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Abstract

Magnetohydrodynamic simulation of the explosive coalescence of magnetic islands

__is carried out. This result is in agreement with the electromagnetic particle simulation.

A theoretical model to describe this process observed in our computer simulations is .
presented. The theory describes the magnetic collapse and is based on a self-similar
solution to the two-fluid plasma equations, as the simulation exhibits temporal self-
similarity. The master equation for the scale factor takes a form of the orbital equation
in a Sagdeev potential.




1. Introduction and MHD Simulation

In the preceding companion paper® on the simulation study of coalescence of magnetic islands
we discovered explosive coalescence. In the preéent paper we further study its magnetohy-
drodyﬁamic evolution by simulation and analyze the physical processes based on the plasma
two-fluid model. The coalescence instability? itself is aﬁ ideal magnetohydrodynamic (MHD)
* instability in the linear stage.® In nonlinear stages, however, it involves reconnection of field
lines and thus non-ideal (or resistive) MHD ﬁrocesses. The reconnection is driven by the
ideal MHD instability external to the point of reconnection. vIn Refs. 4 and 5 the nonlin-
ear process of driven reconnection was analyzed that genéra,lizes the Sweet-Parker process
of reconnection. The MHD simulation model we use.is the MHD particle code® with 2%

dimensions. The configuration of the plasma and magnetic fields is that of Ref. 7 based on

“the initial conditions of Fadeev et al.’s equilibrium.® The MHD particle code is Tobust in~ =~ "

applications to problems even with strong turbulence, flows, convections, and density de-
pression. This is helpful because the present problem 1nvolves fast (explosive) reconnection,
strong density depressmn and compression, and strong flows. The magnetic induction equa-
tion is advanced by the Lax-Wendroff method.* The plasma is originally uniform in density
and temperature contained by metallic (conducting) walls at y = 0 and L,. Hefe typical
parameters are: L,/A = 128 and Ly/.A = 64, the number of fluid particles 32768, the
“poloidal” magnetic fields B, at y = 0 and L, are such that the (“poloidal”) Alfvén velocity
vap = 3.5¢,, the adiabatic constant v = 2, and the size of particles a = 1.0A, where ¢,
is the sound speed and A is the unit grid length. The current localization parameter €. is
varied from the value €, = 0.3 to 0.85 where €, appears in the equilibrium current profﬂe as
J, = Bogk(1 — €2)(cosh ky + €, cos kz)~%. The Alfvén transit times across the y-direction and

the z-direction are 74, = 18.3A/c, and 74, = 36.5A/c,, respectively. The typical magnetic




Reynolas number is R,, & 10* with n = 0.036Ac:,.As is well known, the ideal MHD dynam-
“jcs does not contain any characteristic length, excepf for the system’s overall length; in the
,present case it is either L, or the island width. For example, the collisionless skin depth
e/w,,, and the Debye length vanish. Therefore, in contrast with the kinetic model discussed
in Ref. 1, the spatial scales are not compressed. Similarly the relevant time scales are the
Alfvén time and the much larger resistive time. On the other hand, the MHD model largely
lacks the kinetic effects such as the Lapdau and cyclofron dampings, particle acceleration,
finite Larmor radius effects, etc. Thus the study by the MHD model is complementary to
that by the particle simulation model.

Figure 1 shows the kinetic energy and the reconnected flux upon coalescence as a function
of time for the cese with ¢, = 0.85. A theoretical curve (o — t)~*/3 is superimposed on
the simulation result. During the phase of the rapid increase of reconnected ﬂui (t =

50 90Ac‘1) the s1mu1atlon result matches reasonably with the theoretical curve. Beyond

Cot= 90Ac'1 the increase begms to be n'ntlgated due to a saturation effect (the flux depletion).

In contrast Figs. 5-8 in Ref. 7 displayed the case with € = 0.7.

