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ABSTRACT: The wave induced particle transport during the ion cyclotron resonance
heating is studied in collisionless toroidal plasmas. It is shown that the previously ne-
glected non-conservation of the toroidal angular momentum IP; caused by the toroidal
wave component Ey is necessary to allow particle diffusion and yields the leading diffusive
contribution. While the induced ion transport for the rf power in contemporary experi-
ments is of the order of the neoclassical value, that of fast alpha particles is quite large if
resonance is present.

1. INTRODUCTION
‘The ion cyclotron—wave resonance heating (ICRH) of a plasma is one of the most
important methods of plasma heating to high temperatures[1,2,3]. One of the main rea-
sons is that this scheme can directly increase the pr(;portion of reactive ions[4] for fusion,
in a sense an alternative to the beam-sustained two-component plasma idea. Amnother

reason is that high power radio frequency (rf) wave generators at the ion cyclotron waves

are technically readily available. For these ressons and an experimental success|[5] large

tokamak fusion plasmas are planned to be heated by ICRH, including'JET (the Joint
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European Tokamak) and TFTR (the Toroidal Fusion Test Reactor). One of the potential
problems associated with this method is the possibility of reduction of plasrﬁa confinement
due to the cyclotron interaction with particles, i.e., the ion cyclotron—-wave induced diffu-
sion. It is thus crucial to examine the qualitative nature and the quantitative magnitude
of this transport associated with JCRH. Our investigation is focused on ICRH, but also
applicable to similar problems afising from the electron cyclotron—wave resonance heating
- (ECRH) for electron transport. The results can be applicable to controlling impurity ibns
via Alfvén wave induced diffusion. Such problems may take place in heating stellarators
as well. Through our investigation we find that although the ion transport due to ICRH
is of the same order of the neoclassical transport in the present large tokamak experi-
ment parameters, the fusion a-particle transport induced by ICRH is far gréater than the

neoclassical value if there exists a-particle resonance.

High levels of rf power deposited in a plasma layer affect confinement by (i):.driving

__the velocity distribution into a non-Maxwellian state and thus changing the distribution
associated collisional diffusive flux and by (ii) inducing collisionless loss of particles through
the stochastization of their trajectories caused by the wave. Case (i) has been investigated
by a number of authors[6]; we instead focus our attention on case (ii), the directly induced

collisionless diffusion.

-The net diffusive flux of particles is intimately related to symmetry of the system.
For collisionless confinement in three dimensions an equal number of exact or adiabatic
invariants of motion must exist, regardless whether the confining field geometry has two
degrees of symmetry (straight cylinder), one (axisymmetric torus, helically symmetric stel-
larator) or none (toroi&al stellarator). However, the rate of diffusion caused by collisions
or interaction with additional fields increases with decreasing degrees of symmetry as the
particle orbits bifurcate into neW classes|7, 8] characterized by higher radial excursions and
thus higher diffusion levels. The transition from the classical diffusion in a straight cylin-
der to the neoclassical in a torus due to the increase of the mean step from the Larmor
radius to the width of a banana orbit for the trapped particles is the basic example[9]. A
relationship between degrees of symmetry and diffusion similar to but distinctively differ-

ent from the collisional case holds for the case of the wave—-induced collisionless diffusion




under consideration as the average wave induced radial displacement for a trapped particle
exceeds the displacement for a passing parficle by a factor 1/¢, where € is the inverse aspect
ratio. Furthermore, destruction of axisymmetry by the wave enhances particle transport
as compared to the case when only the magnetic moment and the total energy of the
particle are allowed to changé. We measure the diffusion rate for trapped particles by the
radial shift in the guiding center turning point rather than the change in the width of the
banana orbit used in previous work[lO]. Thus in c-ase that conservation of the canonical
angular momentum IP, is assumed and finite Larmor radius effects are ignored in defining

the turning point, no diffusion results, contrary to the conclusions of Ref. [10]. However, in

devices with helical magnetic lines a finite toroidal component of the wave field Ey exists, -

even with the parallel to the magnetic field component Ej shorted out. This destroys the
axisymmetry and its associated remaining invariant and thus introduces a neoclassical type

of collisionless diffusion. The change in the magnetic moment yields a smaller contribution

~_to diffusion entering through finite Larmor radius effects in the position of the turning

point.

