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CHAPTER I

INTRODUCTION

This thesis is devoted to two major studies:
high-frequenéylturbulence aﬁd low-frequency turbulence in
magnetized plasmas. In the case of high-frequency turbu-
lence, we concentrate on ion-cyclotron turbulence (Chap—
ters. IT and I1I) where emphasis is placed on the examina-

tion of the dynamics of phase-space density granula-

SR, %, W %o ¥} 10,11 <_ g.J__‘um.ps_) —in-weak--collective dissipation.regimesSe

Nonlinear instabilities of the granulations (Which occur
below linear threshold), the necessary condition for sta-
tionary turbulence, and anomalous trénsport which depends
sensitively on the presence of clumps are also themes of
this study. |

For low-frequency turbulence, we address on
(electrostatic) MHDZ2 shear flow turbulencé in the presence
of a stabilizing sheared magnetic field. in the limit of
vanishing magnetic shear, the plasma behaves as an incom-
pressible fluidJ ‘In.thnglimit,,we study two types of
free shear flow tﬁrbﬁlence (Chapter IV) characterized by
the mean flow profiles: mi?iﬁg-layer flows where turbulence

1.




evolution is largely governed by large-scale wave fluctua-
tions,2® and wake or jet flows where turbulence contains

® Finally, we ex-

mostly small-scale nonwave fluctuations,2
tend this aﬁalysis to turbulence observed in the tokamak
edge (Chapter V). At the edge region, a large radial D.C.
electric field is observed.*5:%% The resulting radially
varying poloidal flow can locally drive turbulence. We
place our emphasis on the origin of turbulence and the non-

linear mechanisms for saturation of instabilities.

This research on several problems related to

"Righofrequency and Low-freéquency turbulence of magnetized
plasmas is motivated by a number of laboratory experiments,
jspace observations, computer simulations, as well as our
intention to extend the existing plasma turbulence theory
of clumps to more realistic sityations, In Chapters II
and IITI, we’study the two-point theory (clump theory) of
current-driven ion-cyclotron turbulence, where incoherent
(nonwave) fluctuations, usually neglected in conventional
theories, énd wave fiactuations both participate in deter-
mining the evolutionﬁﬁf the turbulence. Tﬁe reason for our
interest in this subject is twofold, First, an elegant
plasma turbulence theorylo of the nonwave fluctuations hasgs

been recently developed in the context of one-dimensional




Vliasov plasmas. There, nonwave fluctuations were shown to
evolve in a way different from that of wave fluctuations.
In conventional wave theories, dielectric functions are

the primary concern, and the nonwave fluctuations are ig-
nored because they are incoherent with electric field fluc-
tuations, and thus not directly related to dielectric re-
sponse. Hence, this new theory challenges the notion that
waves are the sole bulilding blocks of plasma turbulence.

In view of the simple model of a one-dimensional plasma

adapted in previous work on this theory, we are motivated

to extend it to a realistic three-dimensional magnetized
plasma,

Second, several laboratoryls2:® angd space experi-
ments?’5 have observed large-amplitude ion-cyclotron fre-
quency fluctuations, and the anomalous transport commonly
associated with them. In particular, a great deal of at-
tention® is recently focused on the causes of potential
drop along auroral field lines, which is of central impor-
tance for understanding the formation of auroral arcs. It
has been speculated® that ion-cyclotron turbulence, excited
by a field-aligned current, may be responsible for the
potential drop via enhanced resistivity. We are motivated

to pursue the clump theory of ion-cyclotron turbulence be-

cause the space plasmas are collisionless and thus provide




a suitable environment for élumps. Also, the timescale of
quasi-linear relaxation is longer than that of nonlinear
wave~particle interactiong, thus implying that quasi-linear
relaxation may not occur. Furthermore, in the presence of
replenishing electrons streaming into the active region,
.the application of quasi-linear theory to this problem may
be -questionable. Hence, the clump theory is more -appro-
priate for the study of turbulence and anomalous transport
in space.

In the case of low~frequency turbulence of mag-

"rr’e"t'i"ze"d“'p"l"a‘ smag,TourTTs tudiesgarestimul a"b"e"'d""'b'y manyrreasongT

both directly and indirectly° AThe-study in Chapter V is
‘in an attempt td explain the change of turbulenpe charac-
teristics observed®® in the tokamak eage. An EX B..poloidal
flow 1s caused by a large-scalé D.C. radial electric field
(probably created by some mechanism related to plasma in- |
teraction with wall or limiters) is observed. The tur-
bulence 1s isotropic near Ehe'inflection point of the
poloidal flow in comparison to anisotropic spectra observed
in nearby regions. Independently, flow visualizations
constructed from experimental data*” of.probé array sug-
gest the presence of vortex-like motion in this region.
Therefore, a new mechanism, which was not noticed

previously, for driving turbulence near the edge region




may exist; and be relevant to tokamak confinement. We are
thus motivated to study this problem.

When magnetic shear is negligible, the incom-
pressible electrostatic MHD equations are equivalent to
the two-dimensional incompressible Navier~Stokes equation;
thus plasmas behave in a way similar to that of two-
dimensional incompressible fluids. Fluld turbulence is
interesting by itself, primarily because ‘it is easier to
conduct well~controlled experiments; and hence better un-

derstanding can be gained, providing clues for any theo=~

" retical treatment. TIn Chapter IV, we are thus motivated
to study several interesting questions raised by experi-
ments.

Though we have divided the thesis into studies
on high-frequency turbulence and low-frequency turbulence
of magnetized plasmas, 1t actﬁally contains three rela- -
tively independent works. The discussion of each of them
is self-contained. In view of the large amount of back-
ground information needed.to introduce our studies, we pro-
vide the necessary introductory discussions at the begin~
ning of the appropriate section for each work (Chapters
'IT, IV, and V) and will not repeat them here. In the re-
mainder of this chapter we will give -a brief summary of

each individual research.




In Chapters II and III, we add?éss the two-point
theory of current-driven ion-cyclotron turbulence. The
necessary analyticgl tools for latep discussion are de-
veloped in Chapter II. The structures of the Vlasov equa-
tion are considerably complicated by the cross-field ac-
celeration and guiding-center drift of charged particles.
Here, we first construct a renormalization scheme for the
one-point Vlasov equation in the guiding-center coordinate,
from which a renormalized dielectric function is subse-

gquently obtained. In this one-point renomalization schenme,

nonlinear terms are approximated by non-Markovian diffu-
8ion in the ‘parallel velocity,; perpendicular velocity,
.phase ‘angle, and guiding center space. In the limit of
Markovian approximation, the nonlinear diffusion can.then
be reduced to that obtained by Dum and Dupree,7 treating
charged particles as the stochastically accelerated ones
in a magnetic field.

| We ‘also construct an evolution equation for the
two-point, one-time correlation function. Our efforts are
primarily focused on approximating the triplet correlation;
and deriving the source of small-scale fluctuations. The
triplet can be expressed ag relative diffusion of the cor-

relation function in (the corresponding)‘phasewspace; the




diffusion coefficients vanish at zero phase-space gepara-
tion. The source can be~expréssed as a Fokker-Planck type
equation. This Fokker-Planck relaxation of the average
particlé distribution is mainly due to interactions between
particles of different species. This is because like-
species interactions can only lead to relaxation of tem-
perature -anisotropy, a much slower process.

In Chapter III, we solve the two-point, one-time
corrilqtion equation for ions and electrons. The steady

state solutions have logarithmic singularities, reflect-

density‘fiuctuationsf In particular, we derive a necessary
condition for stati0£ary curren%-driven ion-cyclotron tur-
bulence. In the ion-cyclotron regime, waves, when emitted
by the clumﬁs (macroparticles), are weakly damped. Hence,
the nature of turbulence consists of a mixture of waves

and c;umps._ This necessary condition is a Vlasov analogue
to the flu@%ﬁation~di§35§ation theorem of the test-particle
model., Furﬁhermore, ﬁhglexpression for this necessary
condition is‘é;nerally'valid for other types df wave -
clump- turbulence. Using the .analogy with the test-particle
model, it is easy to understand that when the source, arig-

ing from relaxation of.the.average distribution function,




overdrives the system, the fluctuations can grow. Non-
linear instabilities of current-driven ion-cyclotron tur-
bulence of this kind are examined, and growth rates are
obtained.

We also search for the parameter regimes where
clump effects are important. Intuitively, it is clear
that these regimes must be those where collective dissipa-

i
tion is relatively strong, since clumps result from wave-
‘particle interactions. One of the important regimes is

that perpendicular ion temperature T; is larger than

TTparallelelectron temperature T,. TAncmalous transport in
this regime can significantly deviate from those obtaiﬁed
by conventional quasi-linear wave theories. Finally, as
an important result of this study, which can immediately
be examined by experiments, perpendicular ion heating is
the principal sink for extracting the current éhergy in
current-drivén ion-cyc;otron turbulence., This is in con-
t;ast to the-pfédiction of quasi-linear wave theoriesg,
which is that farallel electron heating is the major energy
sink., *

In a two-dimensional incompressible magnetized
plasma (or fluid), free shear flow turbulences that evolve

from an initially prescribed mean flow profile will develop




and approach favorable states. Experimenis show fhat two
qualitatively different favorable states occur for turbu-
lence in the presence of two different types of mean flows.
The -first type of'turbulence contains mostly large~scale
fluctuations, and is associated with the mixing-layer tyﬁe
of shear flow. Mean flows of this type contain infinite
-amounts of energy, which ié due to the infinitely larée
volume occupied by the- flow :of different velocitiles across
the shear layer. Hence, the large-scale wave fluctuationsg

can always draw energy from the mean flow to sustain them-

EElves. It iE T alse observed®® T that the “shear layer
grows lineafly in time, whereas the mean flow profile can

remain in approximately its original shape during the

course of expansgion. In Chapter.IV, we study-ﬁhis-type of

turbulence, adapting two experiment-consistent assumptions

§

that the mean flow evolves self-similarly, while its

lengthscale varies in time, and that the large-scale un-
stable wave fluctuations grow with nonlinear growth rates,
where nonlinear modifications are due to turbulent scram-
bling by other large-scale modes. Since wave fiuctuations
are unstable~and'dominate turbulence, we can safely ignore
the‘nonwave‘fluctuations and use the quasininear theory .

to describe turbulence evolution. 1In this study; we show
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that the mean flow indeed expands linearly in time and the
expansion rate ‘is consistent with that measured by Aref et
al. and . Brown et al.

The seéond type of turbulence consists primarily
of small-scale fluctuations and is associated with shear
‘flow such as jets or wakes, For this type of flow, mean
flow velocities on sides of a shear ‘layer are the same;
hence, ithas only a finite amount of free energy stored in
the layer. Though the large-scale wave fluctuations can

initially be excited, they can no-longer be sustained.

Thus, small-scale fluctuations aré of central attention for

this type of turbulence.

With intermediate wvalues of Reynolds numbers
(Re X 300), experiments®® show that two-dimenéional large-
scale (and less regular) vortex streets can intermittently
reappear from a turbulent state. In our opinion, two-
points -are inferred from this observation. Fifst, the
turbulence is two-dimensional. In three-dimensional tur-
bulence, vorﬁex stretching and folding are the -principal
processes for creating small-scale fluctuations. It is
'difficult to understand why after being stretched and en-
tangled, the three-dimensional vortex tubes should re-

‘organize themselves into a regular two-dimensional pattern. -
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However, .if the turbulence (or small-scale flﬁctuations)
are two-~dimensional, then this 'kind of reformationlis much
more ‘likely. Secgnd, the 'reformation of large-scale vo;tek
.streets is a result of nonlinear spatial rearrangement of
small vortices as opposed to the formation of large vor-
tices in mixing-layer turbulence, which is a linear wave
excitation process. This ‘is ﬁrue because the flow has al-
ready become turbulent and thus the evolution must be in

a nonlinear phase.

With Reynolds number, R_ = 300, we probably Ean

e

assume the flow is apbfoximatély in§£E{a:mw§6fwaﬁr study.of
two—dimensioﬁal invicid turbulence, this experiment pro-
vides us a basis for comparison,

.Theoretically, the mathematical structure of a
two~-dimensional shear flow is>éimilar to that of a one-
-dimensional Viasoy plasma. Thus, small-scale nonwave
‘structures (vorticity clumps) can be -expected to exist. The

similarity'stems-from the following observations:

(4) g£a= 0 ' , conservation of vorticity.
g%.: 0 , conservation of phase-space

density.
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(B) Locally, coordinates can be expressed as

avy |
i : . .
VE(x) 2% E x , local coordinate in the

inhomogeneous direction.

x=0
v , velocity in phase space.
y s coordinate in the trans-
lationally invariant
direction.
Z , position in phase space,

translationally invariant.

(C) The Fourier components in the invariant direction,

0y (x) = [ax'V7B(x,x")py(x")

y » relation between the stream
functions ¢, and vorticity

Py

lNany q .
¢k = [dv L‘;EQ% fk(V) , Poisson's equation

-2 . . .
where V = . is an inverse Laplacian.,

(D) For two nearby points in both cases, their relative
trajectories -are determined by the relative 'forces.”
At small separation the relative "forces" are smai;,
.and hence lead to pregervation of their ' structural
integrity for a .long time. With this observation, we
attempt to pursue a vorticity clump theory of two-

dimensional shear flows.
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We -show that the dominant contribution of triplet
correlation, in the two-point equation of vorticity, is
the relative diffusion of vorticity correlation. Most im=-
portantly, we show that the source of vorticity correla-
tion, which arises from relaxation of the mean vorticity,
is positive definite. That is, turbulence can not only
rearrange the mean vorticity creating small-scale granula-
tions, but it is.alSO‘able to sustain them. In a single~
species one-dimensional Vlasov plasma, the source, by

marked contrast, vanishes due to the conservation laws of

energy .and momentum during elastic collisions, However,
vortex collisions.are inelastic; hence the constraint of
Vlasoy plasmas fails and thus the source -survives.
Finally, we are able to obtain the stationary
vorticity correlation function, and thus the vorticity
-wavenumber‘spectruﬁ. The ‘latter is. anisotropic because of
the shearing of the mean flow. In the limit of high ﬁave-
numbers, the spectrum is_sebarable-as azprbduct of a func-
tion of the magnitude of wavenumbers ]gl and a function of
the direction of wavenumbers (kx/ky)° The function that
depends on the magnitude-of'wavenumbers obeys the power
law, [}3]"1, which coincides with that obtained by using a

Komogoroff-type enstrophy cascade. argument. The angular
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dependence of the wavenumber spectrum is primarily because
thevsmall-scalé vortices are still large enough to ex-
‘perience the sheéring due to the mean flow; whereas the
|k| dependence of the spectrum is because the small-scale
vortices are so small that a statistical equiliprium is
established. Thus the creation of vortices (incoherent
source) balances the destruction (turbulent scrambling) and
leads to a self-similar vorticity cascade.

In Chapter V, we are concerned about turbulence

observed in the tokamak edge, particularly about the ef-

fects of an observed D.C. electric field on turbﬁlence;

We begin with examining its effects on density-gradient-
driven turbulence by extending the previous study of Terry
and Diamond.*® We find that the electric field induced
‘poloidal flow can Doppler-shift the electron diamagnetic
drift frequency Wygs yielding the observed fluctuation fré—
‘quency Which.reverses-its sign across the shear layer., We
also find that the shear flow gradient modifies (reduces)
th; radial correlation length of density fluctuations
Around the region of the greatest radial gradient'of'the
‘poloidal flow, modifications of the radial correlation

-length become so large that the poloidal shear flow should

be regarded as the dominant free energy source. Here,
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instabilities associated with the inflection of the shear
flow velocity occur., The unstable modes do not have -gingu-
lar points; thué'their radial and poldidal length-scales
are comparable. Hence, the turbulence sgpectrum is iso-
tropip in contrast to the -anisotropic turbulence spectra of
other regions, where the singular-layer solutidn of resis-
tive instabilities arige. The presence of magnetic shear

" tends to suppress the instabilities, but does not complete-
ly stabilize all modés (especially long wavelength modes) .

Linear instabilities for different magnetic shear strength

arise due to inSuffiCiEntIOVerlap betwééﬂm%ﬁéu(ghéaf fl6§7"
driving region and the .resistive :dissipation region.

In the nonlinear phase, this study departs from
that of free shear flow turbulence digcussed in Chapter
IV. In this study magnetic shear, which prbvides an energy
gsink available to nonlinearly stabiliZe the unstable modés
isJincluded. Also tokamak edge turbﬁlence-haS'a fixed
mean flow profile (probably due to limitérs), while in the
‘previous case, the flows are free to relax,

Two possible nonlinear saturation mechanisms are
proposed. When magnetic shear is weak and the width of
the regigtive layer is much greater than that of the shear
flow layer, saturation of unstable modes relies on en-

strophy cascade which transfers energy from the high-k




16
unstable to the low-k stable modes. When magnetic shear is
moderate or strong, the width of the resistive layer com-

parable to that of the shear flow layer, saturation can be

achieved via nonlinear mode broadening, By this, the modes: -

extend into the dissipation region and effectively transfer
energy from the localized source to the sink, thus sup-
pressing the instabilities.

We are able to determine the correlation lengths

and time of turbulence self-consistently. Using these,

the ‘scalings of the saturated electric field, density, and

magnetic field fluctuations of each process are obtained.

For parameters of the TEXT tokamak, the saturation mechan-
ism is dominated by the nonlinear broadehing of mode

widths. Our results are consistent with ﬁhe obgervations.




CHAPTER I1I

TWO-POINT THEORY OF CURRENT-DRIVEN

ION-CYCLOTRON TURBULENCE (A)

This chaéter‘and Chapter IIi address the "two-.. -
-point (élump) theory of ion-eyclotron turbulence driven
by a relative drift between ions and electrons; In this
chaptér, we first presenf background information needed

to introduce this study, .and then develop the necessary

analytical tools, to be used in the mnext chapter.

2.1 Introduction

Strong current-driven ion-cyclopron Waves have
been identified in several expe:c"iments,.l"‘2"'8 and in satel-
‘lite* > data, Possible consequences, such as anomalous
transport, ion heating, and anomalous-resistivity have
been the principal foci of attention. There is also in-
creasing theoretiéal interest in anomalous transpoi*ts’6
due to ion-cyclotron turbulence, which may be related to
the formation of auroral é}cs and ion-conic distributions

along auroral field lines.

17
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Traditionally, anomalous transport has been
studied using quasi-linear theory.3 However, this theory

‘is unsatisfactory for the following three reasons:

First,:there remains, in the transport coeffi-
cients, -a fluctuation spectrum <E2>k which -is frequently
left undetermined or treated in an ad hoc way.

Second, its relevant time scale is that for '
evolution of the resonant part of the distribution func-

tion, which is usually longer than that for nonlinear in-

teraction (this point will be discussed further 'in Sec-

Ction 3,1).
‘Third, the processes for average distribution
funetion relaxation include only_qu.asii-l‘ine.'ardi.i“‘i:"uLsio1:1L—~
resulting from wave fluctuations. However,1due to in-
‘coherent fluctuations, the processes for relaxation of
the average distribution function also. .include a drag
forcé, . which counterbalancesthe D.C. eleétric field set
up by the D.C. current. Hence, with-theldiffusion due to
waves alone, the quasi-linear theory is"inadequ@te_for
description of a steady state. Clearly, for time scales
of interest, one needs a more complete nonlinear theory

to describe plasma turbulence. In the past the conven-

tional nonlinear theories”? ® (which assume & broad
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fluctuation spectrum--thié assumption is adopted here
also) usually'ehployed.a stochastically-accelerated-
particle-orbit calculation® to account for enhanced col-
‘lective dissipation due to nonlinearity. These theories
include only wave fluctuations and can only describe .the
‘Initial.phase of turbulence with linearly excited waves.
As soon as these self-consistent waves are damped out

by the nonlinear interactions, the theories fail. 1In
particular, incoherent fluctuations were not'taken.into

account at all, and thus the finite frequency line-width

observed in turbulent plasmas cannot be explained with
‘these tiléories°

Recently, .a new;pla%ma turbulence theory (clump
theory) has been developed and applied to a one-dimensional
model problem,*'s 1% which has also been studied using
:particle simulations.®® This one-dimensional study fo-
cused on a :physical situation dominated by incoherent
balligtic fluctuations, rather than waves. The particle
‘gimulations that suppert the conclusions of the theoreti-
cal work used a low ‘ion to electron mass ratio of Mj/me =
4, In this case, the electron and ‘ion distribution func-
tions overlap in -velocity space, ylelding very effective

collisionless momentum exchange between particles and
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ballistic fluctuations. However, this situation is not
at all universal, Indeed, plasma turbulence is usually
associated with collectivé resonances, hence the most
general treatment'should contain both wave and nonwave
-flucﬁuations. In view of these congiderations of rele-
-vance, we are motivated to study phase space-turbulence in
& three-dimensional, magnetized plasma which can support
collective oscillations.

In this“case;_incoherent nonwave fTluctuations

(clumps) arise from the imperfect mixing of a Vlasov

plasma. Particle-orbit stochasticity due to ane~partic1e
interactions generates small-scalevphase space density

. granulations that ballistically propagate at the resonant
‘velocites, v.=® - nmci/kuw By way of contrast, the wave
fluctuations are generated from a coupling between the
gradient of the'average distribution function and the
electric field, and hence are intrinsically coherent with
the fluctuating electric field. By satisfying ‘the re-
quirement that the dielectric -function vanishes~(ek’w = 0)
wave-like phase spaceudensi$y,ﬂluctuatioas"and the fluc-
tuating electric field can self-consistently exist. Non-
linear,modifications‘to the wave fluctuations do nothing

‘more than introduce nonlinear collective dissipation into
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the dielectric functions ek’m, which modifies wave stabil-
ity. Each type of fluctuation has a different character.
TheAwave'fluctuationS'of a given wavenumber 'k, satisfying
the»dispersion relation, appear to be periodic in time;
the nonwave fluctuations, ® - no, =k vy, appear as macro-
particles which propagate ballistically and are shielded
by the ;hort-range electric field.

The mechanism whereby these ballistic structures
arise can be eagily understood. The turbulent electric

-field rearranges the average particle distribution by

“scattering chunks of particles off their original loca-
tions 'in phase space, thus creating Spatially-varying and
complicated structures. At the same time, the tidal
forces 'produced by the'resulting'tufbulent electriq fieid
tend to tear the chunk of particles apart. However, if
the size of a clump is small enough so that every particle
in it feels the same tidal'force, this . clump.can retain
its structural integrity for a time long compared to the
-éVerage'qoyrelation time of the system. . Decay processes
such ‘as this will be affsét‘by'the continuous generation
of clumps:duéutoArelaxation of the average particle dis-
tribution. The competing processes discussed above are

described by an evolution equation of the two-point,
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one-time phase space density correlation function

<6f(1,t)6f(2, t)>, which has the form,

[’g—t + \‘g_"-%—f -'g—j-g(—)-%1—;]<6f(1,t)6f(2,t)>
= 8(1,2) & - %—E(<f(l)><f'(2)>) (2:1-1)

where g_ ‘is the appropriate relative coordinate of phase
space, and D(~) is a relative diffusion coefficient, which

vanishes ‘at ¢ = 0 where two points in phase space feel

~

Tthesame Ttidal forces.  In T the Timit g ="0, the correla-""
tign function is secularly driven by the ‘source, which
‘evolves quasi-stétionarily. Aﬁ‘steady statg? t = w, é
singula% correlation function yields;”«The_drivinéyforﬁe,
.in Eq. (2:1-1) is related to relaxation of thé'gverag?
particle - distribution due to turbulent scattéringuby Both
the wave and nonwave fluctuations.

It can. be :shown that clump -fluctuations can be
excited from thermal npise at a lower.threshold free en-
ergy than that required for the wave fluctuations. This
‘leads ‘to the interesting pafadOX"that,inAthe limit of
vanishing fluctuation amplitude, one would expect .linear

‘and nonlinear stability boundaries to coincide, yet in
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fact the nonlinear theory here yields a lower value of
threshold fpee'energy, This paradox can be resolved if
one realizes that different time scales are appropriate to
each case. The linear analysis-of:a nonlinear partial
differential equation is wvalid for a finite time, after
‘which trénsition to nonlinear evolution occurs. . In a
VlaSQV'plasma,.the linear~theory»is-valid up to .a time T,
there T < T, and T, is the amplitude-dependent wave-
particle decorrelation time. In a linearly stable plasma,

nonlinear ‘instability can occur if the free energy ex-

ceeds "the thyesghold value, In this cage,y the thermal”
level‘of fluctuations will determine the size'of“Tb,.and
the clump. fluctuations then grow on this time scale.
Furthermore, when linearuwaves"anéjweakiy”damped
~in“plasmas, wave fluctuations can be emitted by the macro-
-particles (in analogy to those emitted by the discrete
particles 'in the test-particle model) and can coexist
with clump. fluctuations 'in plasma turbulence. ‘Bgcause of
this relationship ‘between the wave andAclump;fLucthations,
competition between formation and decay of the clump: fluc-
“tuationssc;n_nowzbe:viewed as competition between emis--
sion and dissipétion of waves. This can be understood

as follows.
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Schematically, Eq. (2:1-1) can be expressed as

(7w + ;%I)<6f6f>w = <S>, : (2:1-2)
_ Where'7w and T,; are the growth rate and life-time of
clump fluctuations, respectively. DNote that the source

is proportional to the fluctuation spectrum, hence we let
<8>, = (R, /To1)<0EBE>,, where R, is an operator, which
includés-the'effect whereby ¥ (incoherent fluctuation) is

shielded by the plasma response‘functionvek,¢. We can

R T ettt et S e e ' -
further express Rw as % RE:w/[ekawl ,.Where Rs’w is
another operator proportional to ‘the seed electric field

fluctuations of macroparticles. Thus Eq. (2:1-2) yields

Re, 0
'(7chl + 1) = . L A ] (2:1-3)
k |€k wla" '
L

k= - 1 (2:1-4)

~

. . )‘_ dRe ek,m
To = Tel 'Rgﬂb/(/lmeg’w) ok .

where the spectral k-sum is mainly determined'bY'the'pole

I

contribution,. Reek,w 0, at the collective resonances.

The steady state,rvw = 0, .1s determined by the collective

dissipation Ime and the generation of waves by clump emis-

"-sion R. By contrast, in the previous analysis of the
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clump-dominant regime, the~shielding-factor-l/lé|2 is

not close to collective resonance, hence the process
whereby nonlinear evolution was regulated by a finite
collective dissipation (Ime) was not considered. Conse-
guently, .in stationary turbulence of.the'wave-clump re-
gime, wdves must be oversaturated; this finite collective
dissipation can explain the finite freguency linewidth
observed in stationary turbulence. Indeed,<in general,
waves should be viewed as broadened collective resonances.
Progresst® 15 in this directioﬁ has also béen'made in
~other areas of plasma turbulence; in particular, in the =~ =

4 of drift-wave turbulence.

clump theoryl
Turbuleﬁce in a magnetized plasma can exhibit
different types of strongly correlated small-scale granu-
lations din phase space. In the case of low-frequency
furbulence in a magnetized plasma, suchlaS'driftiﬁave
turbulence, perpendicular dynamics are'duevto-the spatial
wandering of guiding centers because of randem E X BO con-
vection. Perpendicular scattering in velocity space is
small, since that requires the ‘time scale of the fluctuat-.
~ing electricxfield to be comparable to the cyclotron fre-

o guency. The:pefpendicular spatial extent of clumps ‘is

“limited by the average length scale of the tidal force,
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which is the spectrum-averaged perpendicular wavelength
(EL)'l. In velocity space, the perpendicular scale of
the clump can extend up to a thermal velocity wvg+. In
contrast, for high-frequency turbulence in a magnetized
plasma, the gyro-motion of particles can resonate with
the turbulent field and thus-lead to perpendicular scat-
tering in velocity space. Furthermore, the perpendicular
length scale, (k,)"1, of the turbulent field is smaller
than the gyro-radius (usually'ELp >1in high-frequencf

problems); the former then not only determines the peri

" pendicular correlation length of the clump fluctuations,
but also limits their sizes to be within vt(Elp)'l,
(where~Elp > 1) in the perpendicular velocity direction.
In ion-cyclotron furbulence,-the'electric field
is ‘almost perpendicular to the magnetic field (El>$>iw).
The "ion perpendiculaf diffusion dominates parallel dif-
fusion, and the latter can ﬁhus be ignored for~thé time
scale of interest. On the other hahd, the electrons are
strongly magnetized (Elpe << 1) and are thus ‘tied to the
magnetic field lines. Their dynamics are essentially
one-dimensional. These'observatibns allow us to depict
the clump structure more precisely. The electron clump

appears in position space as a long, thin (k, >> k),
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cigar=-shaped group of electrons~travellingAat a speed

~

Vi ox ani/k”; the don clump, on the other,hand: appears
as a tether-rod with tether length P; gyrating about the
‘guiding center, if Eipi > 1, and as-a cigar if Ku.p; <1,
propagating‘at a ballistic wvelocity v, & o0 "'ndci/fﬂ'
Both cigar and rod have radii (EL)‘l'and lengths (E”Q’l
(Fig;S.ll Quantitatively, the 'phase space dengity cor-
relation functions of both species are described by the

equations,

= <8yt ' . o (2:1-5)

and

[EL.+.VM_ 3 .9 Dy (=)0 ‘}e<5f(l,t)6fcz,t)>e
v ¥y _ 8VH+

= <5>8, . ‘ (2:1-8)

for‘ion#cyclotron turbulence. At steady state, Egs.