The reconnected flux 3 increased rapidly with A o t™(m ~ 1.9). It was, however, less
rapid than the case with ¢, = 0.85. The released energy was also less in the present case.
In Ref. 7 the case with €,=0.3 was also treated, where Ay o t™ with m = 1. Thus, it
is clear that as €, increases, the process of reconnection becomes faster, changing from the
Sweet-Parker rate (e, = 0.3) to the faster rate (. = 0.7)* to the explosive rete- (€. = 0.85).
It is to be noted that pulsations are seen that are superimposed on the overall gfowth of the
reconnected flux in Fig. 1 as well as in Figs. 5 and 7 of Ref. 7. The pulsations in Fig. 1 are
more irregular than the ones in Figs. 5 and 7 in Ref. 7. The period of these pulsations is of
the order of the poloidal Alfvén transit time ie the z-direction.

The structure and its evolution of the plasrﬁa and magnetic fields during the coalescence

are now examined. The case of €,=0.7 is shown in Figs. 2 and 3, while that of €. = 0.85
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in Fig. 4. Compared are two time stages: Fig. 2 just about ‘at the beginning of rapid

~coalescence and Fig. 3 during the continued rapid-coalescence. The sequence of coalescence.

proceeds as follows. The early slight displacement toward each island is shown in Fig. 2(a)

at t = 20A/c,. When the two islands come in full contact, the magnetic field lines exhibit a

_ pattern similar to that shown in Fig. 1(b) of Ref. 7. At this moment (¢ = 40) the plasma

density at the z-point becomes high (about twice as much as the original value) as shown
in Fig. 2(c) at(the same time the current (J,) is strongly induced at the z-point as seen in
Fig. 2(b). The plasma flow is shown in Fig. 2(d), exhibiting inflows along the z-direction
and strong jet outflows along the y-direction making an overall pattern of vortices. The
plasma flow in the z-direction is shown in Fig. 2(e): As the z-y ﬂows. are set up by the
coalescence, the z-direction flow is induced because of the toroidal field. The development
so far is qualitatively similar to the case of €, ='0.3 (except that the islands squeeze the

plasma in between a little more and the sheet structure is thinner here).

However, Jater (at t= 75) there appear some deviations from the €, = 0.3 case. Figure

3 shows the snapshot of the flux, current, density, flow in the z-y-plane, and the flow in the
z-direction at ¢ = 75A/c,. Note that an z-point-like feature appears‘ at = 644, y = 32A
as well as a marked and rapid density variation in the plasma sheet [see Figs. 3(a) and (c)}:
The flow has a very large‘va,lue' near the z-point and inner vortex structure [Fig. 3(d)]. Note
also that this (£ = 75) is the period during which the éontinuous rapid coalescence goes
on. These features were not observed in the case €, = 0.3 (see Fig. 1, Ref. 7), in which thé
reconnected flux increased linearl§I in time and in proportion with the square root of the
resistivity 7 (A o« n'/?t) and in which the réconnection angle stayed very narrow.

These signatures are consistent with our hypothesis (a) that the reconnection takes place
by the mechanism of Sweet and Parker for coalescence with €. = 0.3. The signatures found in
Fig. 3, on the other hand, imply that the reconnection process is not that of Sweet and Parker.

It shows instead that (i) the reconnection angle at the z-point has enlarged [Fig. 3()]; (ii)




a high density spot near the z-point is formed [Fig. 3(c)]; (iii) thé reconnected flux increases
faster than the Sweet-Parker process. (Ad) o t™ with m ~ 2). These are consistent with our
further hypothesis (b) that the reconnection is through the process of Brunel, Tajima and
Dawson® for coalescence with e = 0.7. Later (¢ = 160), the systém approaches saturation
when most of the flux available has reéonnected. 'The flow is randomized.

