b is the location of conducting wall. (a) small b/a, (b) large b/a.

4.1

4.2

Schematic diagram of the parameter representation of the vortices.
Propagation regions of vortices and linear wave modes. Vortices occur in the

unhatched regions, and wave modes occur in the hatched regions of the param-

eter space. The boundary curves are v = —vy /v, v = —=T;/T,, and w = 0.

4.3

4.4

4.5

4.6

The vortex propagation speed versus inverse external scale size for (1 < 0,
/T, = 1,5 =1, and ro/ry = 1/5.

The vortex propagation speed versus inverse external scale siz‘e for {1 > 0; other
parameters are the same as Fig.4.3.

The radial structure of electron diamagnetic vortices (u > 0): (a) potential,
(b) electric field, (¢) vorticity. (The parameters are the same as Fig.4.3.)

The radial structure of ion diamagnetic vortices (v < 0): (a) potential, (b)

electric field, (c) vorticity. (The parameters are the same as Fig.4.3.)
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