2:1-5) and (2:1-6) can be solved, yielding
2

<6f(1)6f(2)>i = fél(zq,x;)<s(1,1)>i _ (2:1-7)




“rand Ty Tg are the-particle~decorrelation-times forions
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<8r(1)65(2)>° & 18 (X ,v )<s(1,1)° | (2:1-8)
“Where
Tt = -Ti[ln %[Efxf_ + %}i—— + Eo(Z2 +o2v, 2z Ty
: ‘Zvuz‘_ﬁ)'ﬂ i | (2:2-9)
TSy = [m 3[———,_ + K2 (28 +av_Z T, + 2vE 2)]]
(2:1-10)

e

and electrons, respectively. Egs. (2:1-7), (2:1-8),
(2:159) and (2:1-10) illustrate the strong correlation
of the charged particles at small separations 'in phase
space. It should be noted that, .in Eq. (2:1~9) the ‘term
Efvf_/Zwii can be ‘expressed as Efp?(v#_/vti)z/z,.indicat—
ing that, as discussed previously, the ‘ion clump size in
thé~pérpendicular'velodity space depends on the value of
ELpi as compared with unity. On the other hand, in the
parallel velocity space, both ioﬁ and. electron clumps
have short-range correlation. As a result, in velécity
‘space. the ion clump appears as a gyrating tether-disc

'perpendicular to the magnetic field, with the disc radius
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Vti(iipi)-l and tether length vgy; if kip; > 1, .and as a
thin disc of radius vgg if i;pi < 1; the ‘thickness of
either disc is (E”Ti)'l. In contrast, the electron clump,
in velocity space, appears as a thin disc of radius vie
and thickness (E”Te)'l (Fig. 3-1).

. A relevant guantity worthy of examination is
-the~Velocity-integrated clump amplitude <6n2>, which not
only is ‘important for determination of nonlinear ‘in-

stability, but also indicates the probability of observ-

ing the clumps experimentally. In ion-cyclotron tur-

~bulence;this-global-clump-amplitudeis much-smaller-than-——rmwo——

that for -electron clumps. This-is'because‘ion.finite—
Larmor-radius effects sizably reduce the perpendicular
‘velocity correlation length and thus the ‘ion clump ampli-

tude. As a result, electron clumps are more likely ‘to

be observed, and play-a more significant role 'in the phase"

space dynamich

When'temperaturés of both species are approxi-
~mately equal (T1 =~ T®), current-driven ion-cyclotron waves
are weakly damped because the parallel phase velocity
wk/k"@an adjugt so:that there are long wavelength modes
-that avoid ion Landéﬁadamping. Turbulence, therefore,

congists of a mixture of waves and clumps. It . is shown
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that because of small ion dissipation, the clump modifi-
cations to the -threhold current for instability are not
significant forahLisotropic average ‘ion distribution func-
tion. However, 1f the perpendicular lon temperation T}

is greater than the electron temperature Te, the clump

l8

~effects will be more significant. This 'is because when
ff ~ 7% = Tﬁ the collective resonance frequency ®, ap-

-proaches 'ion cyclotron harmonic frequencies nw.; and en-
hances ion dissipation. In fact, this state can be

reached‘from an initially'iso%ropic ion distribution

.. "function by persistent wave-ion interaction and heating,

so long aSﬂthe~current'is'sufficiently maintained. In
the limit of very large perpendicular ion temperaﬁufe,
Tf >> T® «~ Ti, waves are heavily damped, and thes*the'
‘nonlocal, collective characters of turbulence are gbeent.
Clumps,ﬁshielded'by-the short-range (Debye length) re-
‘sponse, alone determine the evolution of the turbiblence.
In this study (Chapters II and III), we in-
vestigate the nonlinear theory of current-driven ion-
cyclotron turbulence. Ingpafticular, ﬁhe relevant regime
of turbulenee; where theeclumps and waves coexist, is
studied. Here we summarize -the principal results of this

research:
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(1) Renormalized one-point and two-point equa-
tions describing‘magnetized Vlasov ‘turbulence have been
derived. 'Since particle motions 'evolve on two different
time ‘scales, the renormalized two-point equation describes
the slow, relative motion; the renormalized one-point

'equafion describes~£he'rapid cyclotron motion and yields
a renormalized dielectric -function.

(2.) Shapes of ion and electron clumps have been

vpfedicted. The electron clump appears cigar-shaped aligned

along the magnetic field in position space, and appears

~ g athindise "p‘e"rpe'n-d-.i- cular-to—thema gn—e't j-ofield-A-n-— o e e

velocity. space. The ion clump, when Elpi > 1, appears
as a gyrating tether-rod abouﬁ the guiding center 'in posi-
tion space and a gyrating tether-disc in velocity space;
when Elpi < I, the:ion.clump appears cigar-shaped aligned
along the magnetic field in position space,gand'appe@rs
as a thin disc perpendicular to the magnetic field ﬁn
velocity space (Fig. .3-1). |

(3) The clump amplitude of ions . is much less
than that of electrons because of ion finite-Larmor radius
effects. |

(4) When T} > T% ~ T®, ion-cyclotron turbuience

is of.the wave-clump type. When 71 x> T-ﬁ ~ T&, transition
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to the clump-dominant type of turbulence occurs. This
trangition takes place approximatelywhen (me/Mi)l/zT;/Te
Z 0.1, where waves are heavily damped.

(5) A necessary condition for the maintenance
of stationary ion-cyclotron turbulence is given in Eq. &
(3:+38), and is a Vlasov-theory analogue to the predic-
tion of the fluctuation-dissipation theorem of the test-
particle model. This restlts from the fact that the col-

lective dissipation must balance incoherent noise emis-

sion from macroparticles at steady state. This expression

(6) The nonlinear growth.rates in different
regimes have been obtained, and are given in Egs. (3:2-7)
and (3:2-8). Nonlinear -instabilities grow on the ‘time
gscales of the particle decorrelation times.

(7). The clump modifications to the ‘instability
threshold in the wave-clump regime are small (reduction
of threshold drift velocity is within 7 percent, Fig. 3-2).
However, the modifications to the ‘fluctuation level at
saturation and the anomalous resistivity are more signifi-
cant. Also while the quasi-linear theory predicts that
ele¢tron parallel heating is larger than, or équal to,

ion perpendicular heating for don-cyclotron turbulence
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(EE/E% R M;/mg, EEPE > 1), this theory predicts that ion
perpendicular heating is the dominant mechanism for ex-
traction of electron-beam energy.

The remainder of this paper is organized as
~follows: in Section 2.2 weAprésent a method foy the re-
normalization of the Vlasov equation for a magnetized
-plasma. The nonlinear terms are approximated by a non-
iMarkovian diffusion process~in'velocity space and guiding-
center space. Subsequently, this renormalized equation

is used to obtain the nbnlinear dielectric function. In

~Bection 2.3 we renormalize the correlation equation. The

triplet termS”ére approximated as diffusion. in the rela-
tive coordinates of the corresponding phase space. In
steady state, the correlation function can be calculated.
In -doing so, a steady-state condition for maintenance of
stationary turbulence is derived. .This is discussed in
Section 3.1l. In Section 3.2, we investigate the clump
“instability. A mechanism of saturation by collective
resonance damping due to nonlinear ion-wave dinteraction is
‘proposed. The saturation level and anomalous.resistivity
are estimated in Section 3.3. Conclusions of this study

are discussed in Section 3.4.
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2,2 One-Point Equation Renormalization

Thouéh the one-point theory cannot fully de-
scribe the nonlinear evolution of a plasma, renormaliza-
tion provides a useful tool for determination of the non-
‘linear response of the waves. In this section, we con-
sider renormalization for the case of high-frequency tur-
bulence, and will derive the renormalized dieleqtric func-
tion ek’w and particle propagator G. In a uniformly mag-
netized and spatially homogeneous Vlasov plasma, the

particle phase-gpace density of either species satisfies

the equation,

9 .é_ A.é_ -t ég.é;%
St TR T We¥FEFY TN X ax}6f
_ 4 9% 0<f> .
T M 3Xdy (2:2-1)

Introducing guiding-center coordinates, one

can transform the above equation into

(2:2-2)
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where
VX 2
R=X-= V=yx
Qe
32 S _ 1, .3 _3
OR ~ oX’ JL @, Ok ~ 3y
X'VJ_
- A_lr\.zrv
6 cos [ 7 ]
and k = |k [, x =k, V=|v |, Us Vs R OE IR, |-

After a spatial-temporal Fourier transformation

" in 'guiding-center coordinates, we obtain

[a)c %5 - ilw -« U):‘lf},&vm +ﬁ.§' Oyt ‘m'{i_k"s‘in(wk" Vir)
‘ ; .

e

QTW
c

-'ik'[}OS(Q - wk') %v

sin(@ -1#kx) d -
- V g‘é .‘fl'f;'l’ml'

: d d
= %% @E’w[kcos(e - Yx) ;7 * '53] <£>, '(2’2‘3)

where

w - -

‘xk
wk_ — COS-I[ k s I,E,’r = l,.s; - ‘15\,') mlt
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and

~ o) © ) -
Tr = é at f d3§5f(5,x,t)exP[imt - ik - %
- 00
ikV .,
*w, sin(p - wk)]
A )
®,l§,,w = é dt J d32€¢(x, t)e'xpl:i(bt - ik * x

“"the Fourier co mpone nts of f]_"ué tuations 'in guiding-cen te“f- T

coordinates. In addition, we can define the Fourier com-
ponents of fluctuations 'in real space coordinates,

' . . XV
8fk¢w = Tk, exp|-1 o sin(e - vx)| ,

KV |
%%, 0 = Pg,0 exp [-i N sin(6 - -1//1:)] .

To rénormalize the-noniineaiities, we assume
that.the 'fluctuatihg electric -field has a broad spectrum,
so that the electric field auto-correlation time ié

ishorter than the particle decorrelation time. We then .

decompose fk,w into
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_ (1) (2)
fo = fiye * g0

Here, fﬁ%& is the 'phase-incoherent component, which is
not correlated with fluctuations of different E/and Wy
5 .
and fé_g is the phase-coherent component, which is driven
)3 .

by a direct beating of ?E:,,w.. and ?Kf’m'- In addition,

it is useful to notice that Eq. (2:2-3) can be written as

> (e - kU i Kk e
[(DC -5 l((l) K«U)]fk » + M l{\", @f‘li{/l ’UJ '('D—C' Sln('Wk WK)
— - - ) .‘_.a,ﬂ.___ e X )~ 5 - -
= k {cos( 6 =Y 1)
) sin(o - Yiv) 3 ], p
7 S5 ) Tkt

- ikg[cos(e - wkg) 5

sin(g - Wk ) | v |
- £9  Jle , (2:2-4)
v 36 | ({ B-ke,w-wg
Where the summation X does not include kﬁ or we, dumnmy
k!

variables. '
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‘Hehce fk o 1s driven by the linear source and mode
beating. Here fé%& is driven by the former and f(z)
the latter. Upon renormalization, the nonlinear terms on
.lthe left side yield the phase-coherent piece of the .full

jnonlinearity. This phase-coherent piece can be written

‘in a form
f c}\g’w(e - e')fk’w(e')det + Bk,(l)(e)d);lé;(b 2

where Cg,q and Bk,w are operators. .In order to obtain

e T8 S8 Y Tand B . (8), we will separate £L2) from
2 K, W k,w

f&%& in Eq. (2:2-4). Hence.

{“C %5 - o - “‘U)Jf;(gcl ey, ule-¢ )fgz)(e")de"
'M_Ci %, [k cos (6 - V) %7 + K .%[_J.]<f>

Bﬁ,w(e)d’;\g,a; (2:2-5)
e O - i(w - kU ] £{2) #foy o0 - o' ESCIRCIBLLL

" i q)kg:w(g{ kke sin(yYy - ’l’ké) - ik éTU -~ (2:2-8)

sin(g = Ve ) |
- ikg[cos( Wké)a - 7 4 eﬁfg;kg:w-wé
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Now, we can define a propagator Gk’w(g,e') so that

loe & = (o = x0) 16y (6,6 ) +
(2:2-7)

oot B »
)Gy, (67 48 ) =o0p (8 - 0")

S

U - :

Therefore fé?i can be obtained in terms of q£’®

~

_ » kk
qéf&(é) = fde’qg,w(e,e‘)-(e ﬁ)éki,weﬂggg sin(yy - Wké)
' S , )
A T v— et )
sin(@ - %'é) 5 ,
- - S ]:]f ﬁék;;w-®g (2:2-8)

N 2 : 2 |
Substituting fé,g’w,, into fé'2,w" on the left

~ —~

side of Eq. (2:2-3), we can obtain qkdw(e'- 6') and
Bk,w(e), the cyclotron harmonic component of which can

be written as

(2:2-9)
ik |
(DC.
o
D 0O 0 0\ ==
v J(ik 9 Lo in) s B o
k,(l),l’l - a)c’ .S-U’ v v" V k' O a
~/
ﬁ: 0 Dyy 3V
in )
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Drr = 5 [d)kr’mvl Gk"',w"
M b -~
2
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(2:2-10)

ik!
(DC‘
3
0 o\ |5g
3 <¢k ! S_fkr’ o >
B oV
vV
s ot
Lo
k
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,nt?

: 2
n'ow,k' k' 'dJo s ~
S et gt (xvy =L —“nl

v n 2 dx

n'(Dc ' 2 -‘n'(Dck.' dJn'
<"V__ Tor (x1)) 2v dx'
-n'wo k' dJpe wr 3902
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2
BRR =§'§ G_ ottt . kk' Ji(X)Jnt(X')
94
ﬁx’.g —MZ GNov’wov’nvc Jn(x)
nwk ! ady,
Cetedne(x)a (x) —S— T 7, () ke’ =B gpu(x) )
n'wak n'nw, -n'w.k dJ,
e 1 e 1Y
5 ‘%Kx)Jn(x) Vz Jw(x)Jn(x) 7 5 o (')
dd,e . -nqjck' 'dJnc dJ, ddpt
- t ————— b e ——
E T E In(x) —~— g7 Jo(x) kK" g~ g
”Eﬁd”i”EfKVYmc,«wHile N rerers to the ¢yelotron Harionic fm;”

number . In doing this, the ensemble'average<: :>has in=-

cluded an -average over the phase angles %k and wk" That

is,
9z O EEL i - - ’.' é;
M <:k' ol o, il = V) - BT 5
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where averaged guantities <1.;>} depends only on g =~ g .
The first and second [dg integrals yield [ Ckﬁw(g,g ).
f%Jw(é')de' and Bg,w(9)¢£,w’ respectively.

' We notice that the resulting renormalized terms
are consistent with the non—Markovian‘structure‘of the
Vlasov equation; iin particular, all cyclotron harmonics are
coupled. If one further makes a‘Markovian‘approximation,
where G%",w",n" is replaced by.q£.’w:,n.,.it follows
fhat"CB,w,ﬁ is diagonalized in this case'dew’n is to

be identical to that obtained by Dum and Dupree.’ In

gt pape r..,,,_..wt_h_e...,.vn.o.n_:l;..j:.n_e..a.r _d.y. namics-are .t.r: eated —grg .:a:. S S r S

stochastic-acceleration problem for a turbulent-magnetized'

plasma.
.The total fluctuation fk consists of 'a com-
v Ly0,0
ponent fﬁ ©.n that is induced»by the electric field, and
T Al

another component fk,w,n that is generated by the mode-
~
coupling and 1s responsible for the localized structures.
To obtain the renormalized dielectric function €, w? We
Pk

c ot P
need the coherent response fg,w,n that satisfies

. ' c
[-'l((l) - kU - n(l)c-) + C%,(D,n:'f}‘{/)w:n

o “’g,w[[”? 2 sin(o - ) (x cos(0 - W

®e

+ 2 ) o> - ()3, 0,0
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] LKV _ o >
%f.¢§’w[ exp i;_ sin(® Awkﬂ [k cos (6 wk) v
(2:2-11)

%UH

n <f>M

The last equality indicates that the effect Of”Bk,w,n is

-ﬁq modify the average distribution function*<f>5_yielding
"<:f>ﬁ. In the conventional nonlinear theory of wave fluc-
is in=- '

tuations, only the coherent fluctuation ﬁﬁ,w,n

cluded. .Hence, by substituting fk,w n~with fﬁ’m,nj
' ~ ’ i ~

Bb’w’n can be expressed as

R
/i_k__\ ’

:3_ 8_ z!x_' ™M
2

. i 2 . H * n e 8_
(Tf)|¢§',w'| j Jm-n’(X )Jm(x')G%',w',m[“' U

nwe y | .
v 2oe 3o 1e> (2:2-12)
~When the incoherent fluctuation §£ o0 is in-
. N’ J

-cluded, using the Poisson equation
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1,8 ' i i e
k 1 o =:4ﬂno[q [ sfi dxl - e f 8f£,wd£e] ,

~ »]:E’CD

Egs. (2:2-11) and (2:2-12) of both species yield

.
2 dav
e AR e
+ ;E ) 5= Jn(xe)Gk o rl(nwc + KU@><&€:>JJ
dnn lad)

Thus, the total potential fluctuation

» ~s \ ~
4x ng <C1f6f£,wdvl - efafi’mdv'e> |

bk, =
L - 9% o
L ZICIN FICE P10 (2:2-13)
e’l\g,(D .e%,m

where e}s’aJ is the'diélectric function containing contri-
butions from the nonlinear wave-particle interactions.
Equation (2:2-13) shows that the self-consistent field
¢§,w can be viewed as if it were produced by a source

~ : ~
field ¢k,w caused by the incoherent fluctuations fk,w
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Since E&,m is incoherent with the fluctuating electric

field, it satisfies the eguation®®

~
[-i(w - KU -'nwc) + Cg,m,q]fg,w,n =0. (2:2-14)

That is, fk’w‘propagates along the particle orbit, and
behaves as a macroparticle. Here, 1t is apparent that
Cx,w,n 1s responsible for the deviation from the unper-

turbed particle orbits.

2.3 Two-Point Correlation Equation

The incoherent fluctuation structure is eluci=-
dated bybexamination of £hé twé-point, one-time correla-
tion function of the phase-space density fluctuation,
<s8f(1,t)8f(2,t)> This correlation evolves on a slow time
scale, since the fast varfation fram the particle orbit-
ing at cyclotron frequency averages out. Turbulent}rela—_f
tive diffusion dominates the evolution of a plasma on this
time scale. The necessarily wedk relative diffusion at
small separation in the presence of ‘a positive—free en~
ergy source results in very strong correlation at small

.separation 1n phase space.
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It is straightforward to obtain an equation of
the one-time, two-point correlation function of either

species'particles from the Vlasov equation,
) - - -
St T T3] t¥z Xz t®e¥iX? ot Svp

.
twgvy X2 %}’;J<sf(l)5f(2)>

+

&<[E(l) . gﬁ 4 E(Z) . gié-]sf(l_)af(z)>

i

@) > g_,"oz_<f(2)>}  (2:3-1)

At this point, we could proceed with the re-
normalization of the triplet terms by treating each com=-
‘ponenf of each point as shown previously. . Then, arguing
that variation of the correlation function in the relative
coordinates is much stronger than that in the comoving
coordinates, we could obtain an approximate renormalized
equation for the correlation function° .However, in
cylindrical coordinates it is very tedious to perform the

procedure of subtracting the renormalized equation of one
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point from that of the other point to obtain a renormalized
equation in the relative coordinates (i.e., obtain
8/5%'°.£(-) . a/ag’by subtracting B/BEl'°»£(l) . 8/8%1

from B/Bgz » D(2) - 3/dqy). ‘Hence the method described

. above is difficult and inefficient. . Instead we shall
transform to the relative coordinates af the beginning of
the calculation. .Renormalization is theﬁ carried out in
the relative—cylindfical coordinate. We note that this

method can indeed preserve the property that decorrelation

of nearby particles is caused by a relative force (Eq.

First, we introduce the relative coordinates

and the comoving coordinates

(v - 33)

o

x =1 | e -
2=z K -%) T

o[

ol

Xy =% (X + X2) v =3 (v1 + 3y2)

In addition, let
1

E(-) = L (B(1) - B(2)) , B(+) = 3 (E(1) + E(2)).

We will assume that the plasma 1s homogeneous,
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%:<8f(l.)8f(2)>= 0,

and that wvariation of the correlation function is much

stronger in the relative coordinates than in the comoving

coordinates,
%i o (1)ee(2)>] I%E:<af(l)af(2)>l'

- Equation (2:3-1) simplifies to

— _gf ey _g_g: +L%(Y,_—>_< !éo) —g;—]@f(l) . (2v)>

~

{

P8 e B()se(1)pe(2)>

- - damyse)> - s>

~1
+<B(2)or(1)> + Lo (2)> ]

To renormalize the triplet term<:g(a)8f(l)5f(zjz
it is important to realize that the fast variation o“f‘
5f(1)sf(2) will beat with thé fast variation of E(-)
yielding a net contribution to the ensemble-averaged
triplet. Before ensemble averaging, we note that

sf(1)sf(2) satisfies
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|74 - %{; sf(1)s2(2)| > [v_ - & sf(1)ar(2)]

~—

and
"9

vy x }35 © 5y et(D)er(2)| >> [y x By %—; 8f (1) 51 @)

when |v_| < |E+|. Hence sf(1)sf(2) evolves according

to the equation

& by, - S S-S
[5; DIy % Y+ X By 5;:]8f(1)5f(2)

where
= . 9 : : 3
S(l,Z) = - M[E(I)Sf(Z) ° —S;rl{f(l»
+ E(2)8f(1) - %————<f(2)>il .

Hence, G(o), the linear propagator of the one-point equa-

tion, is an approximate propagator for &f(Ll)sf(2). We
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can then follow the procedure of one-point renormaliza-

tion that the ‘driven mode (8f(l)8f(2))(2) is substituted

into 3/dv_*<E(-)Bf(1)s£(2))>, to obtain

g <:5_— E(-)8f(1)sr(2)>

a 4 (O) 2
~ 1 . 0

B EW ™M

S R A

cx - Sar(L)er(2)> .

o~

whereﬂmk,m(—) = ¢k,w[} - exp[ik%X;]}, Finally,.Eq.(?:S-Z)

becomes
) q d

—_ + v —_ + v X B ———

[5 x_ w0 dy

GﬁO),nlék,w(«)lzj

(2:3-3)

Cx .g;_kaf(x)af(zb =<8 (1,2)> = 8(1,1),

where the last equality is because S(L,1) is a smooth

function at small separation. The left-hand side
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renormalized terms have the form of Fokker-Plank operators
‘acting on the correlation function. Alsd, the diffusion
coefficient here is simpler than that obtained previously.
This is because the separation of scales prevents the
operator k - 8/55_ from mixing with the propagator of co=-
moving coordinates.

.The source terms of both Species can be calcu~
lated explicifly in a way similar to that used in con=-
structing the test—particle—modél’Lenard-Balescu equa-~-

tion, where we separate

<:§8ﬁ>%’w into <<Ef?>k,w and <:Eﬁ>§;w .

A somewhat more complicated procedure (details shown in
Appendix B) using Eqs. (2:2-11), (2:2-14) yields
. 2
S ' ei a<f&
<s®(1,1> = [DS° + D'] <'5TJ'"‘“>

S0

+ [FGE + Fﬁi]<ﬁé:> 0> ' (2:3-4)

57(1,1) SV 3V

+ [Fil 4+ pleg ‘<fi> §v<_f£ (2:3-5)

~




where

R’
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~ az—_ﬂ
~D
=;§Q s <:5? ¢:£ 52 (i) Imx 4+ [ nwe &Ei>
k 5 .
M k (2ﬂ>4|€k wlz n s <3£>, v Qv
W ~
n
Py
S
Fi€ . aﬁﬁ
C FTES |
- 4 < k 52a(1)  ImXe [ nwe XEFi>
M

z
@
n

5<f>] | ' (2:5-7)

and

dnnge
~e _ 9% LPRACH
%tﬁ q
~ Q ~s
b =7 [ ety

- ImXg and Imy; are the iﬁaginary parts of the electron and
ion susceptibilities, respectively. The sources are ex-

pressed in terms of Fokker-Planck operators. As

4 2 nql{,,a),n FSLTVW |
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explained earlier, these describe the relaxation of the
average distribution functions. The diffusion arises from
stochastic acceleration of charged particles by the
turbulent-electric field. The drag force results from
collisionleés exchange of momenta between charged par-
ticles.

For the electron source terms we have ra local

cancellation between the diffusion and the drag,

1% 08 & - I > =0

This is due to the conservation of particie'momenta of
localized same—species'interactions occﬁrring in a one-
‘dimensional system. An analogy to this is the head-on
collisions of two identical particles, in which theyﬁap—
pear -as to exchange phase-space positions without inter-
acting. vHence,<:fe>>does not relax because the final
state is the same as the initial state. Relaxation of
<$e:>thus requirés the interaction of the electrons with
the ions. By contrast, the ion dynamics is three-
dimensional, hence the constraint for the one-dimensional
interactions '1s broken. TheAsame—species inﬁeractions
of ions can now contribute to relax the average distri-

bution function <f>.
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When T =T, and <E;> is Maxwellian, we can
show (in Appendix B) that the same-species interactions
cancel, i.e.,

i %V-%V'Fii]<f>i=o .

3 .
(3¢ ° D
"The fact'thaf <3£> is isotropic. and Maxwellian is crucial
for this local cancellation. This is because-an isotropic
Maxwellian distribution has no free energy by itself,

~thus the same-species interactions alone cannot relax

’ ¢l>' In anisotropic collisionle s§ pla sﬁi"a”’é"’," "th”e“same‘;’ T

species interactions are actually responsible for temQ
perature isotropization. .Here, in a current-driven plasma
with-T%=¢ Ti, the isbtropiiation terms are émall ih_cpm—
parison to others that are responsible for relaxation of
the current. This is because isotropization terms -are
proportional to the interaction of different harmonics

n and m by 'a very weak coupling'

(D ) (D .
(n - m) o2+ exp[-(n - m)% 51,
A 1Ve i

where the argument of the exponential has magnitude much

larger than unity. Thus they are hereafter ignored.
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‘Finally, we transform Eq,.(2§3—3) to the guiding-

center coordinates, and require that ,

<af(l)8f(2)>i =0.

This is consistent with the fact that relative evolution,
which determines‘<5f(l)5f(2)>,Ais slowly varying on the

‘gyro-time scale. It then follows that

o o 2 , bier®
> . S a Jn . 42 k V

ey e — - : e L e v,,..,v,.,.,.T;_,i ,,_ s e e
o , o A
_+ k4g2 kz'ZE] 1 a2
8 2 7. 2 2
. - Jwgy ORZ
. [k4vf k4RE'+ 21272 ]52
: 2 4 2 2
8w,y ov_ .
' 2,242  ,2.252 ° 2 17 .
kR eV kK “R
+ [ 5== o+ —m= R4Z2] 9 2}:§<6f(1)5f(2)§
2 (48] ci . . BU__ ’
_ i S _ v1  N ' L o
= <S>, g , , (2:3-8)

This renormalized equation is only ﬁalid for.high;frequeﬁcy
,fluctuatidns. This is because in obtaining the simple

expression for relative diffusion, we have assumed a
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separation of time scales between the comoving motion and

relative motion, thus

|g§: sf(1)57(2) | >>‘|%5— sf(1)sf(2)].

Equation (2§3-8) then corresponds to the lowest order of

the relative gyro-kinetic ordering, i.e.,

(l)c'gjt->> 1.

e “It“is _.._.S..t_r__a_ i_gh.tfor Wf'a.'r'd""' 'tO ,..O_-b t‘-a;j: n- 'th e e-qu—a-'bi--o A O S

for the‘electron—cbrréiation functionb

. e
13 d e? 2 (&) 4,2 d°
[SE + U_ SZ: -_;§~§ ,¢k,wl Gk,wﬂlz; SE? <af(1)sfl)>®
w

= <5>° : (2:3-9)

Here, we have used kp, << 1 (highly magnetized electrons),

hence the electron motion is one-dimensional.




CHAPTER ITTI

TWO-POINT THEORY OF CURRENT-DRIVEN.

ION-CYCLOTRON TURBULENCE (B)

In this chapter, we attempt toﬂﬁipdy the small-
scale structures of ion-cyclotron clumps and investigate
global effects due to clumpé. For the former, we are able
to determine the clump shapes and lifetimes for ‘both

species 'in ilon-cyclotron turbulence. .For the latter, we

..can-determine-tle:threshold. drift_wvelocity. for clumps..._.
to excite, and its growth rate near marginal instability.
Also, we can estimate the saturated turbulence level,.

and thus anomalous resistivity in stationary furbulence.

3.1 Steady State

In current-dri#en ioﬁ-cyclotron turbuience, the
ion-perpendicular velocity i1s sScattered, and the current-
free energy is converted into perpendicular ion-thermal
energy. During this process the average-distribution
functgons of electrons and ions vary slowly on a time
scale much slower than that of nonlinear evolution. This
can be shown as follows.

59
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Nonlinear evolution occurs on a time scale

1 L
3

T 2T = [ ———

NL =™~ ‘e <~

M E A\

where D§ is the electron parallel diffusion coefficient.
The quasi-linear flattening of the electron distribution
function and the perpendicular heating of ions occur on

the time scales of

\

2
- e
Di_

and

2 2 4, =4 2 2.
ko o Vti Vte 1 K VteVti
heat S e e : = Z ’
D Dj kps. Wei

respectively, where vﬁe'and V%i are electron and ilon ther-

mal velocity,. respectively. For |e¢/Tel << 1, it follows

€ 4 /=42 2 i -
T . K=V Vi s T
ZQL 5 of 12 >> [(_l_) _E_e_iiﬂwz.ﬁ ~ _Beat 55
(Dci .

T 1 - 4
NL ko4

‘Hence, we can regard the average-distribution functions

as stationary over the time scale of interest. In this

section, we will calculate the small-scale correlation
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functions for these quasi-stationary distribution func-

tions.

Formally, one can invert the operators on the
left side of Egs. (2:3-8) and (2:3<9) (imposing the ap-

propriate boundary conditions), and obtain
<sf(L)sf(2)>9 = Tgl(g_,z_)<s>° , (3:1-1)

Where,Tgl is ‘an operator of species . .Physically, Tgl

is the time for decorrelation of two nearby phase-space

“@61ﬁf§;“§€@§f§féd“ﬁ?7§:;X:T”fTHT§Wﬁﬁdéf§tand1ng enablas”
one to estimate the eigenvalues of Tgl by solving for the
relative trajectory of two initially-neighboring phase-
space points. |

In ion-cyclotron turbulence, electrons are
strongly magnetized and their motion.is restricted to the
#icinity of the same field line, hence the perpendicular
motion is negligible. On the other hand, since ion
trajectories hawve moderate'Larmor radii, the perpendicular
electric field can scatter an ion off a field line. This
perpendicular diffusion takes place sufficiently rapidly
so that the parallel motion is simply free-streaming.