Figure 4 presents the pattern of the plasma and fields of the case ¢, = 0.85, where we
see faster and explosive reconnection corresponding to Fig. 1. We are advancing our third
hypothesis (c) that the coalescence with ¢, = 0.85 is explosive. See Table I. In frames
of Figs. 4(a)-(d) (¢ = 50) one sees the coalescence behavior before it becomes explosive.
Although, in Figs. 4(a) and (b), in particular, éne can detect some deviation from the Sweet-
Parker type for €, = 0.3, it is qualitatively similar to the ¢, = 0.3 case and the ¢, = 0.7 case
at this stage. In Figs. 4(e) and (f) (t = 75), we now see signiﬁcant deviations in pattern from

the cases with less €,. A much wider reconnection angle than the previous ones is observed

" in Fig. 4(). From these observations it can be argued that the widening of the reconnection

angle has to be accompanied by fast or explosive coalescence. This is in agreement with the

suggestion made in Ref. 4.

11. Theo'reticlal Model

Geometry of magnetic fields here ié exemplified by Fig. 3(a). We are primarily concerned
with the plasma sheet region (in the neighborhood of z = 64A and y ~ 20A —42A). In the
vicinity of the sheet region the physics is nearly one-dimensional, that is, the variation of

quantities in the y-direction is much less than that in the z-direction. We further generalize

- the discussion of Ref. 4 in the following. The main generalization in the present theory

beyond Ref. 4 is the replacement of the pressure equilibrium by the dynamical equation of

miotion. We assume that a% > -aa—y, 5%, in which z is the direction of coalescence, while y

is the direction of “poloidal” magnetic field line and z is the direction of plasma current.
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We treat the external plasma dynamics of the explosive stage as a one-dimensional problem:

Toward the end of this section we comment on two-dimensional effects, however.
We start from the two-fluid model equations of plasma and the Maxwell equations, ne-

glecting the displacement current. We assume the adiabatic law of states for both electrons

and ions. The basic equations read as follows:

on; .
5 T V- (n;v;) =0 (1)
i _ (B Vi v B) - Vo, ‘ . (9
miniT T n;€; + c X Pjs : (2)
\ i .
VxB = '—C'anejVj, , (3)
j
VfE = 47T‘anej, (4)
j
. 10B
v = —=—=
Op; .
-79%1‘-4- v;+Vp; + qp;divv;= 0, | (6)

where j denotes the species of particles and « is the ratio of heat capacity which is related

to the degree of freedom of the system f as v = 1 + The approprlate choice of 7

in Eq. (6) depends on individual cases and models we use!. For example, the explosive
served in the kinetic simulation showed a strong one dimensional (one directional)

=1 and thus to v = 3.

process ob
acceleration, which gives rise to one degree of freedom of motion f=

On the other hand, in the MHD simulation, the adiaba,tm constant 7 for electrons was fixed

to be 2.

During explosive coalescence, there is no specific scale length. The scale length character-

izing the current sheet varies continuously in time without deformation of global structure of
current sheet. If one looks at the evolution of the system locally in time, the system under-

goes the rapid field and temperature rise, compression of plasma, change of the reconnection
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angle etc. in a certain ‘specific fashion which was detailed in the preceding paper.! If one
looks at the same system locally in time a little later, the system undergoes these changes

with different magnitudes, but still in the same speciﬁc fashion. That is, the relations that

-govern the explosive coalescence themselves are invariant under the change of time scale.

This was the manifestation of the presence of self-similarity in the system dunng explosive

coalescence. Such a physical situation may best be described by self-sumlar solutions in

which scale factors vary continuously.

We introduce scale factors a(t) and b(t) as follows,
a
Ver = 2T , | (7)
ve = 23 | (8

where a dot represents the time derivative. An ansatz is imposed here that the velocities are

lincar in z. The linear dependence on  of the velocities implies that particles flow in the

opposite direction around the center of current sheet, z = 0. The scale factors a and b will -

be determined from the above basic equations. From the continuity equations of electrons

and ions, Eq. (2), we obtain
ne = nola, : , (9)
ng = ng/b, . (10)

where ng is a constant. Equations (9) and (10) show that the densities of ions and electrons
are nearly homogeneous in space and vary only in time during coalescence. The self-similar
solutions obtained here are local solutions in space whose properties are dormnated by the
physical process near the current sheet. We therefore neglect the higher order terms in space
proportional to z* and higher hereafter. The current J; in the sheet is nearly constant. This

means that as n is nearly constant, v, is also approximately constant in space. Neglecting
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the term with z3 in Eq. (3), we obtain