(The relative importance of the perpendicular and the
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parallel diffusion of ions depends on the level of fluc-
tuation and the ratio of fhe perpendicular -and the paral-
lel wavenumbers. Experiments® and computer simulations®
both show strong perpendicular-ion heating, which indi-
cates the dominance of the perpendicular-velocity dif-
fusion.)

A set of coupled equations describing the rela-

tive trajectories can be obtained for each species,

<R">
9 <g8s =3 g =" 4 1.8 ey ¢ E g2
dt — 4 2 4 4 - 2. 2.
Dei Wei @eci
- - - 2 S - _,‘,..:..._.(,_3.._: 1‘:2)_~___ -
<V > <R™> . i '
%E s =.% @ —5=— + % ;%; <vE>‘+ —EE— <ZE>
Wei Wei Wei 2wei
d
at —= U=
for ions, .and
a3<z®> 5
—— = = F<Z4>
atd
2
d<R™ >
aT =0 (3 11 '5)
a<vé>
——— = O




63

for electrons, where

2
Q q ( )4 s 52 2 4
=3 Jele. |%a ( x%)
n' 'k k n ’
E/ wu% K 210 et N
w
n
and
2
_ e L4 2n€ 4
Fo=5 (m) 2 leg,ol%6f,0
m k
e ~
W

The time-asymptotically dominant solutions are

(t)>1w_ <z (o)>~~+ 2K (-0-)Z— o}> e T (O)>:L 2.

<xf (t)>t =3 exp(t/wi)[iz <x’2_(o)>i

A
+<WZ(2$9 (ﬁtf&zf«”g (3:1-4)
Wei k _ .

+ 2<u_(0)>tey + 2<u§(o)>i¢§]]

<z?(£)>¢ =L exp(t/x;) [<ZE<0>>e

+ 2<u_(0)7_(0)>%x_ + 2<0Z(0)>%1"

®

X \2 lXZ(O) e
+<f_—> e ] (3:1-5)




64
xB_(6)F =<&E_(0F .

, 2 _ -
where 1, = wei/Qs Te = (F) 1/5 ana

> =< o

Notice that on the time scale of relevance, ions freely
stream along the field line and experiénce turbulent scat-
tering across the field line; while the electron motion is

dominated by parallel diffusion. The exponential time-

" dependence of rapid decorrelation FEEULEE from tHe nature
of the relative-diffusion coefficients. When 7T £ T
(or t < Te), the relative motion is slow because of weak
relative diffusion. When t > T4 (or t > Te) the particles
have decorrelated, hence the relative motion bécomes
rapidly varying; |

The clump life time 7,1(X ,Y_) is defined as
the time that two nearby phase-space points require to

achieve a separation of a distance <]5[>;l, so that

REHE (0> + FRzB(r > =1 . (3:1-6)




65

Substituting‘xzw and-ZE from Egs. (3:1-4) and (3-135)

into Eq. (3:1-6), we obtain

i - 4/3 .
Te1 = Tiln TEy2
—2_2 K"V —2 (52 2_a
KEXE_ 4+ ——= + KO(22 + 20 2_vy + 2UC75)
- 2w - T -
«@Pcl
: (3:1-7")
. . 3
e
T = T ,gl’l —_ :
cl e { kZXZ o 5 ' 2 2
— =t K (2% + 2U_Z_7o + 2U%7S )

(3:1;8)

The‘arguménts:of logarithmiévfunctioné are exactly the

_initial separations of time-asymptotically dominant solu- . =

tions of<}Cf__(t)>'i and‘<ZE(t)>$; respectively.

From Eqs. (3:1-7) and (3:1-8), it is possible
to characterize phase-spaée structures (clumps)-iﬁ ion-
cyclotron turbulence. The electron clump, in position
space, appearslas a cig@r-sﬂabéd”gfoup of electrons
aligned along the magnetic~fi§ld,rwith the length and
radius (E)'l and (E)'l, respec£iv¢ly;ﬂin velocify space,
it appears as a thin disc with thickness (in U) and radius
(in V) (;Te)-l and vte,-réspectively (Fig. 3.1). Thev
ion clump, in position space’appears as a gyrating tether-
rod about the guiding center,.with the tether length py>

if Epi > 1, and as a cigar aligned with the magnetic field
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. Figure 3-1.‘

(k)
Iilustrations for the electron clump and
the ion clump with K p; < 1 (&), and the
ion clump, with ?;pi > l'and‘the.pérpendicu—
lar clump velocity of the order of the ion

thermal velocity (b)
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if'Epi<( 1. Both cigar and rod have radii (X)"% and

lengths (E)'l. In velocity space, the ion clump appears
as a gyrating tether-disc perpendicular to the magnetic
field, with the disc radius vys(¥p;) " and tether length

v,. if kp; > 1, and as a thin disc of radius vy if

ti
Ep£< 1; the thickness of both discs is (Ewi)'l (Fig.
3.1).

One may notice that both of the clump lifetimes

have similar dependence on the parallel velocities UE,

in that they scale to l/kwc,rwhile v1 scales to w,4/k for

TEhe Tion-clump Lifetine T Since Tons primarily experience
pefpendicular scattering,.one.might expect that Vi,vin—
stead of Ui, would scale to l/Ti, The reason is dis-
cussed here. The ion clump has basic corfelation lengths
(x)~L and (E)“l in the parallel and perpendicular direc-
tions, respectively. Furtherﬁore, in the perpendicular
direction, the Lorentz force is much stronger thanvthe
relative turbulent electric field, thus éorrelation in
the perpendicular velocity scale is determined by the
relative gyro-motion and is wci/f. In the parallel di-
rection, on the other hand, the dynamics are essentially
ballistic streaming. Hence, the parallel wvelocity cor-

relation length does not directly result from parallel
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scattering, but from the fact that the parallel velocity
dispersion leads to perpendicular particile-:scattering by
waves of different phase velocities, which causes decor-
relation. Since the scattering occurs on the time scale
T;, thus the parallel vélocity correlation scales to vj.
For electrons, tﬁé (relative) turbulent parallel elec~-
tric field scatters relétive paraliéi velocity, hence Uf
scales to t1o. This explains why in the expressions for
clump life times the parallel velocities are associated

with the decorrelation time, while the perpendicular

_.velocities_-are.not...It is.instructive to note that in S
deriving the expression of ion-clump lifetime, we have

used the fact that

lmci %fl >> 1 or TiWag >> 1
in Section 2.3. These are equivalent to the assumption
that the ion Lorentz force is much stronger than the tur -
bulent electric force field. .In the limit of weak mag~
netic and strong fluctuatiﬁg electric fields, where the
straight-line-orbit limit can be recovered, the above
analysis is invalid.
io
Following Boutros-Ghali, and Dupree, we can

evaluate the clump component of the two-point correlation
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function,

<FH 7 ~ Ergl(;g_,y_) - TO.}}T-<'S>O— (3:1-9)
That is, the nonsingular part of the correlation func-
tion has an approximate magnitude TU<S>U.

To investigate moments and extract results; one
can integrate over velocities in Eq. (3:1-9). After
spatial-~temporal Fourier transformation and integration

over Y, and V,, we have

[ ay,ay,<sf(1)88(2)>8 = -f ax_etRE_

\
|
- fav. T e + 2 T , -
f av_tedn 8‘15[2_ U_Z_Te + 2U°T ¢ |

¥ .2 ] |
+ = XI_ || [ ay <s> (3:1-10)
2% :

and

B2,z vZ g%
- [ av T @n;-—[xq b= 4+ [zz + 2U 7 T,
Ay I R 2 2 Y]

Z(l)ci k
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Notiée thét‘the integrand has a width i/ETG in US, hence
the integral def’introduces a factor 1/ts; to cancel the
coefficient 74 of the clump lifetime. Thefefoie, the
origiﬁal nonlinear equatioﬁs of squared fluctuation ampli~
tudes bécomé_linéar after the yelocity integration. Using

Poisson's equation, we obtain :
| ang,( 2¥'Py)

. ‘ _ »
: 8AY (K)Ap (kpy)  2Anr(k'py) k' (k")
<’&;Z>1 = ~ @ hN (¢S
0 -k k' (2“)3I€£1,w| |5
~Yoe i 2
.l:\d) >}'{v"’ I(Itn)(El’ 1)
~o i i e ,
+ <o°> ImX, Im . : .
k' ' 1,5 0! X}EJ ,w'}!w - ngwey _ o' “'n(]JU)C;'_l__
K ’ _ K
8A° (k) ' 4
<GBE = T (k') > |
- ) 4
s x4 K (2n) | ,U.)" ‘
|
r ' |
. A e 2
|~<® )h"w.('[mxh,-,w,) I\
S oLl e i e v
+ <o >%.”Mlmxh.“ Im‘h',w']hn ®' (3.1¢13)
where terms proporation to <¢ >b' '(1mxi)2,
~2 i ' 2

Tax T1mx® in Eq. (3:1-12) and <3°>1, w,Iminmxe
2

)
< >k',0.')' X v. . ) E

J
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<¢®>1 (1 ®)? in Bq. (3:1-13) correspond to D1, pie
w2 '

and D%, Fel, respectively.

o $ . o
A%(x) = [ay_ [ ax eEE (27 - 151,

and

2.2
-k 5
n(koy) = I,(k%p8)e™™ P1 |

‘The summation over n has one dominant term n =n for a

w?’

R giv en— "(D—","'”Tb ecause-the 1onscan'only -interact-with—fluwetwa=— B

tions with Doppler-shifted phase velocity w - nmc/m

near the ion thermal velocity. -Since xis small (k <<3wci/

Vi

resonant.

) in ion-cyclotron turbulence, 6nly one harmonic is

To evaluate the %' integral, 'weinote that ..

l/lek';wflg can be expressed as l/lRee}S’,’w'l2 +

2 . . .
IImeE"w|| s which is peaked where both Reek,’w, and

Ime are minimal. Since the magnitude of ,Ree

k',mf
is generally larger than that of lImek, w', (when‘TT
~

Ti), the minimum of lek, w,lz is located near where
X',

%’5&),
|

<

|Ree =0 and'|Imek: w'l is minimal. Hence the
~?

H H
Ko

k! integral can be evaluated at the zero of Ree€p: .1
~ l 3 )
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(for situations where the magnitude of |Ree| is not neces-
sarily larger than that of |Ime|, see Appendix C).
As aresult, tonseyclotron clumps are associated

‘with ion-cyclotron waves, for which Ree . 0. 1In the

el

5
limit TE >> T%,‘the magnitude of Ime%’wl is comparable
to Bee‘}&’(D because the normal mode frequencies are -ap-
proaching cyclotron harmonics where the wave dissipation
is the greatest. Hence, in the spectrum sum the approxi-

mation Ree ' =0 is not valid, and the ballistic fre-

LI
Ko

quencies do not coincide with the normal mode frequencies.

“rInfact;y the long=range character-of waves disappears-
due to the highly dissipative media. Ton cyclotron turQ.
‘bulence then consisfs of only the clump fluctuations,
analogous to ion—acoustic turbulence with equal ion and
electron temperatures. In this regime, one must solve
the integral equations numerically. Hereafter, we shall
- confine ourselwves to the wave-clump regime.

Thus, using the pole apprqximation, evaluating
cand assuming that only one harmonic is dominant

k at ki,

for -a given w, we obtain the expression

€.,2, 2
<o2>2 | = —— [(Imxi o) E<eeSt
R0 e | Tme, .| ~? @
~ AW ,13 w
+ Imx}e{’wlmxli{’w<'d\>2>§’w]] | (3:1-14)
~ ~ ~ k=
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. i22 , N
<p2>1 | = 2 £ p (Tmy i )E<38>8
kyw ——r— kyw k,w
VR lImek w, ~ ~
2
+ tmx®  Tmx 1 <62>1 J | . (3:1-15)
o ko Bl |y

Here, a~ 0.7, at ~ 0.15/£2p§/V 0.1, obtained from Ae(gw)
and Al(gw), respectively. A condition for stationary
turbulence,

e iy.242 e i "
, - . —
(a® + a Yk XDImX], ImX], = Ime , | = Ime_, 3

F

(3:1-16)

TTFOTTIows direc¢t Ly . TThe choice of Figh Tis baged onthe
physical motivation fhat the waves must be overdamped in
the presence of a (nonlinear) noise source. Moreover,
the structure of Eq. (3:1-16) persists in other plasma-
turbulence problems, such as the wave-clump regime of
ion-acoustic turbulence, drift-wave turbulence, etc.

The frequency linewidth due‘to the finite col-

lective dissipation Imek o Cen be expressed as
2
~J

aRGEl{,w

= — 0] -
K |Im€%,w/ 3% (3:1-17)

AW

W=W
%

For a given mass ratio, temperature ratio and drift wveloc-

ity, Awy, may then be estimated numerically.
~ .
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Physically, the above results may be summarized
as follows. .First, the multispecies plasma can relax its
configuration to drive formation of small-scale fluctué—
tions. This relaxation mechanism is similar to that in the .
test particle model, where only the interaction of diff]
ferent particle species contributes to this relaxation.

Second, interactions that contribute to the driving source

.arise from the collective dissipation of wave-particle

interactions and are proportional to ImX; and Imxi .
N;(D N’(D

Third, waves that are emitted from clumps must be dis-

turbulence. Balancing the dissipation Tme, o with the
52

driving source, Eq. (3:1-16) follows, i.e.,

i
k,w
~J

°

o< e
Imez%’(D Imx§’®1mx

" Experimentally, one 1s concerned about the possibility

of measuring the clump fluctuations in ion cyclotron
turbulence. TFor the regime T} >>Tﬁ N'Te, wave fluctua-
tions are weakly damped; the mixture of wave and clump
fluctuations may make a clear identification of clﬁmps
difficult. However, if the fluctuation level of tur-
bulence is sufficiently high so that the collective dis-=

sipation is large enough to damp the wave fluctuations,
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then the clump fluctuations will be more likely to be
detected. .For the regime j} >> T% Q&Te, turbulence is
dominated by clump fluctuations and a direct measurement
of clump fluctuationsg should be possible.

‘Next, one may be concerned about which speciés
of clump fluctuation is more likely to be measured. The
probability of measuring them is propﬁrtional to a sta-
tistical avefage of clump amplitudes. Therefore the rela-

N

tive size Qf <¢2>§,w to <d>2 is a reasonable measure
B ~

i
>k,w
~

of likelihood of which species of clump fluctuation will

straightforward to obtain that

<o?58 o eflmf 1 e 4.4 : )
= - i Rt —5 =T AT . 3311-18
<¢2>§ allImXi | a’ “g;£§§
~? ® (kpl)

The fact that a® << a® is due to the effects of finite
Larmor-radii of ions, which greatly weaken the driving
source and aISO'reducé the perpéndicular velocity cor-
relation length of ion clumps. As a consequence, the
electron clump fluctuations are more likely to 5é.ob-

served than ion clump fluctuations.
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3.2 Clump Instability

A state of stationary turbulence can be attained
when damping of collective resonances balances emission.
Both processes are related to the amplitude-dependent
susceptibilitiesilmxz’ and Imx , . When an iﬁbalance
occurs, the plasma will adjust its fluctuation level so
as to satisfy the steady-sfate coﬁdition. Below the
threshold=-drift velocity, the free eneréy is insufficient

for excitation of fluctuations, and the steady-state

fluctuation level is that of thermal noise. Beyondrthe

thresholddr1ftveloc1ty, the free energy avallable can be

used to excite the enhanced local phase-space fluctua-
tions. -‘This threshold~drift velocity is in general
smaller than the threshold-drift velocity for linear in-
stability because the clump instability can occur for
Ime < O.

To obtain the th?eshold drift of the nonlinear
instability, we caﬁ express Eq. (3:1-16) as

. | T oo

TmX = a7 : | (3:2-1)
Ko® 1 4 (a® o+ al)%zxgllmxi,wl

where Imxk ~ contains the free- energy source, the drift

velocity vp. When: T“fV TL, the expressions for Imxk o
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e VD W 1
Tmy nJ -
ko [Vte KVteJ <£2x§>

- T€ ' ""(w"nwmci) 1
T ™ Ty <"€) by (6%0%)exp 72 272
’ Ctui \T @ Kovy %MD
i )

A straightforward sub-

with w and k satisfying Reek’w.
(3:2-1)

stitution of the above expressions into Eq.

yields

SR,

e e e i V- i N_I’\‘,_V" g, e 2
te te e w»(w - nmmci)
L (_T Ay exp ok 2 2
Tt/ “w KoViyg
2
- By®ci) }~

X : e (o
1 + v (a® +at )—.——@-—.— 2_;. A, exp|-
KV . i o 2 2
tii \T K Vins

(3:2-2)

BVind

+

While the linear threshold-drift velocity is

thr] © M- )2

r m & -l - n,W0A=

I:X__] ~v K(‘D + - L (—T) An exp 5 Zw cz
Tte Vepi \Tt ® I

Ve
(3:2-3)

The factor (a® + a®) in Eq. (3:2-2) accounts for the

reduction of threshold-drift wvelocity.




The reduction of the threshold-drift velocity
. . 242 i i
may be substantial if (k XD)Ika ~ 0(1), that is when
n N,(D

o - nwwci/nvt“il < 1, in which case the second term on
the right of Eq. (3:2-2) can be sizably reduced. When
Ti > Tﬁ ~ T®, the wave fluctuations emitted by clumps
tend to approach this regime, hence the clump effect may
be enhanced. In Fig. 2 we plot both of the linear and
nonlinear threshold-drift velocites versus Tr/T¢ Vme7Mi,
As the latter increases both the threshold wvelocities

increase, but the reduction Avthr does not increase as

e -2 pEA Ly, - When __.'__’L,!%v / 7€ /m em;_M.i.. 0. ;.,.]_.o._.,._.mt,he._r_e Sisca-maximum. oo

thr/vthrﬁu}Y%, This is because, upon mini-

AVERT yith Av
mizing the threshold wvelocity, the parallel-phase wveloc-
ity ay /¢ of the nonlinearly-excited fluctuations in- |
creases with TE/Te VE;7M; more rapidly than that of the
linear modes. According to Eq. (3:2@2), this increment
in wkﬂﬂ tends toooffset the reduction of vt?r due to
finite ion dissipation. This explains why the reductiop
Avthr saturates even in the case of strong ion dissipa~
tion.

By contrast, the ion-acoustic branch wave-

clump turbulence is quite different. .The ion-acoustic

waves have an almost constant parallel-phase velocit&.

78
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Figure 3-2.

002 004 006 008 010 0OI12 014 0l6

i
,("k 37/
Mi) Té®
Threshold drift velocity of ion-cyclotron
clumps normalized to the electron thermal
velocity w}thr/vte as a'function of.
(me/Mi)]'/2 EE/Te.-.Nonlinear and linear
results'are shown by the solid and dash

lines,,respectively
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Hence, the fir;t ﬁerm of Eq. (3:2-2) is constant, and the
nonlinear threshold-drift velocity is determined by the
enhanced ion dissipation. Reduction of threshold drift

can thus be very significantii’i7 (Appendix D).

If the drift velocity is above the nonlinear-
threshold drift, the fluctuation will grow and hence the
amplitude-dependent collective-resonance dissipation will
increase till steady state results. The growing correla-

“tion function satisfies the equation.

: 1 o o \

- rY e "<8f_ S _Sf_ S >_.,z,.<s>_ e e e e e e . £ e (_5,_:.._2.___.4_../
[ %l} (1)%%(2)

72 '
o ~
<8f ;. \BF SO el 6O (3:2-5)
(1)%(2)” " T ,70 _
c _

These expressions are wvalid when the nonlinear growth

rate 7y is smaller than the shifted frequency w = nw., .

This has been assumed from the outset to guarantee a
separation of time scales. It will be shown that the
nonlinear growth rate ¥ scales with the particle trapping-
time. Hence, so long as the fluctuation amplitude is
small enough, the condition for separation of time scales
can always be met. TFollowing the same procedure as that

in the previous section, one finds

/
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at a®

Ime = — +
%,m {l + YTy L+ yTg

i e 2 2
} Imxk’wlmx%’m(£ XD).
(3:2-86)
In the limit of weak growth, 7Ty, 7T < 1, so

l/l + 7T1Nl - 7T.

; and 1/1 + yTo o~ 1 - yTg. This yields

(VD - Vc) o)
Imxe. BleImXel . (3:2-7)

7(aiTi + aeTe) =

where v, is the critical drift velocity for maintaining

C

the stationary turbulence at a certain fluctuation level,

and hence is amplitude-dependent. The growth rate scales

“with the test-particle diffusion times, weighted by the

relative sizes of the ciumps of thg corresponding species.
When Te ~ Ty aeTe >> aiTi the clump-growth rate is that
of an electron-decorrelation time.

If the electron-drift wvelocity significantly

exceeds the threshold, and yTg, yTi 2 1 then

sl ge ] Im®Im S Tai el i ol
b4 A -’_-E—' -+ T—- Tme NF+'-I,:— (a, + a )
i e i e .
' (3:2-8)
For ion=-cyclotron turbulence, ai/Ti << aexe, hence
o~ (3:2-9)
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‘Notice that Eq. (3:2-6) is quite general. 1In the case

of ion-acoustic turbulence, al = a® but T, << Ty, hence
in the limit of small growth, the growth rate scales with
the ilon-decorrelation time T;. However, in the case of
strong growth, the growth rate scales with the electron

decorrelation time‘Te.

3.3 Saturation Level and
Anomalous Resistivity

In ion-cyclotron turbulence, perpendicgular non-

linear-ion scatteriﬁg'and heating is proposedvasmfﬁgm
dominant mechanism for saturation. Energetically, this

nonlinear process transforms the electron current energy - C
into the ion.perpendicﬁlar thermal energy. Dynamically,
this nonlinear effect leads to a broadenéd wave-ion
resonance. The width of resonance, which is dependent
upon the fluctuation level, yields a correction to the
linear=-ion dissipation. If the electron-drift velocity
vp does not significantly exceed the threshold velocity,
the saturation level can thus be estimated with a per-

turbation expansion around the marginally stable state.

The saturation level (or the resonance width)

can be estimated using Eq. (3:1-16), the steady state

e ——
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condition and ]Re'er]ts,CD =0 as a function of the drift wveloc-
ity excess beyond the threshold. Since the anisotropic-
ion distribution can lead to more effective wave-ion
interactions as explained earlier, we shall confine our-
selves to the case where Tﬁ = T% = 7% < T}. - Then Eq.

(3:1-16) and Ree, . =0 can be expressed explicitly as
4
~ny

' w -+ = | W o= N W +¥L
o = Bv e T w-cl T

K n v
Vie T B i1 VE1
, L
w n, .o =
wrcl Ti
- An 7! p
. RS A, W KVg- .

. - - ® =0 Wey FTT f
=i (a% + at) Tmz | L - %D Ay Imz! Ti
o KV

i

e w + %% ® = nywei + %;
+ TT Tm {————,—i} . z[ 1] (3:3-1)

where the function Z is the plasma dispersion function.
From the paragraph immediately following Eg. (3:1-5), ion
decorrelation time Ty is defined to be amplitude-dependent

and can be estimated as

L o FceTk” <¢(X)> ] | (3:3-2)
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BSince the ions are fluid-like, the dominant dependence

on 1/T; is in the Z functions. Let 1/T; =0, we can ob-

?

tain the threshold drift v'BY by solving the real and
imaginary part of Eq. (3:3-1). In doing this, we have
“assumed that the fundamental harmonic is dominant and
have evaluated‘Epi at where A, peaks. When 1/7; is

finite, we let vy = vPBY + Avp, @ = oy + A, & =k, + Ak

where w are the frequency and parallel wavenumber

T

0’ %o

of marginal stability. Using a perturbation expansion

around the marginally stable state, we obtain an approxi-

mately linear relation between Avy/v, and L/,

AV ‘
D oy . L (3:323)

Ve kVeg Ty

where Y is a function ovame/Mi 7l /7€, and is shown in
Fig. 3-3.. Eq. (3:3-3) is recognizable as the expression
~\7 = l/Ti, where y is the clump-enhanced growth rate. The

saturation level can hence be estimated as a function of

AVD/Vte and Vme/Mi Tt /re,

_ i A 2 /A ‘ v
e2<e?(x)> _ 2 le <E) < 1 > <’“”°e> (‘WD> vl (3:5-4)
2 MR/ \kpy /N Ve |
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Figure 3-3. Ratio of the excess of drift velocity Avp /vie

to the ion trapping rate l/klvt"_Ti-as a.
Poera _ 5

function of (me/Mi)l/a T, /T%. Results of
the ciump’theory and the cOnvéntiqnél non-

linear theory are shown by the solid’&nd

dash line, respectively.
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In Fig. 3-4, we show e?<¢2(x)>/T2(AvD/VD) as a
function,bf Vme/Mi‘Ti/T?. [The'conventional nonlinear

theory of wave fluctuations prédicﬁs that e?

<62 (x)>/mE
increéses almost linearly with /§;7ﬁ; Ti/Te. HoWéver,
e2<¢2(x)>/T§ obtained usiﬁg the clump theory increases
more rapidly than that of convgntional nonlinear theory,
until /;:7§;‘T1/Te = 0.0éS.. Then, after reaching a maxi-
mum .value at ng7§1 i /78 A, Q.OS,_e2<¢2(x)>/TS begins to
decreaée slightly. This is because e/2;2($)>/Te is in-
verselyiproportional to. the pafallel phase velocity
(l)/KVte;E(i- (3 :3_4)’ RTeh iHerense S more FapTATY 1n
thevclump.iheory than that'in the conventional nonlinear
theory (see paragraph immediately following.Eq. (3:2-5)}
Amphg vafious anomalous transport coeffi-
cients, anomaloﬁs resistivity and heating are the most
_siénificant'résults of ﬁhe clﬁmp‘thébry. The aﬁoma—
lous resistivity resﬁlté from a drag force, which is
éssential to maintain a stéady current againSt a.D.C.
parallel e;ectric field. In addition, this fheory pre-
di;ts a negligible,turbﬁlent diffusion of the electron
distribution function, since thié diffusion coeffi-

clent is pfdportional to the ion—dlump amplitude, which is
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relatively small, as shown in the previous section. This
indicates that there is relatively weak electron heating
and that most of the electron-béam energy 1ls converted
into lon-perpendicular heating. By marked contrast, the
conventional quasi-linear theory prediction contains only
the diffusion, and cannot treat a situation of a steady
current. That theory also predicts that electron heating
is greater than or egual to ion heatiné, because of thé
fact that Ezpi > 1 and (E/E)Z me/Mi:v 1 for ion-cyclotron
turbulence, thus electron diffusion coefficient is larger»_
‘then that of fons. Therefore, the wave and clump theories
differ significantly in their prediction for the energy
conversion of the electron current.

Anomalous resistivity i1s obtained by taking
the first moment of the electron-average distribution

function. At steady state, where a D.C. electric field

is necessary, 1t follows,

ek o<f. >
o e
— U = dv
J < v
= 2
»
=& [aylz 4“ = 22 k &
m x (20)%e, | ex
W ~?
. a e ’\/2 i a<fe> 3
oU Gk\;w< >1§J,(D AU

- Tmy i K §—<5%Je-;e> (3:3-5)
k.,(.l) aU }S,wj . H

£
St
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The diffusion term is small because it is pro-
portional to the amplitude of ion olumps. Thus, the drag

2!

force yields,
ek i 2 42
o i e’ < > —=._2
0 N Iy g [————1’-—13‘—)—] KVie (3:3-6)

where Ile is the spectrum-averaged ilon dissipation.
koo

With U defined by E, = nA(nOeVD), we have the anomalous

o}
registivity np,
i\ 2
b= gy | My \rpe [“Vte:l . (ﬂﬁ—-)[ﬁ‘_’g] v-1
A wz l.S(Epi)4 4\ k,w VD

In FPig. 3=5, we show the properly normalized anomalous

resistivity

i

A vs <Ee ) E_

Hoei AVp M Te
w%e D

A comparison between the anomalous resistivity of the
clump theory and that of the conventional nonlinear theory
of wave fluctuations is also shown in Fig. 3-5. The
conventional nonlinear theory predicts an ever-inéreasing

(but more slowly) resistivity as a function of (me/Mi)l/Z.

' Tl/Te, while the clump theory predicts a much higher
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Figure 3-5.

0.02 004 006 008

Anomalous resistivity nA normalized to

' (@twci(wgé) AVD/VD as a function of

(me/Mi)l/2

theory and the conventional nonlinear
theory are shown by the solid and dash

lines, respectively,‘

Iﬁ/Te. Results of the clump

90
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value of resistivity at (me/Mi)l/z.Ti/Terv 0.03. Then,
the anomalous resistivity begins to decrease.

The saturation level aﬁd anomalous resistivity
predicted in this theory are in good agreement with those
obtained from the preliminary results of particle simula-
tions.'” It is also noticed that this theory predicts
that the fluctuation level eo¢/T., is quite moderate (5 0.1)
for the wave-clump regime of ion-cyclotron turbulence.
This conclusion suggests that a study of the clump regime
of ion-cyclotron turbulence may be necessary to explain .
the anomalous transport associlated with ion—cjélotron

turbulence in the observetions.

3.4 Summaries and Conclusions

In this paper, we investigate the nonlinear
theory of ion-cyclotron turbulence in the regime of strong
wave-particle interaction. This type of turbulence con-
tains two major constituents, the wave and‘nonwave (clump)
fluctuations, in contrast to the case that is dominated
by the nonwave fluctuations. Wave-wave interaction has
been neglected because ion cyclotron waves are of the
nondecay type that requires Qery high turbulence levels

for wave-wave interaction, and also because we have
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focused our investigation on the small-scale structures
of the phase space. The principal results of this study
are:

(1) Renormalized one-point and two~-point equa-
tions describing magnetized Vlasov turbulence have been
derived. Since particle motions evolve on two different
time scales, the renormalized two-point equation describes
the slow, relative motion, the renormalized one-point equa-

tion describes the rapid cyclotron motion and yields a

(2) Shapes of ion and electron clumps have
been predicted. The electron clump appears cigar-shaped
aligned along the magnetic field in position space, and
‘appears as a thin disc perpendicular to the magnetic
field in velocity space. The ion clump, when'ipi > l; ap-

bears as a gyrating tether-rod about the guiding center

in position space and a gyrating tether-disc in velocity
space, when Epi < 1l, the ion elump appearé cigar-shaped
aligned along the magnetic field in position spacé; and
appears as & thin disc perpendicular to the magnetic
field in velocity space (Fig. 3-1).