B e (W )y
- e\t ) W

where we assumed the magnetic-field B, varies as B, = Bo(t)§, where A is the magnetic
. field scale length; This ansatz is cons,isteﬁt with the assumption that the sheet current is
(nearly) constant in space.

From the y-component of Eq. (5) and the z;component of equation of motion for electrons

Eq. (2) we obtain

B, = 2c22, 12

A

332 CLBo(t) 2 _ ‘

S (12)

v e
. (1)

~ where
g2
E, = E,O(t)+Ezl(t);‘3. (15)
Equations (12) and (13) yield
' B

Bo(t) = _(%)" (16)

Assuming that the electrostatic field E, varies like E; = Eo(t)z/A, we obtain from Poisson’s
equation (4) :
' 1 1
Eq = dmeng) (— - —> . : (17)
b a :

Furthermore, the equations of state for electrons and ions give rise to

»POE POe 22 .

Fo = & ey (18)
Py Py 7?

B=5waw (19)




We now go back to the z-component of equations of motion for electrons and ions in

-~order to obtain the basic equations for a(t)-and b(t). If we neglect the small terms of the

order of the mass ratio m./m;, we obtain

2 .
i = —uw? (9-—1) B, Toe (20)

PENb T 4rmonor2a? | mene.A2a?’
- b Py; '
= w2 [1—== —
b = wy (1 a) + WY (21)

Furthermore, assuming that the plasma is quasi-neutral n; = n., i.e.,, @ = b, by adding

Eqgs. (20) and (21)
2 2
V4 C (22)

G oA 4 G
A2 \2gY’

‘Where v4 and c, are the Alfvén_ and sound velocities. In ‘Eq. (22) the first term of the RHS

corresponds to the J x B term. This is the term that drives magnetic compression (collapse).

The second term corresponds to the pressure gradient term. This term may eventually be

Once the behavior of the scale factor a(t)k is determined from the above equations, we
obtain various kinds of physical quantities as follows, in the quasi-neutral plasmas, and

neglecting the mass ratio (’;";f — 0),

B = Bpz 29)
B = (-i—u-{;)x | (24)
' R @)
Ver = —4—,;%; | | (26)
Vie = Ve ==z (27)
ng = ne= % (28).




where the electrostatic field E, in the quasi-neutral plasmas is determined from the equation

~ of motions for ions, not from Poisson’s equations. From Eqs. (23) and (24) we find a result

that in the explosive phase (a — 0) the electrostatic field [E, o (a7 + a~*)] grows more
rapidly than the magnetic field (B, « a~?2) does.

Now we investigate the global time behavior of coalescence by making use of the first
integral of Eq. (22). Equation (22) is rewritten as

_8V(a)

) (29)

a=

where V(a) is the effective (Sagdeev) potential. The schematic graph of the effective potential
is drawn in Fig. 5(a). The value a which satisfies V(a;) = 0 is given by a; = 38, with
B =ct/ vil. The minimum of the potential, Viin, 18 Vigin = 2%;’%?, at a = 2a, = (. For low
the driving force J x B is dominant compared with the pressure term. The first integral of

Eq. (29) is given by

%72 A
= .}\2_(1 - W +& e _.(30) .

Wﬁere £/2 is the initial (Sagdeev) “energy.” As seen from Fig. 5(a), the explosive magnetic
compression corresponds that the scale factor a(t) rapidly changes in time by orders of
magnitude and neariy vanishes. Such an explosive collapse can be realized (i) when the S is
small; (ii) when the initial total energy £/2 is nearly zero.