(3) The clump amplitude of ions is much less
than that of electrons because of ion finite-Larmor.

radius effects.

renormalized dielectric function. .~
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(4) When T} > Tﬁ ~ T®, ion-cyclotron turbulence
is of the Wafe-clump type. :When'T}.>> T% ~ Te, transi-
tion to the clump-dominant type of turbulence occurs.
This transitiQn takes placeapproximaﬁﬂy'Wheny(me/Mi)l/z

Tj/Tﬁ > 0.L, where waves are heavily damped.

(5) A necessary condition for the maintenance

of stationary ion-cyclotron turbulénce is given in Eq.

(3:1-16), and is a Vlasov-theory analogue to the pre-

diction of the fluctuation-dissipation theorem of the

test-particle model. This results from the fact that the

collective dissipation must balance incoherent noise
emission from maqroparticles at steady state. This ex-
pression is valid for turbulence of the wave-clump type.

(6) The nonlinear growth rates in diffefent
regimes have been obtained, and are given in Eqgs. (3:2-7)
and (3:2-8). Nonlinear instabilities grow on fhe time
scales of fhe particle decorrelation timesf

(7) The clump modifications to the instability
threshold in the wave-clump regime are small (reduction
of threshold drift velocity is within 7 percent, Fig. 3-2).
However, the modificatiéns to the fluctuation levei at
saturation and the anomalous resistivity are more sig-

nificant, Also, while the guasi-linear theory predicts
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that electron parallel heating is larger than, or equal
to, ion perpendicular heating for ion-cyclotron turbu-

lence (EZ/EZ ~ Mi/me, Ezpi > 1), this theory predicts

that ion perpendicular heating is the dominant mechanism
for extraction of electron-beam energy.

In deriving the global conditions for steady
state turbulenqe, two interesting questions arise. First,

supposing that the drift velocity VD slightly exceeds the

threshold velocity vSBY, then only the fluctuations <$2>§

~

within a narrow window of the wavenumber spectrum can be : _

excited. ‘However, the wavenumber spectra obtained from

Eqs. (3:1-10) and (3:1-11) are broad and independent of

2

vp. Second, the spectrum of <> obtained from Eq.

K,

(3:1-1), by integrafing the velocity and using Poisson's
equation, g different from that obtained from the ex-

pression,

2 - 7\/2 . mz
< = i + e
64> [<o>} , * <o >§,w]/'€l§,w[
The latter expression has peaks near normal modes,
lek w|2 X0, while the former expression does not.
2

The answéf to the first ﬁuestion is simply'that

as soon as fluctuations within the narrow window of the
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wavenumber spectrum are excited, they will spread‘out

- and cover the whole range of spectrum by mode coupling
processes. The answer to the second question is -as fol-
lows. The expression Eq. (3:1-1), is only valid for the
relative separation [X | 5 1/|k[. This limits validity
of the long~wavelength (l%l < ]El) side of the spectrum
resulting from Eq. (3:1-1). Since the poles of lek’w|2
are generally located in this range of the spectrum,

hence the expression of <¢2>k,w obtained from one method
range .

It is natﬁralvto ask the question, whét happens
when both ion-cyclotron turbulence (k/k >>_l,>kpi ~ 1) and
ion-acoustic turbulence (k/k < 1) exist at the same time ?
For 'a magnetized plasma with T}T> T > T%, the threshold-
drift velocities of both ‘are comparable. Whéﬁ one type
of fluctuation is excited the other may also be excited.
The presence of both types of fluctuations not only can
change the structures of clumps, but their interplay
‘Leads to that the dissipation of one branch is determined
by the other branch. Furthermore, ion-acoustic turbu-~
lence i1s intrinsically clump-dominated. When ion-

cyclotron turbulence is coupled to ion-acoustic turbulence,

its clump character can be greatly modified.

should not be compared with that from the other in this -
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This kind of plasma turbulence ‘with both ion-
cyclotron and ion-acoustic fluctuations is a generaliza-
tion of what has been investigated in this paper, and is
now under investigation. The résults will be published

in the future.




CHAPTER Iv

TWO-DIMENSIONAL SHEAR FLOW TURBULENCE

4.1 Introduction

In this chapter, we will study free shear flow
driven low-frequency turbulence of strongly magnetized
plasmas, in the 1limit of vanishing magnetic shear. Thus,

the Problems are two-dimensional. Furthermore, in low-B

static®: (i.e., for B << 1, magnetic fluctuations are
usually negligible), and incompressible.®2 Tp this
case, the plasmas are dynamically equivalent to two -
dimensional incompressible fluids.

In the following study, we will consider mag-
netized piasmas in the limits mentioned above, that is,
a system which can be treated as a two-dimensional in-
compressible fluid. Our motivatiions for the investigation
in these limits are twofold. First, we feel that a deep
understanding of electrostatic turbulence is necessary
before one attempts'to study electromagnetic problems,

which are usually more relevant but also more complicated.

97
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Second, since fluid turbulence is simpler, in that well-
controlled experiments and computer simulations can be
conducted with great precision, thesretical ‘predicPicn = -
tdnahave a ground with which to . compaie.

With these notions, we may start our investiga-
tion on two-diménsional fluid turbulence by briefly
examining the following simple system. |

Consider two streams of uniform, and parallel

flows characterized by their wvelocities U1 and UZ’ and

a plane of interface parallel to the flows. Any per-

M%ﬁ?bégAgégiggr;cfﬁsswthis interface can .immediately be
amplified due to the shear motion at the inter face. The
inhomogeneity of the mean flow at this plane provides
free energy for exitation of turbulence. Soon,'when the
turbulence motion is sufficiently violent and thus en-
hgnce local gradients of the flow, turbulence energy will
then be quickly dissipated by moleéular viscoéity.
Maintenance of turbulence, in general, relies again on
the inhomogeneity of the mean flow to provide free en-
ergy. This is why turbulence of practical importance in
the nature 1is frequently associated with inhomogeneous
flows, i.e., shear flows.

Shear flow turbulence near walls is different

from that away from walls (free shear flow). The former
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usually can exchange momentum with the walls via viscosg-
ity,®° which may then lead to a phase shift, possibly a
positive feedback, and thus an instability. The latter
generally results from an interchange instability of
vortex tubes at the vorticity maximum®® of the mean flow.
At this regiog, the restoring foree®* of vortex tubes,
upon interchange of their positions, vanishes, thus in-
stability can occur and the shear can relax.

. In this chapter, we}study two'types of free

shear flow turbulence in two-dimensional incompressible o

(a) Mixing-layer turbulence
(b) Wake or jet turbulence.

For mixing-layer turbulence, interactions among
the mean flow and large-scale fluctuationg®> govern the
turbulence evolution. We are interested in the time de-
bendence of the shear flow Llayer and turbulence energy,
and note that the former has been observed®® to expand
linearly in time. .Wé use quasi-linear theory to examine
thelir behavior, and find that our results are consistent
with those of expérimehtsz7 and computer simulations.
For wake or jet turbulence, small-scaie fluctuations

comprise the main body of turbulence. In a two dimensional

N
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model, we examine small-scale vorticity correlation, and
find that the two-point coprelatipn function i1s strongly
peaked at small spatial separation. This is similar to
the clump of a one-dimensional Vlaéov's plasma 10,13 ye
also obtain an anisotropic spectrunm, where anisotropy is
due to distortion by the shear-motioﬁ of mean flow. The
remainder of this chapter is organized as follows:

In Section .2, we present a sufvey of the ex-

perimental and computational evdidence;’ whiich' shows.'a. dig~-

tinction between two types of free shear flow turbulence.

' In Section 3, we review the carlier theoretical attempts
at explaining mixing-layer turbulence. We point out
_the inéonsistepcy»of their assumptions when compared with
experimental and‘computational observations. Having
gained insights frém observations, in Section 4, we are.
able to pose the appropriate problems, which i1s addressed
analytically. In Section 5, we briefly review the neces-
sary conditions for two-dimensional shear flow (linear)
instability. We also present a new theorem regarding

the ﬁecessary condition for linearly neutrally stable
modes in two-dimensional shear flows. 1In Section 6, we
focus on mixingflayer turbulence. .We first discuss the

linear stability analysis of the mixing layer and the
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renormalization scheme for the.nonlinear one-~point
vorticity equation. Subsequently, we examine the quasi-
linear evolution of the shear layer and turbulencé en-
ergy. In this analysis, turbulence diffusion due to tﬁe
.linéariy unstable fluctuations is propéfly taken into
account. In Section 7, we investigate the possibility

of vorticity clump fluctuations in wake gnd Jet turbu-
lence. Finally, conclusions are discussed and summarized
in Section 8.

4.2 Observational Motivations

&. Experimental

. . . . 26 |
In shear flow visualization experiments; it

is usually observed that large-scale (comparable to the
scale length of mean flows) coherent waves are excited

at an initial phase; the instabilities are aSsociated

with the inflection points of mean flow profiles. For
mixing-layer mean flows, the large-sééle coherent vor-
ticese6_(Fig, 4-2), persist for 'a time much longer than
the time'scalevéf vbrtex rotation. Thleyrhlave the same signg
and are located at the center of mean flows. For types of

mean flows such as Jjets or wakes, vortices?%72° appear
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in pairs and have different signs. These vortices will
then break up into turbulent fluctuations before long.
This is clearly illustrated by the example of a jetZ®
coming out from a circular nozzle (Fig. 4-1) at very high
Reynolds number, Ry = 104.

In an interesting visualization experiment
conducted by Brown and';Roshko,26 they found that the
coherent vorf{bes‘;;n°stiil remain in the mixing-layer
flow as the Reynolds numbers were varied from 1.2 X 105

to 3 X 104 (Fig. 4-2). At smaller Reynolds numbers, it

is not surprising that small-scale fluctuations are sup-
.Pressed by viscosity and only large-scale vortices sur-
vive. However, at higher Reynolds numbers, the large-
scale coherent vortices still exist, superposed on the
small-scale fluctuations. In one of their experiments3°
on mixing-layer flow, large vortices can still be ob=-
served at a Reynolds number as high as Re =3 X 106.

This amazing observation indeed suggests that the exis-
tence of large vortices be a genuine feature of mixing-
layer turbulence, as opposed to the Eonventional skeptism
as to whether the mixing-layer flow is really turbulent,
or whether Reynolds numbers are high enough. Also, a

1

recent experiment by Bandyopadhyay3 had Hussain show




Figure 4-1.

Typical jet mean flow profile (a), and

evolution of jet turbulence at high Reynolds

numbers (b) .
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Figure 4-2. Typical setup for mixing-layer turbulence (a),
and evolution of mixing-layer turbulence at
Reynolds numbers equal to 3 x 104 (v),

6 x 10% (¢), and 1.2 x 105 ().
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that among g variety~of free shear flow turﬁulence,,only

the mixing-layer turbulence exhibits different character.
This experiment examines velocity-field spatial correla-
tion between large-scale fluctuations and the low-frequency
modulation of small-scale fluctuations. It shows that.
these two quantities, except in the case of mixing-layer
turbulence, are always in phase everywhere in the flow.
However, .in mixing-layer turbulence, the phase between
these two quantities wvaries from one location to another.

This observation implies theat the energy-exchange mech~

.anism between fluctuations of disparate length scales in

mixing-layer turbulenece is different from that of other
types of turbulence. It also suggests fhat the large-
scale fluctuations are not directly coupled with the
small-scale fluctuations in mixing-~layer tufbulence,
whereas in jet or wake turbulence fluctuations of'distinct
scales may be more strongly coupled.

There are ralso visualization experiments®® on
wake turbulence by Taneda. ‘For low Reynolds numbers,
i.e.;, Rg < 150, they observed that the vortex street
excited from the initial'linear instability persists for
‘a long time. However, for Reynolds numbers Rg > 150, the

initial vortex street will now break up into a turbulence
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state, as mentioned earlier. Nonetheless, large vor-
tices are observed to reappear from the chaotic state,
and then break up again. Presumably, the cycles of vor-
tex breaking and reforming can continue for =a long time.
In this report, whether these vortices and turbulence

are two or three-dimensional is not discussed.

b. Computational

Aref,28 et al., have computationally studied.

~“V0TteXFcloud-in—eellwsimuiatiOnS“for“twoﬁdimEﬁEiﬁﬁal“fIBWSfmmm’“mw"MJ

They begin the run with a thin vortex layer, and observe
it relax. Initially, linear instability develops (exci-
tation of large-scale fluctuations), and subsequently
groups of vortices are formed. Simultaneously, these
vortex clusters are scattered from the center of the
shear layer, hence the mean flow then expands. Interac-
tions of adjacent vortex groups pull in the irrotational
flow (entrainment), hence vortex clusters grow and the
mean flow expands further. TIn this study, Aref, et al.
point out that the large~-scale coherent vortex observed
in the visual experiment is not a singie vortex. It is
merely an illusion of the dye used in the experiment,

which is entrained by many smaller vortices in a cluster,
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tracing a seemingly simple pattern. They claim that the
vortices producing the dye pattern can be more complex
than the distribution of dye would suggest, .and that a
cluster of vortices would probably appear . as a single
vortex structure in fhe dye- experiment.

There is also an interesting two-dimensional
computer simﬁlation on wake turbulence by Zabusky,32
et al. They obserwved that the paired vortices of dif-
ferent signs start to roll up at the initial‘;inear phase.
Subsequently, the‘mean flow is broadened; the iﬁstability

~ slows down, and transition to the nonlinear phase occurs.

The constant vorticity contours are now stretched to
form long, thin filaments. Eventually they break and
form émall islands, 1In this report, they claim that the
reformation of larger wvortices due to vortex pairing is
also observed. Furtherﬁore, the energy spectrum is mea-
sured, E(k) « k%, for large wavenumbers, where -4 < a

< =3.

¢. Discussion

In mixing layer turbulence, even though Aref,
et al., argue that the regularly patterned coherent vor- .

tices in the visual experiments do not reflect the real
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distribution of small vortices, the dye pattern does re-
veal the integrated large-scale flow pattern, superposed
on the small-scale fluctuations. This is consistent
with Brown's observations for the high Reynolds numher
cases. |

fér the wake turbulence experiment by Taneda,
we think the fact that the large-scale two-dimensional
vortex pattern reforms itself from a turbulence state is

of significance. Conventionally, it is assumed that the

turbulent motion in a wake is three-dimensional. However,

-WEfuEéwég%%igﬁi%mfg;mﬂgmgg c;;;;i;;mﬁggwfh;ee-dimensional
turbulent fluctuations, after vortex tubes being stretched
and entangled, should organize themselves to form the
large=~-scale two-dimensioﬂal flow pattern. Unfortunately,
in the report of this experiment, the authors did not
mention whether the turbulence was two.or three~dimensional
We believe that, for the intermediate values of Reynolds
numbers (Re ~ 300) of their flows, the fluctuations are
probably two-dimensional. At very high Reynolds numbers,
as shown in Fig. 4-1, turbulence is probably three-
dimensional, and the reformation of large-scale vortices
may not be possible.

Now, 1t is interesting to compare the vortices

observed in mixing-layer turbulence with those in wake
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turbulence. The former are generated continuously and
show little difference from the linearly excited initial
vortices; however, the latter are intermittently dis-
rupted by turbulent fluctuations. Hence, we tend to be-
lieve that the large-scale vortices of m;xing-layer tur -

/
bulence are generated by the linear instability associated
with the inflection point of the flow, and that the large-

scale vortices of wake turbulence are a result of non-

‘linear rearrangement of small vortex tubes. Because of

the conservation of vorticity (assuming Reynolds number

is large enough), part of the fluctuation energy trans-

ferred back and forth between the large-scale and small-

scale vortices. This may lead to the intermittent ap- /

‘pearance of large-scale vortices.

To further elaborate on these two types of tur-
bulence, we notice that the large-scale vortices of mixing
iayers-are of the same sign, and’interactions between
ad jacent vortices are attractive. Hence, the vortices
tend to confine in the center of the mean flow so that
the mean flow expands slowly. -Moreover, the counter
streaming flows of a mixing layer, which occupy a large
volume on either side of the layer in comparison to the

volume of the shear layer itself, serve as a. large free
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energy reservoir. Therefore, the system has enough free
energy to continuously and adiabatically excite the
large=-scale fluctuations. On the other hand, the vor-
tices of wakes or jets appear in pairs of opposite signs.
They tend to expel eaéh other, hence the mean flow is
broadened (losing energy) rapidly.. Furthermore, there

is only a finite amount of free energy stored in the
finite volume shear layers of the mean flows. Thus,

large-scale vortices, which require substantial fluctua-

tion energy, cannot be continuously excited. Therefore,

small-scale fluctuations will then take over and domi-

nate the turbulence,

4+3 FEarlier Theoretical Treatments

B
X

26,27

Theoretical attempts at understandiﬁg shear
flow turbulence have been made previously. Most of the
studies assume that turbulence consists of three basic
components: two~dimensional mean flows, large-scale
fluctuations, and three-dimensional small-scale fluctua-
tions. The large-~scale fluctuations are generally be-
lieved to be associated with the instability due to the

vorticity maximum of the mean flows. The small-scale

fluctuations interact with the mean flow and large-scale

.
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fluctuations through local shearing of the mean flow and
mode coupling, respectively.

In the earlier studies,®® investigators con-
sidered a model where these three components could direct-
ly interact with one another.. The nonlinear coupling of
the fluctuations of different length scales was modelled
by closure schemes. .Here, an assumed global shape func-
tion for the sSmall-scale turbulent stressés was used. |
The rélative amplitudes of the components of turbulent
shgg;.p;eblem, i.,e., turbulence with a linear mean flow
profile. The shape for large-scale fluctuations was.
determined by a driven Rayleigh's equation, where Reynolds
stresses were the source. Aé a result, they obtained a
set of coupled equations, describing the mean flow kinetic
energy, large~-scale fluctuation amplitude, and turbulent
stress amplitude. .In this theory, the three components
of turbulence ‘are equally important in the determina-
tion of the turbulence evolution. 1In particular, it is
assumed that the three components can simultaneously and
instantaneously interacf with one ‘another.

However, as shown in the earlier .experiments,

mixing-layer turbulence is probably governed by the

stresses were determined from the locally homogeneous -
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interaction between the mean flow and large-scale fluctua-
tions. This 1s probably necessary to explain the ob-
served similar evolution for the flows of high Reynolds
numbers and those of low Reynolds numbers. Therefore,
this earlier theory may not be appropriate for applica-
tion to mixing-layer turbulence. Furthermore, a numerical
calculation®* of mixing;layer turbulenﬁe, based on the
reduced coupled equations derived from this theory, was

performed. The result shows that after the initial

transient state, turbulence energy is eventually concen-

trated in the small-scale fluctuations. This result, we
think, probably is due to the overestimated coupling be-
tween the large and small-scale fluctuations in this
theory; The result of this numerical calculaﬁion_has
actualiy cast a serious doubt as to the validity of a
theory such as this.

The diffiéulty of this theory in fact arises
from the assumption that fluctuations of diquratevlength-
scales can directly and instantaneously interact with each
other. Inbmixing-layer turbulence, the large~scale
fluctuations that are excited by the mean flow contain
most of turbulence energy. They.should be responsible

for the scrambling mechanism which removes wave energy
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from other large-scale unstable modes, thus transferring
energy to smaller-scale fluctuations, As pointed out by
Kraichnan,35 random large-scale fluctuations should not
feed energy to (or affect dynamics of) small-scale fluc-
tuations directly because of the invariance of Galilean
transformation. .The only way to couple them is by a
coupling through the flﬁctuations of iﬁtermédiate length-
scales. After several stages of local (in lengthscale):

interactions, energy can then reach small-scale fluctua-

tions. .This is exactly the picture of cascade,36 where

interactions between fluctuations of disparate length-
scéles are neither direct nor instantancous.,

Since several cascades are needed to allow
the large and small-scale fluctuations to communicate
(interact), details of the small-scale fluctuations may
influence the large-scale dynamics very'little. That isj
the dynamics of the source of fluctuations are insensi-
tive to the small-scale éink, (This is analogous to
the facts that the energy flow in the inertial range is
independent of viscosity, and that turbulence diffusion
is independent of molecular diffusion.) In a model to
be developed later, we properly account for this fact
such that the turbulent diffusion of large-scale unstable

modes is contributed by other large-scale modes.
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-For wake or Jjet turbulence, the small-scale
vorticity fluctuations comprise the main body of turbu-
lence. At very high Reynolds numbers, turbulence is three-
dimensional and driven by the local shearing of mean flows.
Probably this earlier theory works better in these cases. >
This is because large-scale fluctuations plays a minor
role in this type of turbulence. The overestimation of
the coupling between large and small-scale fluctuations

(thus -enhancing turbulent diffusion) may significantly

affect the transient state (speed up the energy trans-

fer), but not the stationary turbulence state.

4.4 Problems Posed to Be
Studied Analytically

The complexity'of turbulence makes any purely f
-analytical treatment impractical, if not impossible. How-
.ever, when appropriately taking into account observa-
tions from experiments or computer simulations, theoreti-
‘cal progress may very well be made. Below, we will ad-
dress two model problems for mixing-layer tﬁrbulence,
and jet (and wake) turbulence, separately.

For mixing-layer turbulenge, both experiments

and computer simulations hint that thée large~-scale
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fluctuations play a role in the self-preserving evolution
of turbulence. Therefore, two questions of central in-
terest arise: 'What makes the flows evolve self-similarly,
and what makes the shear layer expand linearly in time?

The answer to the first question can be guali-
tatively answered from an energetic point of wview as fol-
lows. The mean flow has an infinite free energy reservoir
and provides fluctuation energy needed to sustain a quasi-
equilibrium state. Once this state is reached, the system
may tend to remain ihrthe same coqfiguration. This is
possibly why the self-preservation occurs. tThe guestion
now becpmes whether the mean flow can evolve: slowly eﬁoughv
to ensure a quasi-equilibrium state. This can only be
answered i1f the second question is resolved.

For the other type of free shear flow turdbu-
lence small-scale nonwave fluctuations dominate the tur-
bulence. This is . because only a finite amount of free
energy is stored in the mean flows. .When the energy
source is conéumed and fluctuation energy increases, tur-
bulent diffusion can then defeat the driving force as-
sociated with the inflection point of-mean flows. The
large-scale fluctuations are thus damped. By contrast,

the small-scale fluctuations can draw energy from the
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mean flows in different ways, and thus possibly be sus-

tained.

It is generally believed that the small-scale
fluctuations in fluid turbulence are three-dimensional,25
and that vortex stretching®® is an important mechanism
for generation of small-scale férticity fluctuations.
However, we want to confine this study to turbulence in a

inviecild two-dimensional fluid, merely because it is simple

enough to make a reliable analysis, and yet rich enough

to contain interesting ‘physics. This situation corresponds

to wake (or jet) turbulence in an imtermediate Reymolds
number regime (Rg equal to several hundreds) as observed
in experiments. In this regime; Reynolds numbers are
high enough to approx;mate invicid flows and low enough
to ensure two-dimensional motion.

A two-dimensional invicid flow obeys the equa-

tion,3®

a_
dt

(Vy Xy » z) =0
conservation of wvorticity. In wake or Jjet turbulence,

velocity field fluctuations are -almost spatially random,

except in some intermittent occasions where large
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vortices may reappear. Thus, a vortex element is con-
vected by the velocity field, induced by other vortex
elements, in an approximately random manner. This situsg-
tion is very similar to what happens to the phase-gspace
denéity element of a one-dimensional plasma,l® where the

density element is subjected to approximately stochastic

‘acceleration. At small separation, two vortex (or phase-

space density) elements experience the same convection
(or-aCceleration), hence tend to travel together. The

analogy can possibly be extended further to situations

where the relaxation of mean vorticity drives small-scale
vorticity fluctuations (see Chapter II).
However, caution has to be exercised in extend-

ing the analogy. In cne-dimensional single-species

'plasmas, the average distribution function cannot relax

due to the conservation laws of particle energy and
momentum (i,e., in a one-dimensional elastic collision
Process of identical particles, the final state equals
the initial state, hence the system does not relax).
Consequently, the small-scale Pphase-space granulations
are not spontaneously generated. Yet, collisions be-
tween vortices are not €lastic, thus the vorticity granu-

lation, in Pprinciple, can be driven by the relaxation of
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the average vorticity. 1In this study, we are interested
in investigating the possibility of small~-scale vortex
generation and its implications. .We do not attempt to
explain how the large vortices can intermittently reap-
bear. Nevertheless, a brief discussion on this subject

will be addréssed.

4.5 Evolution Equation and Linear
. Stability Analysis '

"In this section, we begin with deriving an .

Mgﬁuééién (égﬁé;;§atisgmof ngéici%&jwfgfﬁﬁﬁbiéimensiona}
incompressible flows, and then discuss the linear stabil-
ity criteria. It is then followed by'a.discussion of the
physical irl"cerpnc'-etaa.tio'né4 given by Orszag, et al., for
the origin of instability. Finally, we give a new theorem
for the necessary condition for the existence of ﬁeutrally
stable eigenmodes.,

A Newtonian fluid satisfies the Navier~stokes

equation,S3®

0 Ve =- L vy, 4:5-1
<g€+gv>x = (p + y) + vvéy, (4: )

where p and Y are the pressure and external-force poten-

tial, respectively, and m and Vv are the mass density and
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kinematic viscosity, respectively. For'Bbussinesq
fluids;4o the density m can be taken within the gradient
operator in Eq. (4:5-1). Taking a curl of both sides of
this equation, the incompressible fluid is then described
by an evolution equation for vorticity, pP=EV Xy, That
is,

(§€~kz'v)g =P - vy + vvzg 5 (4:5=2)

A

where the first term on the right corresponds to vortex

stretching due to velocity shear.
.For two dimensional flows, the vortex stretch-

ing term vanishes, and Eq. (4:5-2) becomes

{%t + 8 X V, 6 » VL|VEy = YWEVZy, (4:5-5)
where ¢ is the stream function, defined as 2 X Vio = ¥,
and Vi 1s a two-dimensional gradient. Hence V§¢ = P, the

magnitude of vorticity. .For inviecid fluids, Eq. (4:5-3)

can further be simplified to,

(4:5-4)

Qo
o+
il
o

conservation of vorticity.
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Given a parallel equilibrum (mean) flow in

the y direction, which varies spatially in the x direc-

tion, i.e.,
Vg ='VE<X)§;

Eq. (4:524) can be expressed as

3 azv
. . 2 -k VB,
[ i + 1kVE(x)J v§ %% 0 i % %k,

e e S e e 2 e e

k! dx
(D'
d byt ' . .
it 2 gR ] <0, (4:5-5)

After 'a spatial-temporal Fourier transformation has been
performed. The linearized form of Eq. (4:5-3) is then,
(4:5-8)

d 2 . 4°"VE
- - 'k [ A - kV = Q
[dXZ ' dx? /(e E)J¢k’®

This equation is recognized as Rayleigh's eguation.
The stability of solutions depends on the mean
flow profiles, VE(x). Two importént theorems®*? regard -

ing to the necessary mean flow profiles for instability

are given below.
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(A) Rayleigh's inflection point theorem. A neces-
sary condition for instability is that the mean
flow profile should have an inflection point,

X where @ZVE/dx% | =0.

X:XS

S’

(B) Fjortoft's theorem. A necessary condition for
instability is that (dZVE(x)/dxz)(VE(k) - Vg(xg))
< .0 somewhere in the field of flow. |

The first theorem actually states that a mean;vorticity

extremum:is needed for instability. The second theorem -

_.Sharpens the first one, requiring . that the mean.vorticity. . . _ .

extremum be a maximum.

Orszag and Petera gave.a physical picture in-
terpreting the need of a mean vorticity extremum for in-
stability as follows. In a flow that does not have .

vorticity extremum, the restoring force is always avail-

‘able to stop the instability associated with interchange

of vortex tubes. In Figs, 4-3a, b, c, we show how this
restoring force occurs. The parallel two-dimensional
shear‘flow can be viewed as infiniﬁely‘many discrete

line vortices (directed in the y direction) whose magni-
fudes depend on x (Fig. 4~3a). Supposing that vortex I
moves up one level as shown in Fig. 4-3b, using the Brot-

Savart law to obtain the vortex induced velocities, we
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.
s e

Figure 4-3. Physical picture for the festoring forcee

of vortex elements.




123

find that vortex III tends to bring down the large vortex
III', and II to bring up the small vortex II' (Fig. 4-3c).
Clearly, the net result of vortices II' and III' on I is
to push it down to its original level, thus providing a
restoring force. Therefore, the necessary condition for
instability is that at some point in the flow field,

the restoring force_vanishes. It ultimately requires a
vorticity extremum for this to occur. Notice that

“Fjortorf's theorem can not be obtained from this argu-

ment. This is because the theorem is a second order ef-

fect ., (A similar argument was first given by Lin,2% )

\

In the following section, we will present a new
theorem about the necessary condition fof neutrally stable
~ solutions of~Rayléigh's equation. . The technique developed
in proving this theorem will prove to be useful, in Sec-

tion 4. , in showing the positivity of the driving source

for the vorticlty correlation: funection.