Let us examine the time history of various physical quantities based on the qualitative
time behavior of a(t) derivable from the effective potential V(a). The magnetic field energy
is proportional to B2, which is given by Bz = %2}0- (%)2 If the scale factor a becomes smaller, |
B: must increase. The maximum is given by ?-;itf’- = 0, which yields ¢ = 0 at a = au. After
the maximum, B: decreases again and reéches minimum at @ = a;. The oscillatory behavior
of the magnetic field energy is schematically drawn in Fig. 5(b)‘. |

The electrostatic,field E, is given by Eq. (24). The time _hiétory of the electrostatic field

_energy, which is propositional to EZ, is analyzed by investigating 8;3: = 0. This condition is
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equivalent to

0& '
&=0, or 5= 0, o - (31)
where Ey(t) = —%‘-%2& + Z,'\%‘F' The first condition & = 0 occurs at a = a3 =~ B. The second

condjtion %i‘l gives two conditions: (i) @ =0, @ = an, a2 Or ({)a=as= %,B.

| The above considerations give us the schematic time history of the electrostatic field
energy E2 as drawn in Fig. 5(c). Figure 5(c) indicates a triple-peak structure in the elec-
trostatic field energy. When the plasma f is small, a3 and ay are close. In this case, the
triple-peak structure in the electrostatic field energy would become double-peak structure.
The maximum value of the electrostatic field, Emax, achieved at a = a4 is given by

1 /3\3m; vix
B =1 (1) By 52)

The induced electric field E, is given by Eq. (25), which shows that E, becorﬁes zero, when
~ @=0. E, changes its sign around @ = 0 because @ = 0 is the point where the magnetic field
e mmlmul;l e,

" Next, the time behavior of ion temperature Ti; is examined. In the early stage of coales-.

" cence, the plasma shou'ld be adiabatically compressed. However, as the magnetic field energy
increases near the peak and approaches the peak, the jon flow energy Becomes dominant over

the thermal energy. From the consideration that v? gives maximum or minimum, namely

%’;— = 0, we find two conditions for the extrema; (i) v. = 0, which gives &, (ii) & =0,

which gives ad = a*>. When the explosive coalescence takes place ('8 = 0), this leads to the
condition @ = as =~ %,B After @ = as, the kinetic energy must decrease, which means that
the plasma is in the state of colliding phase. The above considerations give us the schematic
time history of the ion temperature, which is shown in Fig. 5(d). Figure 5(d) shows a double-

peak structure in the ion temperature. The temperature T is given by T = P/n, while the

dominant term in pressure changes in time as P ~ a~® when vy =3, P ~ a—* when v = 2,
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while n ~ a~1. Therefore we find
o , 1
T = P/n"_"';z(')'=3),
1 .
wlg=n 3

We investigate in more detail the explosive phase of the coalescence in a case where we
can neglect the effect of plasma pressure: it only acts as a saturation mechanism. The

solution of Eq. (22) with ¢2 = 0, small £ and vy =3 is given by

= (D) (%) wo-tprro@, (34

where we neglect the order of € and %o is the explosion time. Once the solution a(t) is given
by Eq. (34), we can find the various physical quantities as follows, which is valid in the

explosive phase of the coalescence;

2 =z .
g = Utz—vex_—g(io;t), e e . - e (3.5.)
. 1/3 2/3
n o= ny=MNe= (2) -T/Si—.ﬁo——, (36)
9 vy (to — t)%/°
2 my T |
Ee = 3 w0 ' (87)
2/3 1/3
b - () g o
9/ wiP(to—t)*3
92 /9 2/3 A1/3 2 ) 1/3 ' B .
o= () =5 (5) e
viBe(to — )72 3 \9 w2 A3 " (o — t)8/3

Let us compare the theoretical results obtained here with the computer simulation.re-
sults. The global structure of the magnetic field energy, electrostatic field energy, and ion
temperature in the z-direction observed in the simulation is well explained by the theoreti-
cal model obtained here. Especially, the double-peak structure in the ion temperature and

the triple-peak structure in the electrostatic field energy are also observed in the simulation
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(see Figs. 2 and 3 in the preceding paper'). Table I of Ref. 1 summarized the results of
-comparison-of the explosion indices between the theory and the collisionless simulation.
In Table I of Ref. 1 we showed the index m of explosiveness [the exponent to the time
(tov —t)~™], in good agreement between simulation and theory in the electrostatic energy.
The electrostatic field energy, magnetic field energyl, and ion tempefatﬁre are well explained
by the one-dimensional model of the explosive collapse. |
Comments are made on two-dimensional effects. We introduce four scale factors a(t),

b(t), c:(t) and d(t) as follows

Vig = —I,
b
Viy = 3y7
21
Vezr = T T
(5
'vey = Ey. . (4:0)

From the equations of motion for electrons and ions we finally obtain for a, b, ¢, and d

e A 1 a
Lo o2 A2 \[(1__@
“@T Y (A1+A2> (b c1d> 1)
A 1 b |
pi (A]_ + Az) a Cld> ) ) (42)

A a 1 i (d 1
. — _ 2 2 —]; I _ _Ae_ el .
a4 = “’W(A1+A2> (& 1)~ (cg d) | (43)

. A d 1 2, /1 a) :
= —u? 1 el Yae (2
. ( (ab 01) +5 (57 (44)

The quasi-neutrality (n; = Ne) imposeé that “Wronskian” being zero, ab = c;d. These

ot
il
£

equations were first derived by Imshenik and Syrovatskii.® In the limit of £ — 2o we have
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approximately

e (to—t?® and  dmconstant. - (45)

This reduces to the one-dimensional results discussed in the above.

Roseneau also obtained a self-similar two-dimensional solution.l® Recently we have come
to learn that Kadonaga and Tomimatsu'! obtained solutions similar to Egs. (35)-(39).

We would like to thank Drs. F. Brunel, A. Bhattacharjee, and A.G. Litvak for their
helpful discussions on the manuscript. This work is supported by the U.S. Department of

Energy and the National Science Foundation.
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- Coalescence and Current Peakedness (e.)

€ 0 0.3 0.7 0.85
Process Sheetpinch | Slow Fast Explosive
Coalescence | Coalescence | Coalescence
tearing Sweet-Parker
instability | process
Recon. flux | e+ nt/%t nt/Hm n°/(to — t)*3
A o 38 (m>1)
)]
TABLE I
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- Figure Captions

1. Temporal profiles of the fluid energy (a) and the reconnected flux (b) for €. = 0.85
obtained from the MHD particle simulation. A solid line in (b) is a theoretical curve

discussed in Sec. III.

2. Spatial structure of plasma and fields “before” coalescence with e, = 0.7. (a) Magnetic
field lines at t = 20Ac; . (b) Toroidal current density J, contours. (c) Plasma density.
(d) Plasma flow velocity. (e) Plasma z-direction flow velocity contours. (b)-(e) at

t = 40Ac;': Solid lines correspond to above-average contours and dotted ones to

below-average.

3. Spétial structure of plasma and fields “during” coalescence with e. = 0.7. (a)-(f) as

. indicated for Fig.. 2. (a)-(€) at £.=T5Ac . . .

4. Spatial structure of plasma and fields “before” and “during” coalescence with e, = 0.85.
(a) M‘agnetic field lines. (b) Plasma density contours. (c) Plasma flow velocities. (d)
Current dénsity (J;) contours. (a)-(d) at ¢ = 50Ac;*. (e) Magnetic field lines. (f)

Plasma density contours. (e) and (f) at ¢ = 87.5Ac; .

5. Behavior of explosive coalescence. (a) The Sagdeev potential for the scale factor a.’
(b) The temporal profile of the magnetic energy. (c) That of the electrostatic field

energy. (d) That of the ion tempefature in the z-direction.
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