Theorem: For any mean flow which has no more
than two resonance points, the necessary condition for
-any neutrally stable solution, whose phase wvelocity w/k
resonates with the mean flOW‘VE(X) somewhere in the flow
field, to exist is that all the resonance points are in-

flection points.
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Proof: Separating the real and imaginary parts

of Eq. (4:5-6), we obtain

2 a ( - k ,
d 2 devy Wp Vg )
[E;E E 77 | Retx,0 ()
((l)r - k-VE) + (Di
2
=k — Imo (x) (4:527)
2 2 2 k,o
dx ((Dr - kVE) + (Di
B 2 - 3 '
LQEE - K2 4k d ZE (wr | kZE) -ZJ Ino, w(x)
B
dx ax®  (w, - KVg)® + of
2
asv .
. . 'E -t .
f= -k 5 Re¢k,w(X). (4:5-8)

ax? (o, - k)% + of

Recognizing the operators on the left-hand sides of

"Egs. (4}5275 and (4:528) are the same, we can define a
\

propagator GE w(X’X') for this operator, that is,
5

a - ay (W, = kVp) .
L B R 62 (x5x")
dx a \2 . 2 | B,
X ((.L)r - kVE) + a)i
(4:5-~9)
= 5(x -~ x'). (4:5-9)

As a resul‘t,.Re_cbk,uJ and Im¢k.w can formally be solved
> s

. [¢] .
in terms of Gk’w(x,x'), i.e.,

a6)® (o, - KVg

k : Im¢k,w(x.) (4:5-10)
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'Im¢k,w(x)

dZVE w

2 Reoy (x J

+ oy
(4:5;11)

=-fdx'G§)a£x,x"){%

a(x")? (o, - kv

Fdr neutrally stable modes, w; ~ 0, and

@i

T

18(w - kVg(x))

(w - kVE)2 + W

r

1
]dVE /dx

5(x —-xd) (4:5-12)
o

where & Is th e‘““"i‘n”d‘e‘x‘_‘“‘:f"o"r" Tgresonance tpoint i For the e e

present theorem, o = 1 or 2. Substituting Eq. (4:5-12)
into Eqs. (4:5-10) and (4:5-11), and evaluating x at

either resonance point xB, we obtain,

Reqk,w(xﬁ) =3 MBmIm¢k,m(x@) (4:5-13)
a
Im¢k’w(xa) = =3 MBmRe¢k,w(X@) s (4:5-112)
(o8 .
where
(a4 VE/dx

MSC(, = l dV /dx )| Gk (L)( B;X ) (4:5-—15')
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To have nonvanishing ¢ (x), the coefficients of Eqgs.

‘k,w
(4:5213) and (4:5-14) must satisfy the relation,

2 N2 _ e |
1 + (M + M22) + (Mllez - MlZMZl) =0 (4:5-186) |

But this equality does not hold becéuse'MmB is real.
Therefore, the terms on both sides of Eqs. (4:5-7) and
(@:5-85 must be equal to zero separately, and the in-
version (Egs. (4:5510) and (4:5-11)) is not wvalid. Thus,
the difficulty encountered in Eq. (4:5-16) is removed.
“wmuww“The_termsmoﬂ”themrightwof,Eqsuw(4¢5_logwandmmmwn;
(4:5-11) can all vanish if and only if dZVE/dx2 =0, |
at all resonance points. .This proveé the theorem.

It is interesting to point out that the condi-
tion dng/dx2»= 0 1s also necessary for unstable solu-
tions. .Therefore, this theorem in fact proves that for
any flow, the existence of inflection points is necessary
for .any solution of Rayleigh’s equation to exist (flows
with more than two resonance points must have at least one
inflection point, therefore the above statement is valid
for any flow).

Furthermore, since solutions are always asso-

ciated with an inflection point, the solutions of
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Rayleigh”s equation are never singular. This suggests
that Tollmein's®® invicid solution, which are Frobenius
expansions around the singular point, are not useful for

‘Rayleigh's equation.

4.6 Theory of Mixing-Layer Turbulence

In this section, we want to investigate the
evolution of the mixing-layer width with an assumption

that the mixing layer evolves self-similarly. A quasi-

_linear model is used to show that the layer width indeed

expands linearly in time as observed in experiments and
computer simulations. |

We start with a brief review on the linear
theory, and then follow with 'an analysis of the renormali-
zation scheme. Subsequently, we construct a quasi-linear
-equation, whose second moment equation determines the
evolution of the layer width. Finally, a solution of
this second moment equation is obtained, and a discussion

of this result then follows.

a. Linear Analysis for -a
Mixing~-Layer Flow

To gain some physical insights as to how flow

perturbation wvaries, -we begin this section with analyzing
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‘an analytically tractabie model mean flow profile (Fig.

4-4),
VO , X > a
VR(x) = Xy x| < a (4:6a-1)
) a @] 2 —_
—VO , x < -a
‘Silnce dZVE/dx2 = 0 everywhere except x =xa, the eigen-

funection of Eq. (4:5-6) is simply

e-k(x-a) , X > a
-] +
Qk,w(x) = Aje kx~+ Aye kx| |x|'5 a
Asek(x+a) , X < a

The coefficients Al’ Az,-and A5 are determined by match-
ing ¢ and do¢ (x)/dx, at x =+a. By this, the dis-
k\,(l) k,(b

persion relation can also be determined,

A straightforward exercise shows that the eigen-

function is,
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Figure 4-4. ‘Broken-line mean flow profile and linear

0.3 |}

0.2

0.t

eigenfunction of a typical mixing layer.
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v Figure 4-5. Diépersion relation for the mean flow profile.
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e_(kia)’ X > a
= 2wa, [[(Zka -t
1 + [(2ka = 1) = ——]
Vo
- EQEJe-k(X"a) + ek(x—a), x| < a
Vo ' : . -
¢ o
1 [e-ZKa
' 2wa
1+ [(2ka - 1) - $1
o - .
+
+ eZKaE(Zka - 1) - EQBJJek(X a) x < a
L VO 2
(4:6a-2)
_Andthe —d i.s‘pe rsion-re lationFig.“(‘4—5) .,,Mi.,S e e e e e et e e e et s e e nme e e e
V2
of =-S5 [(2ka - 1)% - e7*%  (4:68-3)
4a -

For k < O.65/a,‘modes are purely growings; the most un-
stable mode occurs at k =0.4/a. For k > 0.65/a, modes
are neutrally stable (satisfying‘our new theorem in the
previous section), and the phasevvelocityllm/kl < VO.

The stable solutions are real and asymmetric in x. At

the marginally stable wavenumber, k = 0.65/a, the solution
is symmetric with respect to the origin, x = 0. The un-
stable solutions are complex and asymmetric in x. How=

ever, the absolute value of the eigenfunction l¢k,wl is
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symmetric with respect to the origin. At vanishingly
small k, the growth rate approaches zero, and the solu-
tion becomes real and antis&mmetric with respect to the
origin. A typical unstable mode is shown in Fig. (4-4).

It is mostly confined in the region, [xl < a.

b. Nonlinear Interactions
and Renormalization

In this subsection, we will briefly review the

method for renormalization of the nonlinear equation,

Eq s (4::5_ SP). Th,eren,or malization— S,ch eme ;tha’tw e Mad;apt . et e n s e e e e

here is an approximate Direct Interaction”Approximation.
An even simpler versiop has béen extensively used in the
previous chapters for ilon-cyclotron turbulence. We will
not repeat the detéils in this section. However, .in this

case, the global propagator G for the field %% o is
haalp

k,w
the basic quantity rather than the propagator for the
vorticity, VEGk,w' This is in sharp contrast to‘the case
of ion-cycloﬁron turbulence, where the local propagator
for particles, i(w - kv, - nw, * %)'l, is used. 1In the
previous treatments, we assumed that the field %%, 0 is

random and independent of the particle fluctuation fk "
2

hence the response of ¢k o to fk o (and thus the shielding,
2 2
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or self-binding, of fk,m) have been totally ignored. In
the present case, since the nonlocal propagator Gk,w of
the field ¢k,w is the fundamental quantity, the response
of %, m to vorticity fluctuations V€¢k,w gan be taken
into account.

| Rearranging the nonlinear terms of Eq. (4:5-5),

we .have

. P ‘ 1id-’ . '
[—1(.0 + ,1kVE(X)J VEby g E[%E ¥ lk"(bkv,er?_q)kn’wn

k’ b
d)'
) rd o ! ! .o '
o N D s 4 R U
= (ik )q;kn’mu{vgd;k,)@(}-lk lf-’ i 2 v-L¢k",(D"
: o
S ady
K',w .

- ¢k",03" T :j}—- k ag—- ¢k,&) (4:6b-1)

This equation can be renormalized by substituting ¢kn "
b 2

" 1 and'Vf¢(%) ns respectively, where
k ,UJ k ,U.) )

the latter quantities are driven by the direct beating of

" for~¢(%)

and Vf¢ ' 0

a test (k,w) mode -and background (k',w') modes. (Detailed
derivation of local and nonlocal renormalized terms,

‘Dk,m and Ck,w’ respectively, 1is showg in Appendix E. SR
Inthis analysis, we let Rz.inEq, (E-3) equal to zero.)

In the present analysis, we shall neglect the

nonlocalAck’m and retain only the more familiar_Dk,w,
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local operators of diffusioh type, to model the effects

of random convection by the tufbulent'velocity'field. It

is evident, from Eg. (E-4), that Dy , 18 composed of the
. 2

2

diffusion of both vorticity vieé, .~ and field ¢, ~ in the
b4 J

x and y directions. That 1is,

4 4 a2
Dg,w = [dx Dy ax - D%]v§¢k,m

- |ax8x ax - K°dy| ok, _ (4:6b-2)

-~

--The--linear -convection -together with diffusion-ofivortic-

ity describe the perturbed orbit oan vorticity element,
while the diffusion of the field describes modifications’
of the equilibrium profiles. As;pﬁinted out’ by Dupree,
these two effects cancel in the total energy (not energy
per. -mode) evolution equation.*® In the present case of
spatially inhomogeneous profiles, they combiné-to form a
term of a total derivative with respect .to x, representing
the divergence of energy flux. Hence, these two groups
of terms -in Dk,w account for the nonlinear spatial'rear—
rangement of the ‘kinetic energy.

In the region where |¢k,w|2‘is-large,'we have
2.

ldz/dle >> k Hence we retain only




134

to represent the locally renormalized nonlinearity. The
nonlinear evolution equation for vorticity can thus be ap-

proximated by

2
~iw + ikV, - D i‘Vf(b = ik d—V-E 3 (4:6b-3)
| E ax?| = k@ ax? K@ T

c. The Second Moment Equation

In this subsection, we will derive an equa-

tion for the second moment of vorticity whose square-root
is defined to be the ﬁidth of the éhear layer@.“In our
strategy, we assume the mixing layer evolves self-
similarly, hence at any instant the large~sc;le-fluctua—
tions are excited with nonlinear growth rates. Since the
relaxation of the mean vorticity or -shear layer depends
on the fluctuation level, .and since the latter depends
on growth rates, and thus on the.shear'layeeridth, the
fluctuation level and shear layer width.areuthuSVGQupled
and evolve together. |
The mean vorticity, p = dvg/dx, satisfies -the

equation,
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Po 1 d *
= Z (ik) [ ] 4:6c-1
ot (Zﬂ)Z 5; N (ik) k,wpk,w ’ (4:6c-1)
w .

2 . . _ R
where Pr,o = v¢¢k,w' Substituting py  from Eq. (4:6b-3),
we obtain

9y (3 > :
5t =\9x D d¥x/)Po> (4:6c-2)
where
1 : i 2 2
D ~ - k| ¢ | (4:6c-3)
k (20)° o - kvg(x) + 1 2 K@

a

In'the denominator of the above expression of D, we have
used the Markovian approximation for Dk,w obtained earlier.
Also, we have approximated the operator Bz/axz associated
with vorticity diffusion by —l/a2° Because of the spectral
sum, we assume that D is spatially uniform across the

layer. Taking the second moment of Eq. (4:5c-2), we ob-

tain

da2

il

(21)° Y, + ikVg + 95 k,w

a

Ew M

. exp[Zfthk(t)] 5 (¢:6¢c-4)
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where a is the shear layer width, defined as

.fxzp (x,t)dx
az(t) = fgo?x,t)dx s (4:6c-5)

and po = dVE/dx,vmean flow vorticity,.

Note that the nonlinear growth rate is related

L
k

initial noise can be expressed as,

by 7, = 7i - D/az,,and the

to'the linear growth rate 7 Kk

l¢(0>|2 1 z ,¢§?i|?’

k - 2n
it thus follows that:

2 r~
da 1 1 2. (0),2
—+— == T Re ke
G =w 2 Lyi — | x2[e{%)

D _
exp 2/dt(ry - =) . (4:6c-6)

The k sum in Eq. (4:6c-6) can be evaluated using the

method. of the steepest degcent. The maximum of the inte-
grand occurs approximately at the wavenumber of the fast-
est growing linear mode. Thus, the diffusion coefficient’

D becomes,
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L A
Tkptky k2|;¢(0)'2
L 12 2.2 K
oy +. k V
(7k“m) B

D N =
®ox
.i T D :
© exp <2fdt[7k.m(t) - -—{]\ (4:6¢c-7)
- ‘ a /
Here, ky, scales with the instantaneous layer width a(t).
We assume that the iéyer grows so slowly that the maximum
growth rate 7im and its wavenumber k skale with a(t) in

a same manner as in the initial phase. That is, k = o/a,

L
km

specific profile chosen.. Furthermore, we let the initial

v = BVO/a, where o and B are numbers determined by the

..nhoise. spe_c.t.r_.umu‘,b.eh,a..v.e.._,,a_s_ e e e e e e e e e e o1 et e et et e e i

= k2] 4 {0)]2 = (x/x)) L kzlq,(o IJ

for low-k spectrum, where k, is the most unstable wave-
number for the initial layer width a. Finally, Akm can
be evaluated from the width of the integrand, and scales
with a(t), i.e., ok, = ¢/a(t).- Notice ‘also that, frém

Eq. (4:60—4), we have 2Ddt = daz, hence the .nonlinear cor-
rection to linear growth rate,iin the exponential of :

Eq. (4:6C=6), can be expressed

exp(-fat(2p/a?)) = a(0)/a(t)
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To express this second moment equation in a
dimensionless ‘form, we let W(t) = a(0)/a(t), «:=
- = 2 2 2 0),2 7
2B(V, /a(0))t, and A = g(p° + m)(kolafg )| /(2xv_a(0))),
o

where V, characterizes the magnitude ofVVE(x).
W - 3+a+2y T . ,
37 = -AW exp| [ artw(z) |, (4:6c-8)
. 5 , |

where we have introduced another dimensionless parameter y
to represent the nonlinear correction to.the growth rate.

That p = 1 corresponds to the expression fn.Eq.‘(é:ec-G)

“where the nonlinear correction is-taken lntO “grercoun t; T e e

while thatﬁ = 0 corresponds -to neglecting D/ai2 in Eq.

(4:6c-6).

d. Solutions

To solve Eq. (4:6c-8), we differentiate with

reapect to T on both sides of ;the. equality, and obtain

%W aw [3 + o + 2u7) AW '
2~ ar W W dt - (4:8a-1)

Notice that T does not appear 'in Eq. (4:6d-1), hence we
can use W as the -independent variable and .aW/dT(Z P)

as.the de?endent variable., This gives
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(4:64-2)

This 'is a first-order nonlinear ordinary differential

equation, and can be integrated.

After an integration

factor W™ (3%9+2H) i¢ introduced and an integration con-

stant is appropriately determined from the initial condi-

tion, Eq. (4:64-2) becomes

aw _

. The appropriate solution satisfies W

<< 1 because the layer grows.

+Q +
can ignore the term W'3 .Zu

(4:63-3), i.e.,

3dW
Wa

R

-dT

=
g
Al

That

. (4:64-3)

Ty ACs

If 3 +a + 24 > 2, then we

n the denominator of Eq.

(4:6&-4)

(4:64-5)
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Interestingly, this expression does not depend on the
initial noise level, neither on the turbulent diffusion
(characterized by u), but only on the linear growth rate
(characterized by B). The occurrence of the linear time
dependence can be traced back to the term W on the right-
hand side of Eq. (4:6d-2), and thus exp[2fat(pV,/a(t))]
of BEq. (4:6d-7). That is, the a depen&ence of 7i ,

L 1/a, is essential to obtain this linear timeMde—
pendence.

The total initial noise energy has.-to be finite,

requires that ¢ > -1 at the low wavenumber :end of spec-
trum, where ¢ is defined as k% x'k2|¢£o>|2. .Hence, the
condition that 3 + g + 2u > 2 1s always satisfled even
when the eddy viscosity is 'ignored, i.e., p = 0. As a
congseguence of this analysis, we find that the linear
time-dependent solution, Eq. (4:64-5), is the only physi-
cal solution. .This result is independent of the details
of nonlinear :interactions or initial noise, but dependent
only on the ‘assumption of'the self-simiLar“evolution.

For the mean flow profile,

-

vg(x) = Vv, tan h (x/L),




141
it follows ‘that,
v, ® 0.2 V /Ly

From the definition of a, Eq. (4:6c-5), it follows that

R

0.9 L_ and Eq. (4:64-5) becomes,

a E

a( \ :
_2%%% = 0.12 a?o) t (4:6d-6)

Using the hyperbolic tangent mean flow profile

mand”theMdefinitionwofma,quJm(éj6c:5)dmwayfiadgthﬁhgthémmAHHMWWHM_WHW

expansion. rate obtained from Arer's computer'simulatioh'
and Brown's experiment.are 0.072 V,/a(0) and 0.08 v,/a(0),
" respectively. They are approximately 40 percent smaller
than our rate. A numerical factor on the order of this-
magnitude may very well be ‘introduced from the method
of the 'steepest desceﬂtuséd to evaluate the spectral k
sum, or from the approximate mean flow .profile used to
evaluate the .slope.

It is instructive to'.examine the -energy of .
.large-scale~fluctuations.and the energy loss of mean
fiows. Assuming a broken-line mean..flow profile for the

sake of simplicity we have e
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/
VE = _VO x < -/3a
o _ _
Vp(x) = ﬁ Vg = A v, -/3a < x < /3a
Ve = Vg x > /3a
_ (4:6a-7)

where the coefficients are so chosen thét"a"satisfies
its definition, Eq. (4:6c-5). The energy loss of the

mean flow is

J3a J3a . ] ve
1 2 x - o _2 - _©° _
- : Tae e, M T
v2 :
o 1.33 a(t) (4:64-8)

Thus, the energy loss behaves linearly in time.

The fluctuation energy can be estimated as fol-
lows. The diffusion coefficient D is related to the fluec-
tuation energy per mode,

2 2, |2
[0 |7 K™ [ey]

22 = 2 ’

2
aé
1.2, 2 1’__5 N
e =7 K ll® rgla| ®

by

k"o, | €

1 k k

Degy 8 —— 7% = [%Gzaz S 5 (4:6d-9)
x (D/a) Kk
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where o is a numerical factor, less than unity, given by
the relation k = ¢/a. From Eq. (4:6c-4), we have D =
ada/dt, hence the fluctuation energy density inside the

mixing layer ‘is,

ol

(4:64-10)

Q

€k 1 (daf
Zox = g2 \dt/ =
k

where the last equality has used Eq. (4:6d4-5). The fluc-
tuation energy density is constant in time. Hence the

fluctuation_energy'inside-the-mixing‘layer"increases

Cldnearly in Bime,

J3a € ; 2
{J“ dx = E% = g§§ (% )_Vga(t)
-./3a k :
ve
2 =7 a(t) , © (4:64-11)

Comparing Eq. (4:6d-8) with Eq. (4:64-11), we note that
the energy loss from the mean flow ‘is greater than the
energy gain of £he large-scale fluctuations. This energy

difference should be deposited to small fluctuations.

4.7 Small-scale Fluctuations of Two-
dimensional Free Shear Flow
Turbulence ‘

In this section, we are specifically interested

in two-dimensional wake or Jjet turbulence which primarily
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éomprises-small—scale‘nonwave'fluctuations. Small-scale
nonwave fluctuations extract free energy from mean flows
in a fundamentally different way than do largé-écale wave-
fluctuations. Generation of small-scale ‘fluctuations is
due to the relaxation of mean flow vorticity from an un-
stable configuration toward a. stable one. Mean flow
vorticity does not relax in an arbitrary way but is con-
strained by the conservation of vorticity along the
trajectories of vortex elements. Thét is, mean vorticity

relaxes by exchanging the locations of"vartGX'tubeé of

~different vorticity-(randomly-rearranging-vortex tubes - - i

due to the convection of the twrbulent~velocity'field),
thus‘small-scale vorticity.granulations can be‘cfeated.
>Simu1taneously,_the~turbulenb veloéity Tield
‘that relaxes mean vorhicity can also tear a‘vorticity‘
élump apart. If the size of a clump,isﬂsmall'enough
(smaller than the lengthscale of turbulence), every point
in it is convected by approximately the same velocity
field., Thus, the clump can preserve its structural in-
tégrity for a time longer than the average correlation
time. It is this type of turbulent.!'tidal ‘force" that
balances the source (mean vorticity relaxation) of clump

‘generation to sustain stationary shear f£low turbulence.
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It is important to note that the-possibility
for.vorticity clumps to exist depends not only on that
thé relative diffusion dimiﬁishes at a small separation,
but also on the&pdsitivity of the driving‘source. If
‘the source term is megative (and becomes a 'sink) some—'
where inwtheAflow, the small-scale clumpS‘génerated in
'soMEwpositiVe—source region may be absorbed in the sink

region. In this case, whether stationary turbulence of

"sthe-clump-type‘exists or not becomes unclear.

In this =section, we first briefly review the
“Iide -a“r“':t‘-h"eb“r‘-y;““"t hen disciuss "the relative Turbulent dit=" —
. fusiod obtained by using a closure scheme for triplet cor-.
relafion,,and then we show the positivity of. the source
term for a wake .or jet. Finally, the vorticity correla-
tion at{small separation and high-k vorticity spectrum

are obtained.

a. Linear Analysis

In fully developed wake (or ‘jet) turbulence,
the linear modes may become :irrelevant. Nonetheless,

a linearrpropagator-Géog(x,xf)g.which satisfies
2
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2 xalvy/dx
a R — (O) ' - Y |
7 Kt T |Gkt )m el k),

dx )
(4:7a-1)

can usually be used to approximate a nonlineér<propagator
when only crude features of turbulénce are required. As
shown in the previous section, .the propagator ‘is so use-
ful for our nonlinear calculation that it is worthwhile
to examine thé properties of a linear propagator. In
,particular, for the present case,:if we treat the 'in-
coherent vorticity fluctuations as highly localized seed

fluctuations to induce velocity field ¢k;w,,then ¢k,w will

- b_e ha \E‘e - as _theapf‘opﬂagatoir dOéS, e That is‘; - t h_e Ve“locity e+ e e e o i e

field fluctuations -in vorticity-clump turbulence satisfy,

| kafvg/ax?
A I S N

~

= Py, p(x) & 80 - EVg(x)). (4:72-2)

For these reasons, we shall adopt the following
simple model profile that permits an analytical expression

~for G(O). We use a mean flovaE(x) Fig. (4-6a)., where

k,w
/‘
0 9 le > a
VE = ﬁ Vd(l - x/a), a >x >0 ' (4:72-3)
Vo(l + x/a), 0 >.x > -a




(a)

(c)
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VIADVE‘X)

Figure 4-6. Broken-line mean flow profile and linear

eigenfunction of a typical jét or wake.
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‘Because of the reflectional symmetry of the mean flow, we
let the source (d-function) be located in the range,
0 <x <a. A solution of Eq. (4:7a-1) can easily be

solved for and expressed as,

(‘

~kx A(F + e 3kayq

- € . Z2ka Zka:
[F(1 +@G) + (L - G)e 1ILF + e ]
Sirl. i(kx')J , ( % > a
A [(¢ - 1)e'2ka - rle X 4 [w(c + 1) + e 2kay kx
) o trre) ¢ (1 - @) EEIe 4 eTER
Gk;m:z <, '
sin h(k(x - x"))
k s a > x > %
L L(a- 1)K ple Ry [r(ge 1) + eTBRA TR
[F(1+a)+ (1-ag)e 2kay[y 4 o-2kaj o
x'>x>0
Ge"k(X'l"za) + FGekX

-A s O0>x > -a

IF(1+G) + (1 - g)e"2kaj[y 4 o2kay

ekXG(F'+ 1) : s > o

. 2 - , -

[F(1 +-¢) + (1-G)e ?B3I[F + e 2ka

g
where.

ky| o-2ka
.7\ e oky = L&
A =5k [ + e ]', G = v ka,




149

~and

Notice that the denominator in the expression

of‘Gﬁo) is ‘exactly the linear dispersion. A typical

W

GGO) near T + e 2%% = 0 ig shown in Fig. (4-6b). At this
W

collective resonance, Gé?& becomes a neutrally stable

eigenfunction of odd parity. Near F(1 + G) + (1 +‘G)e"2ka

= 0, a typical Giog is shown in Fig. (4-6c). At this
2

—collective-reso nances- G(p) —~becomes -an—ei genfunc B g0 @ e e e e e e

k,w
. even parity. (These two dispersion relations are also
éhown in Fig. (457).>

’ Consequently, the velocity field fluctuation
¢k,w of vorticity clump turbulence, which has similar
properties as Gé?i at low turbulence fluctuation
level, can be-viéwed as being induced by seed vorticity
fluctuations and shielded by the collective response. At
collective resonances, ¢k,w becomes a usual eigenmode.
This picture ‘is analogous to that of plasma clump turbu-
lence, where electric field is induced by seed.clumps
(macroparticles) and shielded by the dielectric response.

For ﬁoderate turbulence fluctuation level, the

collective resonances are broadened, and ¢k © is
-9




Figure 4-7. Dispersion relation for the mean flow

profilevin Figure 4-5.
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accordingly modified. The collective resonance broadening
can be estimated by substituting o + i/TC for w in the
dispersion relations,.where'rc is. the turbulence correla-
tion time and determined by turbulence level, In this
regime, it corresponids to a fluid counterpart of Vlasov

turbulence of the waveﬁclumpﬂtype.j

b. Two-Point Vorticity Correlation
Equation--Triplets

The dynamics of slow time scale (nonlinear time

Crgaal .e__,)._ evolution @én be described by & tWo-poi nt, CGRen T T

time vorticity correlation function. The enstrophy evolu-
tion equation is obtained by multiplying 8p(2) by dp(l)/dt
=0, 8p(l) by dp(2)/dt = 0, summing up these two equa-

tions, ‘and then taking an ensemble average. It yields

Ly [-5— Ty A ST O A P 4 p*ﬁ?'H

anly | OF )
[4V]
1)
: aod

S pr —Eel (1) - *(2)
an? o dxq Px',w'Pk,w

(D'

_x_..

dpl((.')d)' ¥ s

+ k" x ¢l(::'L’)w"pk,(cf)) + | ]2 }
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d2v_ (1)
= - —l§ Sk —E-E————<c1>k (et (2)>
dn 7k axq ? e
[6V]
a%vg(2) )
-k ——p——— <o w(Z)pk a)(l)> (4:70-1)
dx2 :

where we have ﬁsed the fact that the system is transla-
tional invariant in'the y direction, and that the fast
timescale variations can be Foufier—transfbrmed.énd the
slow ones are described by the time derivative. Also,
[le>»2]* stands for terms with indices 1 and 2 exchanged,

and complex conjugate taken.

I the following, we will show that “the triplet T 7o

correlation in Eq. (4:6-1) can be approximated by a rela-
“tive diffusioﬁ of the vorticity correlation, and a termof
a total derivative with respect to x, serving as a non-
linear source fof the vorticity correlation. The itera-
tion scheme used in the previous section is used to ob-
tain this result. The triplet terms can be expressed,

in terms of second order driven field and vorticity, as
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dxi
(2)
+ k <¢k,(1) ;;%__ﬁil p§(2)>
; <:§£%L£EZ o n(1)ox(2)(2)>
+ k<o, (1) i;%ﬂil) *(2)(é)§]J
%

+ | Le—2 (4:70-2)

other modes.

To avoid unnecessary complication associated
with the spatial derivatives of driven modesi(d¢(2)/dx or
dp(z)/dX), we can absorb them into terms of total deriva-

tives. That is, we let

(2) -
aot®) (1) |
a;f————- i (L)px(2) = %EI ;¢é%)<1)pk,<1)p§(2bJ
+ ¢kn)(l)pk,(l) gg%ﬁfl
J
dp%(2)
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and

e (1) g ox(2) = | | o (16{F (Wpg ()]

doi(2)

+ ¢kv(1)pK%)(l)_g§E‘~“

dpk(2)

- p{ () J2EE

After this rearrangements, it is‘straightforward to sub-

stitute ¢(2) ang p(z) from Eqs. (E-2) and (E-1) of Appen-

“IE E OiAES thHe Eriplet  terms, WHICK yialds T oo

Triplet
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dp w
- <k' '(l)¢k' G(X )>< k pk Ub(z>>J:I

i

- b} fdx[kz[meGkn,wn(l,x’)J '
_kl ,‘(D'

k,w

(e By
i .'iif"“'(l) e YRR
(e")?| 5=y VEey ,(2ox")]
e (e ot - R o (' )><pk" ar(EP (1)
(e e B o) ”a}]]

+o B Jaxt(x )ZUTLW Vka",wu.(l,x")] '

k',n!

k.,
[< k', '(1)Pk. ,( ,)> <d¢k w(x') dé: w(2)>

<¢k' Nars '(X')> <dpk o(x") dpk »(2) >]

—‘a)-kV (2 X')]

ao n n(x',)_ dpyn ’n(l§
. I k" : kK',w /.
<kt l(l)pkl ,(X )>< dj{' dxl ’ l" )
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structures,\for~terms that are smooth . functions of
X7 - Xp at a -small separation, we shall evaluate X ‘at

x ‘These "smooth" terms include those serving as a

l.
source, .and those retained on the left of the 'equality
but having integral operaﬁors operated on. . Thisis be-

cause the singularity of <8p(1)8p(2)> at xq =-xp is mot

too strong (will be shown to be a logarithmic singularity),

the terms mentioned above are "smooth" at.a small separa-
P

tion. After this operation, the '"smooth" terms on the

‘left cancel among themselves, and those on the right

e THeE - CAnEEl ExTept A term tha R

total derivative. Hence the remaining.terms on the left

appear as either <p(l)p(2)>‘or<§dp(¥)/dx1)@P(é)dx2)>_

In other words, the above operation yilelds

‘that [B{] cancels, and (d/dx; + d/dxz)[A(l,Z)]‘becomes

'd/dxl[A(l,l)], a total derivative serving as a nonlinear

source, .and that [Bl] + [BZJ becomes

e [ [orstioms) gt 0] (oot o2

(k")z 5 '<d¢k|’w:(‘l)’ d¢i';1,w:(2)>
w - kVp | \Ndxy dxog

’ <p§n’wn(l)pkn:wn(z)>
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o (P [ — T ] Cegr e (i)I2>

(2P0 ap;;f,w<z>>

dxl dx2

- (k')z[g—:”im] W, (D) ofe e (27

SPE" .,(1)A.dp‘k,.,,m,,(z)> J

e—iky_

Now, we- let« (dp(1) /dX dp(Z)/dx >be-expressed-as-

_dz/dx_ <p(l)p(2)>, and propertyAchahge the dummy ‘index
k" to k, by which a factor elE'V_ 4111 be introduced and
attached to the coefficiénts <d¢(1l)/dxy d¢(2)/dxy> and
<¢(1)e(2)>. Finally, we expand these two coeffiéients
at x7 = Xo, then [?l] + [Bz} can be expressed explicitly
as

52 2 2

2 2.2
(kaoy + Dyko ) + (Dykoy_:

2 '
1,249 _
+ DYX_)By__z <p(1l)p(2)>

where
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FD ] }' F(k' )2 <08> N

k', o'

. 2
1 i do
D] = == = ————— o3l (4:7b-4)
2w o' - k'V <’ l > )
y . .k: 7 dx k, o _
- w
2
on <d2¢ k>
vy 2
L LN

)

and'ko is ‘the spectrum averaged Wavehumber. In the above

expressions, .a Markovian approximation has ‘been used,

where ifo" - k"Vg)is replaced by ifo" - k'Vg) The ap-

proximation actually assumes a velociﬁy field-vorticity

e ’ P kVE e

This result has~the-following:meaningsu Turbu~

\

lent convection“tehds-to tear vorticity granulations

apart. At small separation,.vortex elements 'are con-

vecﬁed by apprdximately'the same<tﬁrbulent velocity field,

so ‘that they experience less relative diffusion. Simul-

taneously, due to the spatial inhomogeneity, nonlinear

effects-locally‘redistribute the .linear source (due to

the form of a total derivative w.r.t. x), thus yield a

modified source.
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c. Two-Point Vorticity Correlation
Egquation-~Source

From Eq. (4:7b-1), the source, when evaluated

at the same point, is <S>(1,1)

<8>(1,1)
: 2
ik ¢ Vg

= =R 2 <o * > : -1
e z [zﬁz ax? <% oPx, o J (4:7c-1)
[4V]

Now, we separate the total vorticity fluctuation pk ©
)

fluctuation satisfying

a2v
c E $
P, ¥ "X 2 © - kvg (4:7c-2)

and § is the incoherent vorticity fluctuation satisfying
~i(w - kVE)pg’w =0 (4:7c-3)

.To extend this formalism further, we note that the veloc-

ity field ¢k o is induced by the seed incoherent fluctua-
’ 2

tions 6& © Therefore, the one-point equation should be
2 . .

‘expressed as
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2
Vg g _

5 ~
‘ZL¢k,m ok gxe w - kVg — pk,w

(4:7c-14)

In Egs. (4:7c-2), (4:7c-3) and (4:7c-4), we have neglected
the nonlinear corrections to these expressions. With
these relations, we can now express ¢k o in terms of the

J

seed fluctuation §£ o and a propag'ator‘Gk CL)(x,x') of Ray-
J J

leigh's equation. That ‘is,

nJ . .
¢k,& - de'Gk’w(x,x')pk}w(x‘) : (4:7c-5)
<8>(1,1)
2 - )
) dz vV A
_ 2 E , Px 412
=% 2k [ 5 } 5(e - kVE)[———EV——IGk’w(Xa,Xa)l
k dx ,k 0 :
W dxa
o
. 2
< acv
2k E
- = = & (w _AkVE)AkImGk’w(Xa,xa) (4:7c-6)
k dx
W
o

where we have used the fact that the ‘incoherent fluctua-

tionfbk w-peaks-atrthe resonance ‘point.
2

® --kVE(xd)=_O ) | (4:?0-7)
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Hence <Sk,w(l)§§,w(a)> peaks at small separation, and is

modelied by

<5k,w(l)5§,w(2)> = &, l2ns(w - kVg(xy))e(x; - xp)]

C2n8(xy - -xy)d(xy - Xg) |
= 2 Ay & dVE/dxi’  (4:7c-8)
(04

Here, Xy stands for each resonance point, and Ak is &
.:positive quantity, characterizing_thé fluctuation ampli-

tude. Actually, we can show later (in Egs. (4:7d-1) and

"(4:7d-5)) that the vorticity correlation function is in-

deed sharply peaked at small separation with an amplitude-
dependent width. In Eq. (4:7c-6), the first term fepre—
sents the diffusion of mean vorticity due to turbulent
field, and is positive definite; the second term repre-
sents a "drift" of mean vorticity.

In.the following analysis,mwé.want to -show that
‘for a wake or jet, .the drift term of Eq. (4$7c~6) is posi-
tive definite. -From thevexpressibn-of the drag force

term, ImG

.k w(xa,xd)‘has~to be determined explicitly. This
J ' h

can be achieved by ‘the following manipulations. Separat-
-ing the real and imaginary parts of the propagator egua-

.tion, Eq. (4:7a-1), we have
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" 2 .
acv (w_ - kV.)
. E r "B
Lyf +k— 2} Reqk’w(x,xﬁ)

dx (mr - kVE)Z + @4
2
a=v w3
= k — E 1 ImGk (X,X )
ax?  ( KVE)2 + e 0 p
X ®p - kVg w3
v 5(x "XB) (4:7c-9)
2...
, d Vs (0, - kvg) ( )
v + k —~ T ImG XX .
alvy 05 |
1
= -k : ReG (%,%g) (4:7c-10
dxz (wr —-kVK)Z + @% k,w *r"B ( )

" An important step in this calculation is to introduce T 7

[¢]
K,

section in proving the new theoren. G; w(x,x’) satisfies
: R A

another propagator G w(x,x‘) as we did in the 'previous

" Eq. (4:5-9). If w; << w,, then

i

,+_w§ o |k dVE/dxl

(0, - k, Vg

And,
.ReGk,m(x,xBQ = fdx'Gﬁ’w(x,x')

2 1
a2v o )
B i
|k ImG, (x',x,)
[ d(x')2<;wr —kVE)2 + w? k’@ P

+ 3(x" - Xsﬂ.
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2 c
a°v G (x,x ) :
E. "k, g Lo
= T nk 2 InG (x _,%x4)
5 dxg [k avg/dx,| K, @’ B
c . '
+ Gk,w(x’xs) (4.7c-11)

Similarly,

ImGk,w(x,xB)'=-§ :

6]
dzvE 7gk,w(¥{xa)

Ttk — “Re@ (x_,x.) (4:7c-12)
dxg |k dVg/dxy| kK, .a’rB

‘Notice that this operation is almost identical to that = ~

in the proof of the new theorem in the previous section.
Now,.evaluéting‘X'at-each resonance point, .we obtain a
set of inhomogeneous equations.

For a wake or Jjet, there are only-two”resonahce

points. A straightforward calculation shows -that

i (d2vy/ax?
[k (avg/dxy)|

ImGk,w(xI,xI)

- (M, M, - M, M, )8
= 117722 . 2 12721 (4:_:. 70__]_5)
)

— . 5
Lo+ (M) +:Mpp )"+ (M Moy = MypM,, )

and
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2

ke (alvp/dxs)

[k(avg/ax )] ReGy o (x15%7)

Mpp (My3Mpp - MygMay)
1 + (Mll + Mzz)z + (M

— (4:7c-14)
11Mpp = MipMpq) '

where Mg has been defined in Eq. (4:5-15).

Substituting ImGk,w(xa,xa) and ReGk,w(xa,xa)
into Eq. (4:7c=6)y it yields,
244

.[Drifé} -z 2k [Ik(dVE/Xm)]

z
. k 11:2
w

2
(My Mo = My oM, )

2
1+ (Mll + MZZ) + (M

(4:7c-15)
11Mpp = MipMoy)

and

. 28k
[Diffusion] = i';§~ []k(dVE/dxl)l
w

2 ' 2
(MZ5 + (MyqMpp - MypMpp)™]

3 ]
+ |k(avg/axg)| © [MEy + (My1Mg, ‘-M12M21):ﬂ

h 2
(M 3Mpg, = MypMay)

8(w - kVg)-
2 A 2.2
: L+ (Myq +Mpp)® + (Mg Mpp - My pMpq) ]
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Both drift and diffusion terms are positive defi-
nite.

It is instructive to compare this result with
that of a one-dimensional single—species plasma; The
latter has a vanishing source term because of the local
momentum conservation of Vliasov plasmas. In. the
fluid case, vortices do not have to obey any analogous
conservation lqw,'hence interactions between vortices can
lead to relaxation.of mean vorticity and thus drive Llocal

fluctuations.

- Mathematically, the analogy between these two

systems breaks down when Polisson's equation is compared

‘with its counterpart in the shear-flow system. Poisson's

’

equation can be expressed in an integral form as

6(z) = -(ane)[v8(z,z")8f(z",v)dz"dv.

By contrast, its counterpart, velocity field-vorticity

relation, is given by

o(x,y) =Jv 2 (x,y3x",y" )op(x',y" )dx'dy" .

Notice the opposite sign between these two expressions.
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It is the sign difference that leads to the completely
different dynamics of discrete vortices (Biot—Savort's law) C
from that of discrete charged particles (Coulomb force).
It is this sign difference that yields the nonvanishing
vorticity fluctuation source as opposed to the vanishing.
particle density fluctuation source (this point will be-
come transparent when the mean flow has a monotomwic pro-
file, .where [Drift] = [Diffusion] ).
We are now able to give explicitly an approxi-
mated evolution equation for the two-point, one-time

LB— +Vix - I:(D kByZ + D kZx _2_) —z

—

2
+ (By? + prxf) a—”g:l
oy

<8p(L)8p(2)>

d
= - TTe z de 1 21_‘—'— Gy n "(lﬁx')
dX k',a)l = k VE k )
k,w
\ /4oy, (x)
(i )2[<pk o (D0 g (x>0 o (1))
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_ ' 24 o
Re[k'?wr de. U—JT-—_-—-E-'-,\—]-E k”,(l)”(l’x )
k,wn
d ¢ (x') -
. 1\2 * t kK, * ‘

[peee ] [peerusson]|

4 A(L1,1) + <8> = <8>; (4:7c-17)
1

+

il

dx

aL T Vortielty Olump GorFelation T

Function and Its Spectrum

Now, we are in a position to seek a steady state
solution for Eq. (4:7c¢-17). Formally, we can invert the

left-hand-side operator and obtain

<gp(L)8p(2)> = Tcl(x_,y_)<s>T S (4:7d-1)

.To evaluate the operator T,;, we first need to understand

what it means. T,3; has a dimension of time; depends on
{ B

the separation of the two points; -is singular at zero

separation because of vanishing diffusion coefficients

at this limit; and is small at large separation. .Hence,
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T.1(x_,y_) may be approximately interpreted as the time
required for two points, initially separated by x_ and

y_, to separate by an average correlation length. This

~time can be evaluated by solving for the relative tra-

jectory. In fact, the above argument and the method to
be used in evaluating T, are similar to those of the
plasmea clumpAtheories.

The relative orbit obeys a Langevin equation
of spatially varying-intensity noise. A set of second-

moment equafions, obtained from taking the second moments

~of a propagator equation described by the left-side op- -~

erators of Eq. (4-7c-17), is given by

. :
d<y__> 2 2 1" 2 '

e 14koDy<y_> + 2Dy<x~> + 2Vp<x_y_>

d<x_y_ > _ 6k2D <x v > + Vi< 2

3% = OkoDy<x_v_ E<¥-

d<xf> 2 2 2 2

T = 2kgDy<yi> + 14kSD <x"> . (4:74-2)

.. . i~ 2 2
Note that wvorticity fluctugtlon pk,w(M~d ¢k,w/dx ) ex-
hibits strong localization (i.e., strong gradient),

2,(1) |
hence <|&f¢ [> (« T_-) is much larger than
Xk,w cl .

k2<]d¢k’w/dx|2> and k4<|¢k,w|2>' That is, D" >> ng

¥ ¥
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. ‘
and koDx' On the other hand, d¢k,w/dx and ¢k,w are
smoothly varying functions (no singularities), hence we

D.

I

let <|dey ,/dx|%> % k<|ey ,1%>. That is, D, XD,

Also, we let D§ be approximately (koAx)'zng, where the
vorticity correlation length Ax can be self—consistently
determined once the functional dependence of the vortic-
ity correlation function is obtained. A laborious, but

straightforward, calculation Shdws that the time asympto-

tic solution is

TR <_y‘2 \( -t) >~ =. l‘é}ip :E s <y2 (b ) > -
—_— 3 Tc —

+ 2vgT <x_(0)y_(0)> + Z(VE'TC)2<xE(o)>] (£:74-3)
where
b= (12k§D>l/;(Vé)2/3 ; | (4:7a-4)

and ng/Vé << 1 has been assumed. .,

The clump lifetime T, (x_,y_) is defined as,

kgy (t = T,1) = 1. Therefore,

. xBT 2 ,
Tcl(x_,y_) =-T, * 1ln = |v_ + VAT X_ ¥

+ Z(VﬁTC)ZXE]} (4:7d4-5)
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Note that

LzD )1/3 (4:7d-6)

A=L
Ax R (kT VE) = (———T
°°¢ koVE
One can substitute Eqgs.. (4:7d-4) and (4:7d-6) into the
set of coupled equations, Eq. (4:7d-2), and easily find

that this set of equations effectively reduces to

d<y2 2Vh< >

———— = X

B L
_——r = Vhi<xe> 4:7d -7

== p<x° ( )

d<xe>

=7 = 2xfp<y®s

dt °

These equations show that the relative stréaming (charac-
terized by Vé) pPlays a wvery significant.role for the de-
termination of the time-asymptotic relative orbdit (when
VETe >> 1).

Because of Eq. (4:7d-1), the vorticity wave-
number spectrum can then be determined by the Fourier
transform of Tcl(#_,y_). We find that

4 = [1 - Jo(é)]<S>T (4:7d-8)

<Bpdp>, = —5———
S kglvélp »
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where

2. o(Ex_+ Ey\e , _ Exf
PUE E\TR T2 Z
o) Zk'O (VE'TC)

2
k
o 4(VeT,)

+ ————l———~}l/éJsin2(ek - V)

16(VhT,) %
sl v —2 0 s

[ 4(VETC)2 [

_n__“n£_~_;;:»;L/2 g2 _AWWWUUMN”;7HMLW<,«,.WHW
¥ 16(Vé1 )4] .]co (ek W)] (4:74-9)

tan 6 ‘= ki/ki’

and

2
-8 (VAT
tan ¥ = (V& Te (4:7d-10)

(1 +<64(VET84)1/2 -1

Since VéTc >> 1, we can expand in the small parameter

(VI;J'L’C)'2 and approximate_p2 by

2
2 ~ k . 2
TN — L4 sin® (@) + %)
k .
o)
+ 13

2 7
cos“ (e, + 1) (4:7d-11)
64(VéTc)2 kooa }
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The spectral contours (Fig. (4-8)) are elliptical, with

the minor -and major widths scaled with kO/Z and

8kO|VETc|/V15, respectively, and tilted by an angle, =~45°
At the limit %%/kZ >> 1 and thus J;(p) =0,

the vorticity wavenumber spectrum has a simple expression,

[|k|<6p8p>€]ﬁé L _ 4 sin? (ek + Yy
T T kT o

« ~

+ ___lé__~§ cos? (6 + E%]'l
1]
64(VET@)

Tl

The dependeﬁce,45 l&l"l, is exactly the same as that ob- -
tainéd by the Komogoroff's type enstrophy cascade argu-
ments in two-dimensional fluids. The angular dependeppe
is due to the shearing of the mean flow motion. However,
this point is not totally transparent from Egs. (4:7d4-8),
(4:7d-9) and (4:7d-10). By taking the limit, VaT, =zO,
one does not recover -an isotropic spectrum. The reasén

is that in deriving these equations, we have made the
approximation,-VéTc >> 1, to obtain the relative tra-
jectory, Eq. (4:7d~3). Thus, the limit, V4T, =0, is not
legitimately taken, therefore a correct answer should

not be expected.
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Figure 4-8. A contour of equivorticity spéctrum.in the

-“wavenumber space.
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Some physical insights can be gained from this
anisotropic‘spectrum. The small-scale vorticity clumps
discussed here .are obviously different from the self-
similar eddies of the isotropic inertial range. The
vorticity clumps are large enough to experiencé the shear-
ing of the mean fiow motion. However, the self-similar
eddies are too fine to sense the inhomogeneity of the
mean flow, hence theif dynamicsaregoverned by the inter-
actions among eddies of comparable sizes (eddy cascade ).
Nevertheless, the vorticity clumps are still small enough
" so that enstrophy received by a clump can immediately
be transferred to clumps of smaller sizes. .As a result,
some sort of quasi-equilibrium is established and, thus
yields the |£l'l dependence of the high-k vorticity
spectrum. (Notice that this dependence actually arises
from the vanishing relative diffusion coefficient at zero
separation, that is, from the balance between the non-
linear diffusion and ‘ipncoherent mode coupling of the

vorticity spectrum equation.)

As we have mentionéd above, whether the vorticilty

clumps exist crucially depends on the positivity of the
driving source. When fluctuation amplitudes are small

and thus nonlinear modifications (nonpositive definite)
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pf the linear source are negligible, we have shown that
'the driving source is positive definite. Now, a question
arises: For’a system with sufficient free energy to
drive fluctuations, .what happens when the initiallyAgrow—
ing vorticity clumps exceed certain amplitudes so that
the source becomes nonpositive definite? If clump fluc-
tuations then disappear, where does fluctuation energy
go?

For the first question, we think that Qorticity

clumps (small-scale fluctuations) will probabiy be damped

out as soon as the source becomes nonpositive in -the.

flow field. .For the sééond/questipn, we think that the
fluctuation energy of clumps may be transferred to other
typesof fluctuations, namely, large-scale fluctuations.
Experimental observation of wake turbulence, within some
range of intermediate walues of Reynolds numbers (e.g.,
.Re & 300) shows that small-scale and large-scale fluc-
tuations alternatively appear. We speculate that the
transition from small-scale fluctuations to large-scale
fluctuations may be related to the nonpositivity of the

driving source for small-scale fluctuations.
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4.8 Summary and Conclusion

In this chapter, we have studied two types of
turbulence in two-dimensional, incompressible fluids.
Plasmas of uniform and strong magnetization are approxi-
mately dynamically equivalent to such a fluid, if fluc-
tuations are low-frequency and electrostatic. The first
type of turbulence consists of large-scale fluctuations,
and is aséociated with fhe mixing-layer mean flow. The

second type of turbulence is dominated by small-scale

_fluctuations, and is associated with the wake and Jet

mean flows.

For the first t&pe of turbulence, our principal
results are:

(é) Assuming that the mixing-layer flow.. evolves
self-gimilarly, and that the dominant fluctuations are
wave-like,thus nonwave fluctuations are ignored, we have -
shown that the mixing layer expands linearly in time. The
expansion rate i1s consistent with those observed in com-
puter simulations by Aref, et al., and experiments by
Brown, et al.

(b) This result of the shear-flow expansion has

little dependence on details of the gquasi-linear model,
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such ag the initial noise spectrum, nonlinear modifica-
tion of linear growth rate. Experimental observations
éhow that the-expansionirate is very weakly dependent on'
Reynolds numbers (compariné Fig. 4-2b with Fig. 4-24)

for Ry ~ 10%. oQur resﬁlt depends on Reynolds number pri-
marily through the maximum linear growth rate. For such
high Reynolds numbers of the experiments, the maximum
linear growth rate is very weakly dependent on Re’ thus
so is the expansion rafe.

'.(E) We have also sﬁown that the mean flow loses
kinetic energy linearly in time, and that the energy of
‘large-scale fluctuationé increasges linearly in‘time,
albeit at a slower rate.

For the type of small-scale turbulence of wakes
and Jets, our principal resulfs a?e:

(a) We have shown that the small-scale fluctua-
tions 'in wake or Jet turbulendée can be treated using the
clump theory. To do so, we show that the relative dif--
fusion of vorticity correlation isvsmall when the separa-
tion of two vortex elements iy small. Mofe importantly,
we show that the.driving source for vorticity correla-
tion is positive definite. It ensures the existence of

vorticity clumps. This is ‘because the presence of a
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positive source can secularly drive the vorticity correla-
tion function of zero separation (where rélative diffusion
vanishes), and yield a singularity.

(b) The vorticity correlation function and
vorticity wavenumber spectrum of stationary turbulence
are obtained. .This correlation function has a logarithmic
singularity at small separation, reflecting the strong
correlation at this limit. The wavenumber spectrum has
equi~-vorticity contours of elliptical shape, with major

axis (tilted at an -angle, -45°, from the x direction)

v édwj_th kOT;:VE': Y e et ko e | %l g

.ko’ the wavenumber spectrum can be separated into a fuﬁc—
tion dependent on [k| multiplied by another function de-
pendent on the'angle,.i.e.,,ki/ky. The former is IEJ'Z,
which can also be obtained by using the Komogoroff's cas-
cade ‘argument. ‘

In addition to these results of nonlinear theory
for shear flow turbulence,iwe also show thét the neces-
sary condition for existence‘ofralﬁbiutiOﬂ ofvRaylieigh's
equation is that inflection points of mean flow velocity
must exist.

Since the model for the mixing-layer evolution

is very crude, it 1s instructive to examine this model
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with more care. -Previously, we have assumed that the

fluctuation energy is concentrated on modes of large
scale, hence these modes interact not only with the mean
flow but ‘also with themselves. .Thus, we eliminate the
direct interaction between the large-scale and small-
scale fluctuations, Whereﬁy the small-scale fluctuations
do not explicitly-appear in our analysis. Small-scale
fluctuations implicitly serve as a perfect absorber (sink
witﬁout feedback) in this model.

The result of an energy balance calculation

“sShows that both energy released from the mixing-layer 7

mean flow and energy absorbed by the large-scale fluctua-
tions increase linearly in time. However, the latter has
a slower rate (20%4 slower for the model profile). This
is consiSﬁent with our assumption that most of the energy
loss fromithe mean flow is absorbed by the large-scale_

fluctuations, and some small portion of energy is trans=-

ferred to the small-~scale fluctuations.

For small-scale turbulence, our -analysis re-

lies heavily on the existence of resonances -of fluctua-

tion phase velocity with the shear flow velocity, i.e.,
o/k = Vg(x). This resonance is so important that we
have been partly motivated by it to pursue the vorticity

clump theory. The reasons -are elaborated on below.
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Consider ‘a vorticity correlation function at a

small separation. Using Rayleigh's equation, we obtain

*
<oy (Do (2>

a2y - . |
D<<dx2 (w/X = VE(l))(w/k --VE(Z))* (4:8-1)

At 1 =2, the correlation function has not only’a secoﬁd

order singularity at w/k = VE, but anirremovable essen-

tial singularity due to pole pinching. That is, .two

Mfiféf“bfdéf”§iﬁ@ﬁl§?ﬁ%&éé;“mVK“E”Vﬁ(I)Héhd”@/K”E'Vﬁ(zjjm'““

approach each other from either éide of the real axis as
1 gpproaches 2. Note that a first order singularity can
always be circumvented by making a detour -around the
gsingularity. In the case of pole pinching, any detour
is impossible to rgmove“the singularity because the cén-
tour has to pass in between the two poles.

‘This singularity indicates that there are lo-
calized fluctuations'to be accounted for. .In the two-
point correlation evolution equation, this singularity

is properly accounted for by the vanishing relative dif-

~fusion at a zero separation.

Furthermore, the validity of the approximation

that
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i
Re [(Tb—_-‘_kV—J -—‘J’[S((.L) - kVE)

also depend on the existence of fluctuation spectrum.with
a broad phase-velocity range. For example, .in m}xing-
layer'turbulence, most of the fluctuation energy 1is con-
tained in large-scale fluctuations, which have zero phase
velocity, or a narrow range (for rasymmetric mixing'léyers)
thereof. The vorticity clump theory breaks down in this
type of flow. .For wake turbulence, the normal mode has
a wide range of phase veloclty which persists in a later
TUgtage 6T fully developed tuUrbulénce. T Hemde, the vortics
ity clump theory is applicable.

Besides these coﬁditions for the existence of
vorticity clumps, the driving source must also be posi-
tive everywhere in the flow field. At small fluctuation
amplitude, the source is indeed positive definite. Also
the nonlinear modifiéation, resulting from the triplet cor-
nelatioh;&oasnpt alter thé global dynamics of the flow.
This finding 1is because the nonlinear term has a ﬁorm of
a total derivative in x, and vanishes upon an integration
over the system size when it isiperfofmed.

When fluctuations are driveﬁ, grow "and become

sufficiently large (turbulent velocity fluctuations
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larger than those of mixing-length level) so that the
total source is not everywhere positive definite, the
small-scale fluctuations will be dampedf In this case,
it 1is spéculated that the fluctuation energy is trans-
ferred to large-scale fluctuations. This may be reléted
to the reappearance of large-scale fluctuations observed
in experiments.

For two-dimensional systems which do not have
mean flow inflection points, we have shown that there is

no linear (unstable) eigensolution. However the linearized

‘form of a nonlinear equation is only valid for .a finite
time (depending on the noise level). It is interesting
to ask whether this type of flow is nonlinearly unstable.
The method for investigation of this type of instability
is similar to that of one-dimensional plasmas. . However,
the present case is technically more complex because nbt
oniy does oné have to solwve an integral equation, but
also simultaneously one mugt solve for the propagator,

G to evaluate the boefficients of the integral equa-

k. (l)’
tion.

Extensive study in this direction is too in-
volved to be included in this dissertation. However, it

is of great interest, and will be a worthwhile project

for future investigation.




CHAPTER v

EFFECTS OF A RADIAL ELECTRIC FIELD

ON TOKAMAK EDGE TURBULENCE

5.1 Introduction

Recent measurements of turbulence in the edge
region of tokamaks indicate the existence of a time-

independent radial electric field.4%#7,48 This field is

large (50 volt/cm), has a very steep gradient (Lp ® 1 cm)

and reverses sign near the limiter. Its scale length is
LE/pi ~ 10. Fluctuation measurements 'in the region of
maximum gradient show an isotropic spectrum with widths
in frequency -and wavenumber.which exceed by a factor of
two the ‘anisotropic spectra measured away from the maxi-
mumn (Fig. 5-1).%7 These measurements.are corroborated
by flow visualizations, assembled from. probe array data
which suggest the presence of vortex-like motion in this
region. |

The radial variatioﬁ of the electric field im~
plies rotation in the ion diamagnetic direction/outside
the limiter and rotation in the electron direction
further in (radially). It is thus possible, on the
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Figure 5-1.

Radial profilé of'vorticity and fluctuaﬁion

'spectra measured by Ritz, et al., (C. P. :
Ritz, et al., Phys. Fluids 27, 2956) (1984)). .

The standard deviations of the measured
spectra, o(ky) and o(kg), indicate the change

" of turbulence characteéeristics, from.an iso-

tropic spectrum at high velocity shear to
anisotropic spectra at low velocity &hear
(Figure used with permission).
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basis of an electric field dependent Doppler shift in
frequency, to reconcile theories which prédict phase
velocities in the electron direction,%9;°! with mea-
gsurements made at the extreme edge which indicate phase
velocities in the ion direction.52,5® However it also
becomes necessary to.determine the effects of a radial
electric field on turbulence in the edge region. The
fact that broadened spectra are observéd both away from
and near'é strong vorticity maximum -and have a character
which changes noticeably near the maximum suggest that
fbéﬁhﬂméféﬁﬁéf&"“déﬁSEfym6im£ém§éfé£ﬁf€:é}éaiéﬁfldfi%éﬁ“””“““W
turbulence and electric-fieid-gradient-driven turbulence
play a role in determining edge turbulence spectra.
Furthermore, -nonambipolar transport processes have re-

54, 55 .
4 as relevant to understanding

cently been proposed
the separatrix region of diverted H-mode discharges. The
shear flow stability properties of plasmas, which support
the electric fields that result, is therefore also im-
portant for understanding H-mode profiles and confine-
ment .

in this study we explore the effects of a radial

electric field on edge turbulence models. ‘A sheared

radial electric field is included in a two-point theory
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of density-gradient-driven turbulence developed pre-

vipusly. It i1s found that the correlation decay rate

due to (velocity) shear induced relative drift is greater
than that due to the ambient turbulence. The éxtent to
which this enhanced decay affects the scale size is cal-
culated quantitatively using the theory of two-point cor-
relation.®Y On the basis of these resﬁlts, we conclude
that the electric field shear -alone 1s strong enough'to
determine the radial dénsity correlation length at the

maximum (velocity) shear region. Thus, the strength of

~the shear suggests that its role as a free energy gource

for instability <&hould also be examined.
For turbulence driven by the gradient of the
radial electric field, we study the shear flow (Rayleigh)

~

instability and consider additional (stabilizing) effect
of magnetic shear. The linear growth rate and‘eigen- )
function structure are obtained using the reduced MHD
équations in the electrostatic limit, and an approxi=
mate radial electric field profile. 1In the limit of
vanishing magnetic shear, this instability reduces to the
familiar Rayleigh instability, where flow shear relaxes

by an interchange of vortex tubes arouﬁd a vorticity maxi-

mum, in which case restoring forces wvanish. Moreover,
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as the linear mode structure is broad and has approximate-
1y the same length scales in the radial and poloidal di-
rections, an isotropic spectrum 1s expected.

Two possible nonlinear saturation mechanisms
are proposed, and the saturation level corresponding to
each is estimated. The strength of the magnetic shear
damping relative to. that of the destabilizing source de-
termines which mechanism is operative. When magnetic
shear is weak, saturation of unstable modes relies on an

enstrophy cascade which transfers mode energy from un-

is moderate or strong, fewer modes are destabilized. For

those remaining unstable, saturation results from non-

‘Llinear mode broadening'(Fig. 526) which effectively trans-

" fers energy from the source (vorticity gradient) to the

sink. TFor parameters consistent with the TEXT tokamak,

magnetic shear damping is moderately strong in the edge,

and the latter mechanism is expected to determine satura-
tion.

For a model shear-flow profile,:VE(x) =
Vo tan h(x/LEL the saturation level of the root~-mean-

square potential fluctuations is
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rms 1 [; Vo ]
_ — ,
Te 493 (koLg) LpsCskyrn

in the case wheré saturation arises from a cascade pro-
cess. This result is.easily recognized as the fémiliar
mixing-length fluctuation level. At such levels, thé
coupling to fhe higher k stable modes is equal to input
fromvthe gradient source. .For saturation due to non-
linear broadening of moae structure, thebrms potential

fluctuation level at saturation is

O~ E™.

‘where k andtkMIN are the average and minimum wavenumbers,

0

respectively. .CS is sound spéed, ps'iS the ion gyro-

radius with electron temperature, .and

2 3
R —s— _—_E

characterizing the strength Qf magnetic shear,-VA-is
Alfven speed, 1 is the resistivity and Lg ‘is the magnetic
shear length. At such levels, cohvection to dissipation
at finitévg ° Bp equals input from the gradient source.
We find that when R = 2.6(kMINLE)l/2, transition from one

regime to the other occurs.

e timp s men e a e e et ettt an .1:5« lé e « s et Shs s o ma tian o e e e et s e e e e e et et e i et e e e =
Drms _ [ L J / [EL_E]
Te X T R2 CsPg
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' We also estimate the density and magnetic field
fluctuation levels. In an incompressible fluid, density
fluctuations arise from the convection of fluid ele~
ments along the density gradient by thevfluctuating
velocity fieldy magnetic field fluctuaﬁions result from
the coupling of the electric and magnetic fields via Ohm's
law. When the cascade process is responsible for satura-
tion, ﬁhe saturated density -and magnetic field fluctua-

tions -are

Brrms "L ﬁ ) o

no Ln -
Brms  x ( EVo |
B8 EO

0 V3 \NLgky xC

~When the mechanism of nonlinear mode-sgstructures.broaderi-

ing domindtes saturation, they are

: 15/16

S%yms IE |_1 _

n v ' 2

0 n kOLER
~ T, 2 1 9
Brus N VOLS 1 /16
B~ 2 2
0 VALE_ kOLER

where-Lﬁ is the density scale length.
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For the parameters in the tokamak edge of TEXT,
Te = 20eV, ny ™2 X 1012em~3, Z_pp =3 ~ 4 B

o = 0.7 X
104 Gauss, Vg =3 X 105 cm/sec,»LE = 0.5 cm, Ln‘% 1.5 cm,
Lg 2= 200 ~ 400 cm, we estimate R = 2 for Ly, ¥ 300 cm,

and the root-mean~-square fluctuation levels at satura-
tions -are

o 4

Srms | o.42, Btrms 0.35, and
e nO

Brms

~ 5 X 10-5,
B ,

The values for-e@/Te'and.an/no are consistent with those
measured.

The remainder of this chapter is organized as
follows? In Section 5.2 we extend the previoﬁs study of
‘densitngradient driven tufbulence to incorporate the
inhomogeneous radial electri% field and examine the con-
sequences. In Sectioﬁ 5.3,.%e make 'a preliminary linear
tric field gradient.

‘ganalysis of the fluctuations driven by the radial elec-

.This analysis reveals a key point
for nonlinear saturation, discussed later.

In Section
5.4, we outline the renormalization scheme, and propose

two competing saturation mechanisms characterized by the
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strength of magnetic shear. Subsequently, various
relevant quantities are estimated in Section 5.5 and
compared with those obtained from experimentsQ Finally,

conclusions are discussed in Section 5.6.

5.2 Effect of an Electric Field
on the Density Fluctuation
Correlation PFurnction

a. We first study density gradient-driven turbu-

lence and consider the fluid equations for dissipative

drift waves in a torus. Since the electron temperature

is sufficiqntly lbw at the tokamak edge, the electron-
ion collision frequency Vo4 exceeds the ‘inverse transit
time (time for electrons to travel around the toroidal

device), i.e., Vg3 > up./Rq, where R is the major radius

el
and g is the safety factor. Electrons have short mean
free path for thermalization, thus temperature fluctua-
tions can be ignored. Furthermore, the frequency of
fluctuation w, Doppler-shifted by the radial electric
field-induced polojidal flow, is smaller thgp Vg4, hence

electron inertia can be neglected. Thus, the electron

fluid equations are:

S en Vel (ng o)yl + Ve =0 (5:2-1)
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) 1 ed .o
Vei¥ie = VTeV“[f‘ - anJ ) - (5:2-2)

where "#" and "L" refer to the direction of the local
megnetic field line b, -and ¥,_ is the E X B drift, i.e.,
,C/Bé(go X vd) X b. These two equations describe the elec-
tron density and parallel dynamics, respectively.

‘We substitute v . and Eq. (5:2-2) into Eq.

(4:5-21). ©Noting that
' A
+ é% (Bo - V&) Xb - ven,

‘We  can now express the nonadiabatic electron density

evolution equation.aé:

2
S Ve o2 c _ A,
(BE + Vei-v” + Bo(go V@)AX o V>H
el 1 o =
=—T—e; 6% + (VE + VD) ;-56 @J (5"2'3)

where H = 8n =~ e@/Te, the nonadiabatic electron density,
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the electron diamagnetic drift, .and Vg = C/Bg E,, elec-
tric field-induced .poloidal flow.
We consider toroidal geometry -and apply'the

ballooning transformation,

=3 exp(in¢)2exp(-im@)fdnexp[i[m - mq(r)ln]
n m

. ®,(n) (5:2-4)

ﬁnpq)‘w

where ¢ is the toroidal ang;e, & is the poloidal angle,
and n is the coordinate along a field line. Using this
and a temporal-Fourier transformation, Eg. (5:2-3) is

obtained explicitly,

. 2 2
. : VTe d
-ile - og)Hy - vei(Rq)? anlen’w * e
. _j_Le__ - - g - . -
=T, ® = op - w*e)Qn,m (5:2-5)

where wp = nqVp/r, o, = nqu/r,'diamagnetic drift fre-

e

quency, .and N is the E X B nonlinearity explicitly

m., w

given by
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5 c.keké(Zﬁmg)exp[Zﬂi(n'
m

- a(r)m)]%_ i (n + zem)H 0 (n) (5:2-86)

-0 o+
Eq. (5:2-5) contains?é convection due to the radial elec-
tric field-induced poloidal flow, parallel viscous dif-
fusion, the E X B mixing and a density gradient source
term. |

It is important to note that Eq. (5:2-5) is
applicable to the regime where

K2vE /v o > 1. | | | (5:2-7)
The dénsity response is significant, and electrons be~-
have quasi-adiabatically. This condition is generally
true for edge plasma parameters typical of TEXT, Pretext
‘an&mhe-Caltech tokamak, where wy, =~ 10° rad /sec << wg

106 rad/sec thus o ~ wp. However, inequality (5:2-T7)

may be invalid for fluid-like modeS'iocated-near the re-
gion of the ma#imum poloidal~-flow shear. .This will be
discussed in the next section. In that case, reduced

MHD is fhe plaéma model used, and density evolution,

Eq. (5:2-1), is neglected.
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For the values of w,e and wy given. in the above,
WF, exceeds Wye by an order of magnitude except in the
close vicinity of the electric field null point. This
implies that measured phase velocities of edge fluctua-
tions dre primarily determined by the electric fileld, with
a shift due to w,, . Hence, the phase velocities can be
in the direction opposite to the electron drift.

Similar linear properties of Eq. (5:2-5) are
discussed in references 49 and 57, and we will not repeat

here. In the following discuSsion, we will study the

“eTTEets of the electric fisld-induced flow on the density  ~ = =

correlation function.

b. '~ To determine the effect of the radial eléctric
_field on-density correlations in the turbulent flow, we
étudy the two-point density correlation <H(L)H(Z)>. The
equation for two-point density correlation ié readily de-
A»rivéd from the one-point equation. Standard renormaliza-
tion .procedures may be applied to the nonlinearity to ob-

tain an equation with diffusion in the relative variables,

(J_rﬂ_)rl) =1/2 (Yl-yz;ﬂl'ﬂz:rl-rg)-
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[a ¢ . Fod e a2
3t By Ly Oy_ (Ra)%vgy "
- D_(y_,n_,r_) '§—J<HUJH@)>
By_z_ :
= 8 = 7 ..:]:._IE._I- (elk'y—)(w' - (DE
' T
(Dl
- m;e)<H(1)®(2)>k,,w, (5:2-8)

where D_(y_,n;;r_) is the renormalized turbulent diffu-

sion coeffigcient for the predominant (y_) diffusion, and-

“*kw=wnq/r:“fAccording”to“Eq;“(5:ZrB)ywtheftwoapoint*density““"~““mwm e

correlation is governed by the competition of the driving
'source on the right-hand side with the decay processes

of relative diffusion and drift.on the left-hand side..
The driving source is fed by the density gradient and is
homogeneous in the relative coordinate.. .It is the in-
homogeneities gssociated with the decay which determine
the sbatial dependence of the cofrelation function. The
decay procésses are (L) the relative drift between fluid
elements at differént‘points on the drift velocity pro-
file Vg(r) = C/By, E.(r) ™ CE,/B, r /Ly, (2) the relative
parallel diffusion due to collisional viscosity -and (3) the

inhomogeneous relative diffusion due to the turbulent
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E-X B mixing. Note that while the E X B diffusion vanishes

as the relative separation goes to zero (a consequence of

correlation in the scatdering field at short separation),

the parallel collisional diffusion does not.

Because of

this property the density correlation peaks at small

scale, but is finite at zero relative separation.

‘For small relative separation the turbulent

diffusion is given approximately as

D_ =D(xZy% + nZ/anf + xBEE2E),

;

where

Co(r) =3 einy 3 ei(n-mq)n [ ane(n),
m n

and

2
D = Q§ 5 '282Re|n' - W

B, k'

O ol
2 2 171
2 97|
Te 2

-9 | 5 (2rm)Z<o(n + 2tm)?>
iMeVeq -

(5:2- ")

. \‘ * .
The quantities.k'z, (Rgan)? ‘and (kols\.)'2 are the poloidal

0
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(k = ﬁq/r),-parallel and radial scales on which the rela-
tive diffusion begins to decrease from its_asymptotic
value D. The poloidal scale corresponds to a typical
wavenumber in the spectrum. The parallel scale is de-
termined by the toroidicity-induced eigenmode‘structure.
The relation Ar = (k§)~l is a consegquence oqﬁballooﬁing
representation. *

The spatial dependence of the steady state
solution of Eq. (5:é—8) is obtained by the inversion of

the operator on the left-hand side of Eq. (5:2-8) which

'7"yiéi&sm%gi(y:jﬁ;:f;);”fhéw%ﬁ6lﬁaiﬁ€"EBfféié%EEﬁm¥{méﬁmwwjmmmM““‘“W””"

The cqrrelation time is calculated by taking moments of
the L.H.S. of Eq. (5:2-8), which yields differential
equations governing the evolution of neighboring fluid
element positions.  For the operator in Eg. (5:2-8) the

correlation. time is

Tor (Fsmsr) = (xfD)7E ﬁn[[kgwi + 02 /an?Ks

-1 aga -1

R c

+ ___g__ +[/S\2 +.!". _._......Q —_—]:-—— rz (5:2—10)
N 2 p2r2 42| -
0 C-"E *0

where Rg ==Dkg(Rq)2An2vei/v%e is the Reynolds number and
parameterizes the rélative strengths of the linear (paral-

lel collisional viscosity) and nonlinear (E x B diffusion)
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processes. For Reynolds numbers exceeding order unity,
Eq. (5:2-10) exhibits logarithmic peaking inside the
correlation scale. The correlation scales are determined
by the coefficients of the relative coordinates. The

scale of radial correlation is thus

212 1/2
Faz . 1 C°B§ 1 -1
Ar =]8% + = ———p8 —io k
t 2 212 y4pl 0
0"E %0

t

(5:2-11)
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Cne Ty c‘ - ]_/kg])’t}ie‘ coz:re]_ Siion tlme,and TE R

VEBOLE/GEO, the dynamical time scale of the poloidal flow.
For parameters c¢onsistent with the edge plasmas already

. 4 3
referred to, 7,52,5

Tm is comparable to T and the cor-
relation scale determined from Eq. (5:2-11) is of the
order of 1 ecm. For kgl ~ 10pg this is qualitative agree-
ment with the radial correlation scale measured in the

TEXT and Caltech tokamak.®” " However, at the region of

maximum flow shear,
T /TE > s a 1.

This observation that TE is the shortest dynamically
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relevant time-scale suggests that effects of the elec-

tric field gradient on edge turbulence may be more in-

volved than a simple Dopplér shift. Thus, in the next

section, we shall thus examine the electric field gradient

as a driving mechanism for turbulence.

5.3 Radial-Electric-Field-Driven
Turbulence: Basic Analysis

We now examine electric-field driven fluctua-

tions. In a magnetized plasma, the radial electric

X V,0. Since this-radial electric field has spatial de-
pendence, the resulting plasma flow is g source of free
energy and can potentially drive instabilities. .In the
case of strong toroidal magnetic fields, plasma-motion\
is quasi-two~dimensional, the electric potential & can be
looked upon as the flow stream function, and Vf@ as the
vorticity. Suitable.equations for descriptibn 5f the
vorticity evolution in the tokamak edge ‘are the reduced

MHD equations,®2

d_ o2 A ‘ vz
o3z Lo =B Vidy * VA XD V., : - (5:3-1)
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where ¢:EE®CZ/BO, ) s_@ér)/Bér),vand Ay and J, are the
vector potential and current along the field line, re~
spectively.

- Here, the dynamical time and length scales are
approximately determined by the shear flow, i.e., |d/dat] ~
VO/LE, and |V¢I ~ l/LE. When comparing the electromagnetic
‘piece, dA”/dt, with the current piece, 17, (= nel /& vEa,),

- of the parallel Ohm's>law, Eq. (5:3-2), we find nc2/4mVOLE
>> 1, and the electromagnetic piece, dA,/dt, can be
dropped. .Hence, using the electrostatic limit of Ohm's

law, réduéed'MHD yieldsrthe vorticity equation, '

BZ
d 0
o] 'a—t‘ VZJ_'d) = Tr]_CE V|2|¢> . (53-3-3)

In the limit of vanishing magnetic shear (V” =0), Eq.

(5:3-3) gives

-which is a statement of conservation of vorticity. It
is well-established that a necessary condition for in-
stability in this equation is the existence of 'a vortic-

ity maximum-at the point of inflection of the equilibrium
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flow VE(r).as’41 In view of this criterion, the profiles
of:Ritz et al. clearly point to the'ppssibiiity of shear
flow driven turbulence in the tokamak edge. '

Shear flow instability is associsted with the
interchange of vortex tubes at the vorticity maximum,
where the restoring force vanishes. Any localized per-
turbed motion around this point cannot be stopped, thus
instability arisés.

When magnetic shear is considered; free energy

A

provided by the vorticity gradient'can"bé'dissipated by

the resistive dissipation. Thus instability can be ef-

fectively suppressed unless the vorticity maximum coin-
cides with the location of the magnetic resonance sur-
face. There, the dissipatidn associated with Viydy is
minimized, .and instability can be locally excited for the
longest wavelength/modes. To simplify the analysﬁs,~we
- willl use slab geométry, with x and y representing the
radial and poloidaf directions,.respectively._ We then
Fourier transform Eq. (5:3-3) with respect to y and .the
parallel wvarilable and obtain

atv,

9 .V N2 . E 22/ a

o d ¢y n
=1 Z,[k'vfd’k' EEE_ - ko %cvfd)k"]’ (5:3-4)
. ]
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where k E.ky, velocity, length and time variables are nor-~

malized to the characteristic shear flow velocity'Vo,

- the width of shear flow Ly and their ratio Lp/V,, re-

spectively, and ¢ is normalized to.LEV In gddition, we

0"
. O 2 ' 2 /2 ' , . :
have used k§ - k“(x - x,)°/Lg to account for the magnetic
A z - 272 272 . - . ‘
shear, hence R™ = énVALE/nVOC Lg, where VA is the Alfven

speed. DNote that the magnitude of the sink term rela-

tive to that of the source term is-kRZ. This defines a

length~LE/(kR2)l/2'for the dissipation-free regi0n where

the source is much stronger than the sink.

"~ Linearly unstable modes can be locally excited =

within the'dissipation-free‘region if the energy source
(with ‘a width of the shear-layer-LE) decouple from the
linear dissipation. Stability is érucially dependent on
the‘degree of overlap between the energy source and dis-
sipation region. .Long wavelength modes have a larger
dissipation~free region, and thus are easier to excite.

In the limit of large R, the unstable wavenumber "k must.

‘be sufficiently small'in order for the energy source to

overcome dissipation. Consequently, kRZ for the unstable
modes -will approach a constant of order unify,.as R be-

comes much larger than unity. Further increase in .R can

force the wavenumber kX to be smaller than the system

allows, kyry, and yields stability.
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‘In order to discuss stability and describe’
turbulence propertiles, it is necessary to specify érofiles
for Vg (x). Vp(x) is measured in TEXT and appears to be
essentially linear in the region of interest. OQutside
the linear region, the velocity profile is flat. .For
simplicity, we model this observed profile with a hyper-

bolic tangent,
= : X
Vg (x) V. tan h(L }

0 E

We solve the iinearized eigenvalue problem of-Eq.'(5:3—6)

numerically to determine the frequency. ‘The eigenfunc-
tions, which are purely growing and excited around the
central region, are shown in Fig. 5-2 1t is noted that
the length scale of a linear mode in the dissipation-
free region 1s different from that of the dissipation re-
gion. The former can be estimated by comparing the
linear convective term with the gradient source and is

approximately,
AN xns | (5:3-5)

the latter by balancing the inertia term with the sink

and is approximately,
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Figure 5-2.

"Linearly uhstable eigenfunction, and loca--

tions of the (shear flow) driving source and
(resistive) sink. The driving source is

centered at the minimum of the magnetic

shear of R = 2, thus avoids dissipation.

The localized eigenvunction ¢ of k =0.01
is excited. The source vorticity is indi- -
cated by the dotted line, the sink is in the
shaded region; and the eigenfunction l¢k]2
is indicated by the solid line.
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AR N B , (5:3-8)

The relevance of these two length scales will be discussed
in the next section.

In Fig. 5-3, we show the growth rate 7y Versus
the wavenumber k for various wvalues of R. .In the above,
we have chosen Xy = 0, i.e., the vorticity maximum is
centered at the k - EO surface. As R increasing, un-

stable modes are coﬁfined to those of increasingly longer

wavelengths, - ~Th'é maximum growth rates decrease. When

the vorticity maximum is not centered at the k - By = O

surface, X # 0, the modes become more stable, as shown

‘in Fig. 5-4 because greater overlap occurs between the

energy source and the dissipation region (Fig. 5-5). This

damping 1s a sort of dissipative line-tying. In the more

unstable x4y = O case, we find that kR2

for the most un-
stable modes asymptotically approaches 0.5 from below,
as R becomes very large

"For TEXT parameters, .R is of order wunity, hence
magnetié shear, though significant, is not sufficienf to

suppress the hydrodynamic shear-flow instability. To

study turbulence caused by this instability, a nonlinear

ranalysis 1s then necessary.
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i.e., the driving source centered at the
minimum of magnetic shear.
intermediate values of k have the greatéest

growth rates. .
7y, is reduced.

Modes of

As magnetic shear R increases,
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Figure 5-4. Growth rate y, vs. wavenumber k, with
Xg =1, i.e., the driving source having a
large portion overlapped with the sink.
When compared with Figure 3, the growth rates
are 31gn1f1cantly reduced.
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. Figure 5-5."

50

Linearly stable eigenfunction, and locations

of the (shear flow) driving source and (re-
sistive). sink.  The driving souwrce is rot-
centered at the minimum of the magnetic
shear of R = 2, hence leads to a'large re-
gion of overlap. The eigenfunction gy Oof

k = 0.08 1s therefore stabilized. The'
source vorticity is indicated by the dotted

line, the sink is 'in the shaded region; and"

the eigenfunction |g, |2 is indicated by the
solid line. o R

210
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5.4 Nonlinear Analysis and
Saturation Mechanisms

In this section, we investigate possible satura-
tion mechanisms. In the present case, two processes
compéte . to drain wave energy from the unstable modes.
Both rely on parallel dissipation and turbulent diffu-
sion; however, the role of turbulent diffusion in each of
these two processes 1s distinect. 1In the first process,
turbulent diffusion nonlinearly couples different modes,

permitting energy flow in k space which reaches the high-k

~energy sink. In the second process, turbulent diffusion

"broadens the mode structures, allowing enéfgy to reach
regions in x space with strong dissipation (Fig. 5-6).

To renormalize Eq. (5:3-4), a standard iteratiwve

method is used to approximate its convective nonlinearity.

This has been shown in the previous chapter and in Ap-

pendix E. .In the region where |¢ |2 is large, 'we have

'k,(b

a2 /ax?| >> k. Hence we retain only

d d 2
=~ D 2.V
dx X dx J'd)k;a)

to represent the locally renormalized nonlinearity. The
nonlinear evolutiocn equation for vorticity can thus be

approximated by
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d . a? oz aevg 2.2
[—a—t—'FlkVE"D—-——‘v d)k: lk"""‘z“"'i‘kRX ¢k;

dx2 dx
(5:4~1)
and that of the vorticity. spectrum by
I3 2. 2 d 2 |2
de[gzc- lvl¢kl + 2D |35 vie, |
/
- k' ld J_dJkll )Dk
2
d°vg
=2 [dx(-k —5= In<o7F o>
dx
+ szZXZRe<¢kVE¢§>»)@M (5:4-2) |

where the third term on the left of Eq. (5:4-2) is the
nonlinear incoherent source. Together with the diffusion
term, these two nonlinear terms are responsible for

enstrophy cascade. Here, D is given explicitly by

X : (5:%4-3),

and

Dy = L (5:4-4)
o + ikVg(x) + D =—5

jaT¥eT]
MWl
N
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In the remainder of this section, we separately
present the details of the two nonlinear saturationipro-
cesses previously mentioned. As the parameter R effec~-
tively determines which of the processes dominates, we

consider the limits R << 1 and R = 0(l), respectively.

a. R <1

e ettt e

In this regime, the linear sink is very weak

for -a broad range of low-k modes. The dissipation region

is spatially remote from the region. where unstable modes

are located, because the width of the dissipation-free
region scales -as LE(kRz)'l/Z. - Thus, the linearly un-
stable modes do not.sense the magnetic shear. Only those
modes wilth gufficiently large wavenumbers experience
appreéiable linear dissipation. As a result, the only
significant way available for the removal of wave energy
from unstable modes is by a nonlinear coupling between
low~k and high~-k modes. This coupling allows an energy
flow in k space toward the high-k dissipatioh range ex-
actly as in the conventional picture of cascading. In
the renormalized theory this nonlinear coupling is repre-
septed_by turbulent diffusion which removes energy from

the low-k linearly unstable modes.
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Ignoring magnetic shear, we have an equation

for low~k linearly unstable modes,
- 2 7 acy
[-iw + ikVy - D 9-Jv2 = ik —— B ¢ . (5:4-5)
dxz 2 .

- This is the Orr-Sommerfeld equation, and the stability
boundary has been tabulated. For the hyperbolic-tangent
flow profile, the longest wavelength modes are always
unstable in spite of a large wvalkue of D. Hencevthe
complete stabilization of all modes must rely oﬁ the
existence of a lower bound of k, whiéh may be imposed by
finite system size or by other effects not contained in.
this model. For small kLE, the Reynolds number, R, =

e

VoLy/D, satisfies

Re = 473 kly . (5:4-6)
at the sfability boundary. Thus the diffusion coefficient

is approximately

VAL
D = 0-'R

43 Ky rile

(5:4~7)
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at saturation,-where'kMIN is the lower bound of the range
of wavenumbers.

B. R~ 0(1)

In this regime, magﬁetic shear very effec=-
tively governs the stability of low-k modes. The stabil-
ity is determined by the competition of vortex interchange
‘and magnetic shear. ‘Spétially, the dissipation région

lies in close prokimity to the free energy source (Fig.

5=y tbhus-—-st-ability- is-—ecrucially--dependent—on-the-dem s

gree to which these two regions overlap. Nonlinearly,

it is more effective for the.linear sink to couple to the
source, through real space by spatial broadening, than
through,klspace as in the previous case. Here, turbu-
lent diffusion creates a mode structure which extends
into the dissipative region (Fig. 5-6), through which
energy flows to parallel resistive sink. hThus, turbu-
lent diffusion nonliﬁearly couples source and sink.

Let A; -and A, be the charactéristic lengths of

0
the nonlinearly broadened mode in the inner (source) and
outer (sink) regions, respectively. To determine them at

saturation, one can use Eq. (5:4-1) and balance the dif-

fusion of vorticity with the source in the inner region,
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Figure 5-6.

2.5 0 25 50
X -

A comparison of linear and nonlin ar’ elgen-
functions. The nonlinear mode |¢N |2 is
broader and extends into the dissipation
region. Here, R =2 and k =.0.02. The
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source vorticity-is indicated by the dotted-

line, the sink is in the shaded region, the
linear eigenfunction |¢k|2 is indicated by~
the so0lid line; and the nonlinear ' eigen-:
function is indicated by the dash line.
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-and the sink in the outer region, respectively. That is,
2
a~v v
D . E 0
— 0 E kK ( —5— o =k =35 ¢
D x 1 2p2,2
b, = K"R°AT¢
Ag' k 0k

Here, we have ignored the convection in the presence of
diffusion of vorticity. In addition;“ﬁe have approximated

the averaged dZVE/dx2 in the inner region with a wvalue

B e
Bo * (E'ZPEE):L/G (5:4-9)

To determine D, we need to use Eq. (5:4-2),

the vorticity spectrum equation. At steady state,
0 2, |2
de'E' ,VJ_CDkl =O,
and the remaining pieces of Eq. (5:4-2) are the nonlinear

enstrophy coupling terms on the left-hand side and the

competition between driving and dissipation terms on the

VO/LE. Hence it follows that
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right. In this regime, nonlinear cascade of enstrophy is
less effective and can be neglected. Saturation ocecurs
when the source balances the linear sink. Substituting

VEQK from Eq. (5:4-1) in Eq. (5:4-2), one obtains

2 2
asv ' 2
0= » [kz[““zg] &)
22 [D dE~]2 dx ax

E ax2
44,4 dz | |2
+ kE*R7X [D ———] o = 0.
dx2 k

where d d%/dx2 operates only on ¢,. Since ¢, is a lo-
k k

calized function in x (Fig. 5-2), peaked at the inner re-

[a¥)

gion and evanescent in the dissipation region, Hz/dxz =
-1/A% for the source term and d2/4x2 = l/Ag for the sink

term. As a result, it follows that

N
>
e 0

= k°R Ay (5:4-10)

where the convection term in the denominator has been

ignored, and leVE/dle ~ VO/LE has been used. In addi-

tion, the integral [dx has been evaluated with the values

Lg (because of the localization of the source, dZVE/dxz)

in the inner regions, and A, in the outer region.

0
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D, Ai and AO can now be straightforwafdly de -

termined using Eqs. (5:4-8), (5:4-9) and (5:4-10). Thus,

5/16
Ay = [ﬁlg] Ly (5:4-11)
KR
3/8
By = [*5_ ] / Lg (5:4-12)
| kR
VAL
D =__ 07k

(5:4-13)

Comparing the nonlinear scale lengths (Egs. (5:4-11) and

(5:4-12)) with the linear ones (Egs. (5:3-5) and (5:3-6)),
we find that the nonlinear scale lengths are broadened

(xr? < 1).

5.5 Estimate of ‘Fluctuation .
-Levels at Saturation

Having obtained the vorticity diffusion coef-
ficients D for both saturation meéhanisms, we are now
able to estimate several relevant quantities for compari—‘
son with experiments. The quaentities include the root-
mean-square potential, density and magnetic field fluc-
tuations. These quantities will be estimated separately,

for each saturation mechanism.
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At steady-state, the vorticity diffusion coef-

ficient D, arising from the random convection of wvelocity. -

field, can be expressed as

2 2
k2 | o . \
L — = =~ 3 k2o, |2
k ixvg(x) - 0 = [E) E
dx2 Aa
22 2.2 1
e (5:5-1)

hence the rms potential fluctuation level is approxi-

mately

(5:5-2)

where Cg is_thé ion sound speed and pg is the’ion‘gyro—
radius with electron temperature. 1In -the above expression
(and hereafter), the original unit of ® as the electric
potential has been (and will be).retained.

The magnetic field fluctuation is related to
the currént fluctuation J” by Ampere's law,

[vX,:\B,]” = J b

&
¢

and the current fluctuation couples to the electric
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potential fluctuafion through the electrostatic Ohm's

law, -V ® = nJy. Hence the rms magnetic field is approxi-
mately '
~ 2 2 T
Brms dtkoly Cs ecIDrms
= | = |l (5:5-3)
By Mhg®ey c e

To estimate the density fluctuation, it 1s noted
that in this model of electric-field-driven turbulence

the density gradient has been ignored, and so has the

density fluctuation. Obviously, density gradient ef-

fécfs and density flﬁctuations significantly complicate
this simple model, making analysis difficult. However,
 because the density gradient is smaller than that of the
equilibrium flow in the regiqn of interest; the effects
of density gradient and density fluctuations on the
evolution of vorticity are probably small in this case.
We can estimate the saturation level of density fluctua-
tions by consideration of & model, where density evolves
by convection of the'velocity field as a passive scalar.

That is,

dn _ 0. (5:5_4)
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Fourier-transforming Eq. (5:5-4) in the y-direction and

renormalizing its nonlinear terms, we have

[%E + ikVg(x) - D %ZEL]SHK = 1k®, [ﬁ%] - g;gt.
(5:5-5)
At saturation, we again neglect the convection of density
fluctuations by the equilibrium flow in comparison with
the diffusion term. Balancing the latfer with the density
fluctuation caused by fluctuating velocity fields ran-

domly oscillating across the density gradient, we then

,Waéégig,éhém££émégagié§“%i£é££;€iaawié;éimw“mmmuwmm

o/
(=
i
i

(5:5-6)

[a]
O
]

Substituting Ay, Ao"and D from Egs. (5:3-5),
(5:¢3-6), and (5:4-7) into Eqgs. (5:5-2), (5:56-3), and
(5:5-6), we obtain the fluctuation levels -at saturation

due to the nonlinear cascade process,

ed v
Trms ~ 1 : 0 (5:5-7)
e 4V3k,Lg | psCskMIN

B LgV C
.._.I_‘.I.E_S. o = ._____E.__o_._.___ (5:5—8)
1/75‘ . .
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L—‘IL—‘
n i e

(5:5-9)

Substituting 4;, A, and D from Egs. (5:4-11),
(5:4-12) and (5:4-13) into Eqs. (5:5-2), (5:5-3) and
(5:5-6), we obtain the fluctuation levels due to the

nonlinearly broadened-mode-structure mechanisn,

» 15/16
¢Orms = [ 1 & [XQEEJ (5'5—10).
Te ‘kOLERZ PsCs :
12 15/16 7/8 S
.o [Eﬁzfﬁg} /18 ¢ TP 5116, -20/1s
_ 9/16 2
Brms 2[ 1 [XQEEJ (5.5 ll)
B - 2 2 .. *eT
ez 17 i foy-s ey 13
~ | _me® 41 /16,17 /8,-25/8--13/14 ‘E
o LﬂkoLE vQ L3 vy Ly (5:5-11a)
and
: 5/16 ,
EEr_IE_SL o E_E_ r—.___!:._____ / ' (5.5_12)
ny Ly |k 1 gé ' | ]
0"E /
5/16
242 .
nVaL4C
e L [_ 0 S__EJ L%/16 (5:5-1249)
4k LoV,

Notice that for R much greater than unity, kOLE

is forced to be small, and asymptotically approachés the

S

. (5:5_10 ;3() ‘




224

value l/2R from below. Hence the expressions Egs. (5:5—10L
(5:5-11) and (5:5-12) should be used to determine scal-
ings. For R not too much greater than unity, kOLE is rela-
tively insensitive to the value of R and the expressioné
Eqs. (5:5-10a), and (5:5-1la) and (5:5-12a) should be‘

used for scaling laws. .In the large R limit, we also

notice that Ai - L provided that kMIN is small enough

E)
so that there is a range of small k satisfying this
asymptotic limit.

As R decreases from unity the results pre-
‘dicted by the broadened-mode-structure processed do not
approcach those of the cascade processes. The reason is
obvious, for they correspond to two differept, compet-
ing physical processes. The critical value of R at
which transition from one process to the other occurs
can be estimated in the following way. Intuitively one
expects that the saturation levels for the cascade pro-
cess should be greater than those of the broadened-
mode=-structure processes, since the latter involves coup .-
plingtojinear damping that can directly draw energy from
the source and inhibit large fluctuation amplitudes. In
this case, the critical wvalue of R occurs when the dif-
fusion coefficients of both pfocesses are equal. That
LE)l/z.

is, Ry 2-6(ky oy
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For parameters consistent with those of the

TEXT tokamak in the edge, R = 2 and R % 0.4, hence

crit

the broadened-mode-structure mechanism prevails. The

estimated saturation levels are

Corms

Te = 0-4:2
Bhrms L o .

no .

Brms ~ -5
_g_" =5 X 10 .
0. e

These values of fluctuation levels do not dramatically
differ from those of density-gradient-driven turbulence.
TﬂiS‘is because the correlation ﬁimé gscales of both types
of turbulénce (Eg. (5:2~11)) are comparable for the param-
eters of TEXT experiments, hence comparable spectral

amplitudes are expected.

5.6 Summary and Conclusion

An analytical theory is developed to>describe
tokamak edge turbulence associated with the presence of ‘a

sheared radial electric field. Turbulence in this region
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can be driven by the density gradient and radial-
electric-field gradient. Near the region where the maxi-

mum velocity shear of the equilibrium E. X BO poloidal

0]
flow is located, the flow shear alone is strong enough

to drive fluctuation. .In the linear phase, energy pro-
vided by sources is partially dissipated by the sink,
i.e., electron collisionality along field lines; the
remainder is used to excite fluctuations. If the coupling

of the sink to the source i1s made wvery effective through

nonlinear modifications of the basic modes, fluctuations

can be stabiiized. For Steady-stafe tﬁrbulence, énergy ”

provided by the source is then totally absorbed by the
sink.

In this study, we have separately studied tur-
bulence driven by the density gradient in the presence of
radial electric field and that by the electric field
gradient. For the former, effects of radial electric
field do not drastically change the basic characteristics
of turbulence, but simply modify them. .Results of this
‘study on. the modifications of density-gradient-driven
turbulence in the presence of the radial electric field

can be summarized as follows:
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tokamak edge, the mode structures are spatially bioaﬁ'
the length scales in the 'poloidal and radial directions
are comparable. This indicates that the fluctuation
spectrum ofAelectric—field-gradient-driyen turbulence is
nearly isotropic.

(2) Linear growth rates have been obtainéd.
They indicate that instabilities are dependent sensitively
on the degree of overlap between the regions of the energy
source (vorticity gradient) and sink (parallel resistive

dissipation). .Furthermore, it is found that the long

W,,av_.e_j:e.ng.t.h. . line ar m'O'd‘e‘S"“‘C“a‘n“““""b‘E“'"“"u'n‘S't"a:b l_e due .t o """ai_"'.:]."a"Ck“ P B

of sufficient overlap.

(3) Nonlinearity is approximated by turbulgnt'
diffusign of vorticity fér linearly unstable modes. Two
types of nonlinear processes are simultaneously.present
governing the evolution of turbulence. .They are the non-
linear cascade and nonlinear broadening of mode struc-
ture. The former process produces coupling between modes
of different wavenumbers, whereby wave energy of unstable
modes can be extracted by the short-waveleﬁgth, linearly
stable modes. .The latter process radially broadenstode
structures, which permits the sink to directly extract

energy from the source and stabilize linear instabilities.
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A dimensionless quantity R, characterizing the strength
of magnetiec shear, determines which of these two mechanisms
is dominant. When R << 1, the region of magnetic shear

damping is separated from that of energy input. The lat-~

" ter mechanism is not effective and the nonlinear cascade

then provides saturation. When R & 0(1), the location of

the sink is not far from that of the source andvslight

broadening of mode width can effectively yield saturation.
(4) Diffusion coefficients and the rms poten-

tial, magnetic field and density fluctuations at satura-

tion have separately been estimated for each vegime.  F o T

parameters of the TEXT tokamak in the edge, -we have esti-
mated R = 2, hence turbulence is governed by the mechanism
of nonlinear broadening of mode structure. The satura-
tion levels of potential, density and magnetic field
fluctuations estimaﬁed by this theory are consisfent with
those observed in experiments.

It is interesting to note that, in the 1limit
of small R, the long wavelength modes cannot be saturated
by finite turhulent diffusion, and-hence the complete
saturation necessitates a lower bound for wavenumbers,

i.e., k which is usually determined by system sizes.

MIN’

-‘The inability of turbulent diffusion to saturate the low-k
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modes actually lies in the fact that there is no charac-
teristic length in the region away from the shear layer,
thus the spatial derivatives d/dx scales as k"1, Hence
the rate of decorrelation (|p a2 /ax2| = x%p) can only
offset the growth rate (7k « k) if D« k™% (thus D -

as k - 0).  By contrast, saturation mechanism in the
strong magnetic shear limit introduces another length
scale LE/(ZkRz)l/2 in addition to the length scale of Ly
of the source. .This extra degree of freedom allows tur-

‘bulent diffusion to regulate the mode width so as to de-

Crei t-he_ilrvlﬁea.rgr ow:t,h'ratevtoa:cons Tderatie extens T

(D« x-1/4y.

Saturation mechanisms of this type represent a
" departure from the conventioﬁal " mixing length'theory.
It is dinstructive to contrast this theory*with mixing-
length theofy and speculate as to its generality. In.’
this model, instead of using the width and e-folding time
of linear modes as the correlation length and decorrela-
tion time, the latter quantities have been self-
consistently determined. Moreover, as the sink (parallel
dissipation) is located at‘a certain distance from the
source, an additional length scale is introduced. This

extra degree of freedom allows turbulent diffusion to
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adjust and yields a completely different correlation length
and time from those of linear theory.

This type of nonlinear mechanism may have a wide
range of generality, particularly for turbulence in the
vicinity of single-helicity magnetic resonance surface,
kX © By=0. For the case where magnetic field fluctua-
‘tions are as important as electric field fluctuations
(see Section 5.3), i.e., n02/4ﬂVOLE ~ 1, shear-flow-

driven magnetic reconnection may occur. -We expect that

a similar, but more involved, analysis should apply.

méchanisms responsible for the turbulence observed-in‘the.
viecinity of the eéuilibrium vorticity maximum.in_the
tokamak edge. The idea of the nonlinearly broadened mode
struétures, developed here and elsewhere,-is‘seen to play
ran important role in the characterization of steady-state
turbulence -and should prove  -to be useful in other con-

texts.




CHAPTEHR v I

SUMMARY.- AND CONCLUSION

In this dissertation, several aspects of mag-
netized plasma turbulence have been examined. They in-
clude current-driven ion-~cyclotron turbulence and electro-
static MHD shear~flow turbulence. The results provide
'reasonable explanations for the substantial ion heating

observéd in auroral plasma, the dynamics of large-scale

and small-scale fluctuations in two-dimensional shear

flows, and some of the observed characteristics of.fok%mak
edge fluctuations. .Furthermore, the theories developed
here have stimulated some related new research, and can

be applied to other similar systems. .Hence, these studies
not only lead us to a better understandingﬁof the natures_
of several turbulence related phenomena, but also open

a few doors for future turbulence research.

In Chapters II and III, we studied ion-cyclotron
turbulence in a weak collective dissipation regime. The
nature of turbulence consists of both waves and clumps.
Clumps'behave‘as macroparticles, and thus emit waves when
travelling in & plasma. ‘A state of stationarj turbulence
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requires the waves to be overdamped in order to balance
clump noise emission. Wérdérived a relation relating the
overdamping of waves to the necesgsary condition for.sta-
tionary turbulence. This is a collective Vlasov analdgy

of the test-particle model fluctuétion-dissipation theoren.
At vanishing fiuctuation amplitude limit, the threshold
current for nonlinear instability was determined by this
necessary condition, and is (up to 7 percent) lower than
the linear threshold cufrent. .Moreover,'the growth rate

near the marginal stability point was derived.

iﬁ stétionar§.i6n:E§clotfoﬁ turbﬁi;;;é; the:
ion clump-amplitude is much smaller than the electron
clump amplitude because of finite ion Larmor radius ef-
fects. .Furthermore, fhe fluctuation level and anomalous
.transport'were also obtained. ..The potential fluctua-
tion level is moderate, (€¢/T.)ppys < O.l.. Anomalous re-
sistivity can sizabty deviate from that predicted by
conventional wave theories--particularly in the regime
where (mé/Mi)l/ZTi/Te > 0.01. Ién perpendicular heating
was predicted to be the dominant mechanism for extract-
ing the electron current energy. This is in marked con-
trast to the purely wave theories, which do not predict

this result.
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We also used a similar method to examine ion-
acoustic turbulence of the wave-clump regime, and found
that the clump effects were much more significant (up to
40 percent threshold current reduction for nonlineaf in-
stability).

Finally, this study concluded that to explain
the large anomalous resistivity observed in auroral plasma,
.a theory of ion-cyclotron turbulence for the clump regime
was necessary. .This is also consistent with the large

ion~electron temperature ratio (Ti/Te > 10) observed,

also suggested that a study of turbulence in this regime
may have to include ion-acousfic fluctuations, because
the large current required for ion-cyclotron nonlinear in=
stability may exceed that for ionnaézustic-nonlinear in~
- stability.

.In Chapter IV, we studied.two-dimensional shear
flow fluid turbulence, which is dynamically equivalent
to strongly magnetized (but weak maghefic shear ) MHD
turbulence. Two types ofhturbulence characterized by the
mean flow profiles were examined. For mixing-layer mean
flows, turbulence is dominated by large-scale fluctua-

tions. We assumed that turbulence evolved self-~similarly.
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Using quasi~linear model, we were éble to show that the
mean~-flow she;r layer expaﬁded linearly in time, and that
the expansion rate was consisfent with those observéd in
computer simulations by Aref, et al.,:and experiments by
Brown, et al. Also, the energy cdntents of different
components of the flow were examined. Both energy loss
from the mean flow and energy gain of the large-scale
fluctuations increase linearly in time. But the latter
occurs at a slower rate, indicating that the excess en-

ergy from the mean flow is transferred to small-scale

fluctuations.
For the other type of mean flow (wakes or jets),

smalltscale fluctuations dominate +the turbulence. .We
recognized the similarity of this system to the one-
dimensional Vlasov plasma, and attempted to develop a
statistical theory describing the evolution of small-
scale vortices. A singular vorticity correlation func-
tion at a small separation is a manifestation of the
vanishing relative turbulent convection at this limit,
and the presence of a positive driving source. We suc-
ceeded in showing the positivity of the sburce term, and
in approximating the triplet corrélation, with the prop-

erty of the relative turbulent convéction preserved.
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‘Moreover, vorticity correlation function and wavenumber
spectrum were obtained. The spectrum is anisotropic -and
of elliptic shape in the wavenumber space. The major

" axis, tilted at an angle -45° from the x direction,

‘scales with k_ T

oT.Vgs and the minor axis with,kof

‘With the understanding of the local vorticity

. structures in shear flow turbulence, we suggested that
nonlinear instability, similar to that of 'a Vliasov plasma,
might occur. A project in this direction can be pursued

via an investigation of the global (integrating out the

relaﬁg;; cdordgggéés) évoluti;n df ggémvdrf{;ity correl;-
tion function. .The global evolution equation is a linear
integro-differential equétion for fluctuation spectrum.
Nonlinear in;tability may occur when the gradient of mean
vorticitj (free energy source), |d2VE/dle, exceeds a
certain magnitude.

.In Chapter 'V, we extended the analysis of
Chapter IV to a situadtion where staBilizing magnetic
shear is present, .and the mean flow profile is_fixed dur -
ing the coﬁrse of turbulence evolution. This configura-
tion corresponds to what is observéd in the tokamak edge,
where a sheared poloidal flow is present, due to the E XB

drift induced by a D.C. radial electric field near the
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wall or limiter. .The observed turbulence characteristics
change at the region of the maximum flow shear, from an
isotropic spectrum to an anisotropic one, at points away
from this region.

Away from the maximum flow shear, turbulence
driven by the density gradient was examined. Velocity
shéar Doppler-shifts the frequency and modifies (reduces)
the radial density correlation length.

At the region of maximum flow shear,.the shear

flow can drive instability, and thus turbulence. The

linearly unstable modes are not singular, hence the tur-
bulence is expected to be weakly anisotropic. .Two satura-
tion mechanisms were proposed. In the case of weak mag- -

netic shear,

saturation occurs through an enstrophy cascade process
which couples regions of driving -source and dissipation

in wavenumber space. For stronger magnetic shear,,R2 ~ 1,
such that the resistive layer is comparable to the radial
electric field scale-~length, sétufation occurs through
nonlinear broédening of the mode structure, which pushes

ensfrophy into the region of dissipation.
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We self-consistently determined the turbulence
correlation lengths and times for both mechanisms. Using
this information, the saturated fluctuatidn.levels were
obtained. Scalings of the potential, density and mag-~
netic field fluctuation levels were determined. For TEXT
tokamak parameters (R = 2), the mode-broadening mechanism
prevails. Our estimates -are consistent with the experi-
mental results.

We indicated that the idea of the mode-broaden-

ing mechanism for saturation was useful in other contexts

--in particular, -for turbﬁlénce ih fﬁE”QEEiEi¥§ of single-

helicity magnetic resonance surface,-§ . %o = 0. To be
specific, for the case when magnetic field fluctuations
are as important as electric field fluctuations, i.e.,

nCz/éﬂVoLE < 1, shear-flow driyen electromagnetic turbu-

lence may occur. The mechanism of monlinear saturation

developed here may be applicable to this problem.

Several astrophysical - -and spacelphenomena are
intrinsically related to shear flow (differential rota-
tion) turbulence. An extention of the present analysis
to these areas is worthwhile and feasible. Continued
work in the immediate future will be focuséd on .a quasi-
two-dimensional model of shear-flow driven electro-

magnetic turbulence. Applications of this future
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project includé anomalous viscosity in accretion disks>%,80

1 and

magnetic field diffusion around a neutron star,®
electron acceleration mechanisms near the earth's neutral
sheet, where a sunward plasma flow®2 may serve as a driv-

ing source.

.
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““where the various quantities are defined as follows: =
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"Appéndix (A) Linear Anal&sis'of ICcW

The linear dielectric function in a current—carrying,l magnetized plasma

_ with anisotropic—Maxwellian velocity distributions can be expressed as'(Stik,

1962),

® An(kng) Ti (w=kvy, —nwco)Tg+nw TY

o co’ ll

0=i,e ne=—w |g|2A§a Tﬁ , xTﬁvtﬁ

WKV M0 5

Viho

the ﬁefpendicular thermal speed

.
T s I 74

. the parallel thermal épéed

BELRVE
ve =(3)
e "M " .
the perpendicular Debye length

e v,t{ Lo

A =
D S
o _/2 wpa

the thermal gyroradius
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- ?tlc .
V2 Wog

Pg

2 2 2 2, k0L
= : X Py
An(k.pd) =1 (k pa) e ..

Z is the plasma dispersion function and o stands for species.
For fluctuations in the ion-cyclotron regime, where 'kpi ~1, k >> K and

w-va/xvte << 1, the dielectric can be simplified as

. , .1 Jomevp o A (kPef)
koY TS - 2,2
- 2'5' ADe te n(“j—:l ADi)
i
- e ‘ 1oe } . N
(w—nwci)(—?) + nwg g
. . W-Nw., . ' L
(g ——— () . (1)
T) iy thg :
or
-1 w=Kvp An(k2p§)
52 [1 + ive { - =
[kI*Ape ' te n kI
_ T}
. (0w} (=) + nwg; - .
: w-nw,, ; : . L
R {.__,L + = 4".." Z( o Cl)) ) . ) (A—Z)
TI ICVt Kvt .
I i i

-Here,_ we have assumed. that the electrons. have an isotropic—velocity

distribution. Since the magnitude of IReak'wI‘is larger than the magnitude of .

IImeg'wl, ex?ept near Resk,w=0’ thg zeros of Eg,w. will be located near
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Resk’w = Ou‘ Hence Réek,w =0 willvdetermine the real part of the freéueﬁcy w,
and~im£ wiIi dgtermine the imaginary part.

| The analytical expression for the fundamental ﬁode wmwy; is particularly
simple, where Reey , = 0 can be expressed as |

i 1A (kR02)
1'+ .__-l.-_ — o 17

e e 22 o
Kvw . ReZ( — [¢] ) = i " ~ 1 , N . . o (A._3.)
ti tig A (KTeY) | |

and the marginal stability, Imey =0, yields

e “Tl"l——/\ ....... o I - e i e e e e W‘ - _
i i o
. ) €.
Vp Ty KRy
= - - ]
tis 1

o 3 : 2
i . : (0w, ;)
ol e 3/2 M; 1/2 Yei
1(_ll_" A 2.2
H ) (@) Ae oA N
'TL T" e ] i .
o MR o C (a4)
W—w, s ) ’ : . :
ReZ( c-1)
KVy
Ii

the threshold-drift velocity for exciting the mode gy .
The minimal threshold veiocity16 to ‘excite ion-cyclotron wave can be

obtained by minimizing Vb/vt"' with respect to w—wc/xvt". and kzp?« The latter
: i } i A . :

" takes a value kzp? ~ 2 to yield the minimal threshold-drift velocity, and the-

?
i I

‘'value of ‘w;wci/KVt“_ will be dependent on Ti/Ti Tﬁ/Tﬁ and Mi/meﬂ When
Tﬁ/Ti ~ 1, Eqs. (A-3) and (A-4) cen be simplied further, -
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Appendix (B) Calculation of the Source Term of - ICW

<S> = - 9 [<g(1)61(2)> » OS>, <E(2)61(1)> - Cas
Mo Yy AR
ikeR_ o 3 st
=1 ) == (<2, (1) f3  (2)[cos(®,;~¢ )k —= <f> + k& —5—-—)-]>
Wof ot ke k. N Gy au,
W
8<f> 3<f> _
+ <Qk w(g) fk w(l)[coswgdwk)k + « ﬁ])) ' (B—1)

The fluctuation fk‘w can be divided into a coherent parf and an incoherent

p&rt'.'thus we_have e e - - s e e e e - ,.,.v...,'_b..._,.»,

513,‘w
le]®

. , P > . | N
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(where x; = KV, /og, (1) = Jo(xy) end cos® = Xy V. Therefore,

in(s ) ' nk 3<f> 3<t>
3192 Gﬁ,w,n"n(l)"n(z)d'% wlz = 3V + & aUz]
k k, 2 o
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and
P | i in(8;~9,) By vt o 2
<O SR ,(2) cos(ay)> = - 24 g e 172 Gg'w’n(;I]Jn(1)Jn(2)<lwglwl >

nk d<f> + a<f'>_']
Xy V. U,

.

Als‘é, we have a term

in(®,95) .. o ,
e 1R (DT (2>,

Ty (DT} ,(1)>

:

in(®,-85)
e
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=1 as]
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ele 1 Fap, Wdn(1I(R) Gelp.

"w‘hé're the second equality . assumes that the dominant -time—de‘pendence of .

<3k(1,t1)?ﬂ(2,tz)>n is due to the Doppler—shifted ballistic prqpagqtioh, ie.,

w-nw, = «v,. Similarly, the term

» in('xil-—foz)' n

<§g,w(?)?E,w(2)°°s<ﬂ1“¢k)> =2) e ;; Jn(Z)Jn(l)Gg,w’n(2)<5gdf§>'.
. | n ) 4

Hence, the source term of the ions becomes
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and <f>° is a Maxwellian distribution. This yields
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Hence, Eq. (B-3) can be reduced to
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ﬁhéré téh@s in the first;sﬁééfréf sum:are:the déffusion and dfag, apd-those in,
the secénd' speétrél "sum »accouﬁts for relaxation of 3aniso£fopyb,of the
gverage—distribuiidn function. The ion—ion diffusion will éanéel.thé.ion—iop
drag. The remainder in the first bracket is the interactions between different’
species. ' |
| Finally, we can express éoﬁrce terms in terms of the electffc field.

élag,w|2>,_using"Eqs._ (B-5) and (ﬁ;6),
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where we have -assumed, in Eq. (B-8), that only one harmonic n,

a given frequency w.
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(B-9) .

is dominant for
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| Appendix (C)

For situations where the magnitude of Ree i§ not neccessarily lafger_than
that of Ime, we cén-evaluaie the k’ integral in Egs. (3:1—12) and (3:1-13) in
‘é slightly differeht way. Fifst, we again assume that the k'-integrai is

determined by the peaﬁ of iak' w,[_z. For a given value of &', the integfgl' /
-dgs/lalz can bé- evaluated by Ags/lclz,‘where'Ags is the wavenumber "volume”
.éontdined in the peak ofllal—z. Since the functional dgpendehce of ¢ on w, k
and vb is knownf hence AES can be expreséed by w and vp-

Sécbnd, a set of céupled équations‘simiiar to Egs. (3:1—14) aﬁd (3:1-15)
cgn.immediafeiy be obtainéd, énd thué the neccessary cqnditiqn _for. stationary

turbulence can now be expressed as

Y .
lég’@J - (al+4®)

Notice that the terms on both sides of the equality are functions of w, g
ghd-vD; however, these are not free_paraméters. They must satisfy a relation
§o as to minimize the drift velocity, yielding the threshold drift velocity

thr

vthr for clump instability. When vy, exceeds v ;'é should, be replaced by & +

i/T,. reflecting the fluctuation amplitude dependénce of nonlinear saturation.

Im x;;,wmx;m . I L L (e-1)




‘relation (a) and (b) are sufficient to determine v

Appendix (D)

In- the wave—clump regime of oné—dimensionalAion—acoustic turbulénce,.we
cen use Eq. (3:1-16) to determine the threshold drift velocity v'BF for clump
instﬁbi}ity‘ For this case, the reduction of threshold drift from that of the
linear theory is Substan{ial, in marked‘éontraét‘ to the ion-cyclotron case.
Thi§ can be explained as follows.

_Thé threshold‘drift vthr is determined by

{(a) Ree=0,
(b) Ime=(ae+ai)g?iglmxelmxi,

(¢) Minimization of vﬁ with respect to w and k .
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For ion-acoustic fluctuations, the dielectric is

&y ., =
k,w ) v v ; v
= kzkg KVie te 7! KVig

There are only two 'independent variables in Bk o' i.e. w/k and vb, hence
' thr
use for this case. However, in the case of the ion—cyclotron fiuétuations, w,
k and vp are independent variables, thus relation (¢) has to be used. -In fact,

it s this minimization of vp that results in the slight reduction for

. ion=cyclotron threshold drift.

A straightforward numerical method shows that the threshold reduction of
ion—acoustic fluctudations is enhanced monotonically as Ti/Te increases (Fig.
D-1). VWhen Ti/Te > 0;5, relations (a) and (b) yield unphysical complex values

for vp: indicating that the expansion around Ree=0 fails. The ion—acoustic

__i;_[z'(_iv__.__v&)ﬂ;T_e-z/[_L)]_ : - (.D—l‘)‘

; 'Relation (c)y is of mno
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Figure D-1.

L | L | 1
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' Threshold drift velocity for one-dimensional

ion-acoustic turbulence of wave-clu‘mp_;‘type'

as e function T/I%, with M, /m, = 100.

Nonlinear and linear results are shown by

the solid and daéh lines, respectively.
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turBuience,bécomés of‘éluﬁp tyfe, and the method deScrébed‘ in Appehdix ¢ or
ﬁumerical integration for Egs. (3:1—12) and (S:i—IB)Ashould be used.

With mass ratio, M;/m, = 100 and temperature ratio; Ti/T® = 0.5, we find
that the threshold reduction 4vHY/vtBT _ 4oz we expect that with T!/T® = 1,
the thréshold reduction should exceed 40%. This 1is consistent with that

, 6bservéd-in a recent phrticle simulation by Berman et al.18




Appendix (E) -

Here we give the detailed derivation of renomalization for

gs. (4:6b-1) and (5:3-4). The nonlinear terms can be renormalized
by (.-“Subst i tut ing wku " and V§¢ku " for ¢l({§) u‘ B,nd Vzgolg%) "
respectively, where the latter quantities are drlven by the dlrect

beating of a test (k,w) mode and baquround (k ,w’) modes. These

driven modes satisfy

o2 .
- V G, " n(x X ) dw
(2) o [ gy [l K@ oyt K0 _ g

*

SRR e — e i g
dx’ Vlwk,w - lkvl¢k w —_E;*_— + lk‘ok W 4x vlwk ) /] (B-1)
) (2) B ) 3 —inu,w!:(x,x') ,V2 * wk,w ~.k/ * .
{0ku'wu = j dx [ w”_k"vE(_x,) [lk .Lw'k'.w’ ax’ - i (pk'/,w/
R CoR Pk w” . d 2 x PR
e Vg o - ik, ot ke, pr quok,,w,] . (E-R)

where Gk” "(x x‘) is & linear propagator satlsfyxng

, I N
. Vinu'w..(x.‘x ) = - [k

1 1Ry ' y .
T " " " ) +6 e
KV () o ik “R*X®]Gpn (%, %7 )+6(x~x")

= Ly (%) Gyo u(x,%7) + 6(x-x") . | (E-3)
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Together with Eqs. (E-1), (E-2) and (E-3), nonlinear terms become

| '[NL]k,w

dy
2 k,w
— — Iv ———
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i 2
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{(x")? ([Lk.. ,.(x)Gk.., ,,(x % )<¢k ,(x).vf%c,,w,(x )>

' L ‘ 4oy o

= Gy o (x,%7) <V1¢k Jw (x)vl‘”k " (= )>] dx’

. ! ) ) " % ,
;_[Lk“’w"(x)Gku;wu(x.x )<¢k';w'(x)¢k’,w'(x >
2
¢ 2 * 7 ) J_ k,(l)
= Gy o (x0x7) e <oy e (e, (x7)>] — 25




2*
d¢k',w"dvl¢k’,w’
dx - dx’

= K3{ Ly o (X)Gpn o (x,37)< >

2, 2 ¥
o dVSe,.. . AV, . .
- 1"k " w 1"k, w p
- Gk“,w”(x’x )< ; >]¢k,w(x )

dx . dx’

ok
d¢k',w' dwkf,w’

- [Lk:,'wu(X)Gku,wn(lt,X')< dx . dxl > .
dvie d¢; : i
y , 17k iwt Tk, . =N : (P4
C= G r(xx )< “dx,w >] f¢k,w(x )} =D, + Gy, - (B-4)

Terms in the first spectral sum, D, ,» arise from the local response

(6(x—x") of Eq. (E-3)) of the’dfiven VOfticiiy Vi¢(%?wu. Terms in
' the second spectral sum Cy o are due to both the nonlocal respdnse“

<Lk”,w“Gk“,w“ of Eq. (E—B)) of the driven vorticity" Vi¢£§?wu and

driven field wég)w”.
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