2. COMPUTATION OF THE DIFFUSION COEFFICIENTS

Consider a wave propagating nearly perpendicularly to the magnetic field at the

ion cyclotron resonance in a hot axisymmetric toroidal plasma. The position and velocity

of a particle are given by X+ g and 1% '—|—b v respectively with X and V the guiding
center position and velocity p’ the gyroposition from the guiding center v} = d/dtp. The
trajectory of a trapped particle (banana orbit) is shown in Fig. 1(a) with the toroidal
coordinate system (é,, €y, €3). In a field aligned coordinate system with (&, €) making
an angle a with (ég,é4) respéctively, we have § = p(éisiny + é-cosx), x = [ f2dt,
2 = eB/me, B = Bo(1—¢cosf), p = |7 |/f2 and V is given to order p/R by V = V“é’”—l—VD
with V}j = vy + (v /202)(1/B)(8Bs/dr), Vp = 2~ [(%vﬁ + vi) /R] (¢ x ér). R is the
distance from the axis of the torus and r the minor radius. Without the wave the total

energy £ =1/ 2mvlzl + uB and the canonical toroidal angular momentum

Py = {m(X +0) x (7 +51) + (e/)P(X+8) | - (en x &), (1)

3




with ér along the major radius are exact invariants of the motion, while the magnetic
moment x4 = mvi /2B is an adiabatic.inva,riant. ‘We consider trzip‘ped particles in the
collisionless regime where the bounce frequency. v, ~ (27)~!(v_€/?/gR) is much larger
than the effective collision rate of Def = Ve [ €. i

The diffusion of a trapped particle is characterized by the radial shift of the turning
point. A relation between the turniﬁg point X* and the invariants of the motion is obtained
from the exact equation for [Py, by expanding Eq. (1) to second order in Larmor radius

and averaging over the gyroangle x,

(IPy) = IPy = —3(mc/e) cos 6% sin o* u+(e/c)¥ (X*)+(1/2) (me/e)u(cos® o* | B*) 32w (X*)

(2)
where the asterisks denote quantities at the turning point defined by V”* = 0 and the
relations u = (1/2)p%N2¢/c, and ’1/7’282217/802[ < |82!F/8?'2I have been used. If finite

Larmor radius effects are omitted from (2) and if it is assumed that only u changes due

~~to-heating with 1Py fixed as constant, ‘-"a's—'in"’p’revi'ouS"work[iO]',"'then “the turning- point —— "~

remains always on the same flux surface ¥(X*) = ¥* = (¢/ e)IP, and no diffusion of the
average position occurs although the banana width changes between successive passages
through resonance. The more accurate description, Eq. (2), shows, however, that a shift
of the turning point is produced by both éx and 61P, resulting in a neoclassical type of
diffusion. We shall show that the change in IPy by the toroidal component of the wave E4 =
E)| cos oa—FE,sine, o= By/B: = €/q yields the leading diffusive contribution even when
E) is shorted out by the large parallel conductivity and that a small residual diffusion due to
6u persists in the limit E4 — 0. The wave is B = Eq sin( k-dz— wt) with k= (ky k1 ,0),
ki = kgcoso — kgsine, kg = m/r, ky = n/R, fE dz = kpsin(x + ¢) + (n + m/q)¢,
k= (k2 +k%)/2, ¢ = tan~'(k,/k,) and E, is split into longitudinal and transverse part
Ey = Ep(k/k) + Er(k X &)/k) with E, = —VU, Ep = ~1/cdA/dt according to the
Coulomb gauge. The jumps éu and §1IPy received during the passage throughithe resonant
region are calculated using |

d o — -
_E/J,B =ev - E =ev, [Egcos(x + ¢) — Ersin(x + ¢)]

x cos (kpsin(x +¢) + (n+ m/q)¢d — wt) (3)
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dt e
- x cos (kpsin(x + ¢) + (n + m/q)¢ — wt)cos¢sine,  (4)

d oU 0A ‘ k '
—IPy = —e,(f.—> — 517- ( > =eR [EL = =r sin(x + ¢) Er
w

where the term 8/3¢(E x &/k) is neglected in the last part of Eq. (4) for n > 1, and
R = ()2 +p) - ér = Rg + pcosfsinty. Only the resonant terms of the general form
I (kp) sin[Nx + (n +m/q)¢ — wt + ¢| are retained with N such that at resonance

d/dt{Nx + (n+m/q)¢ —wt + ¢] = N2y — kjjvg —w = 0. (5)

The k)v)o term can be dropped for nearly perpendicular propagation as (kv /NN) <
kpv2e < 1, where the subscript refers to the resonance point. |

- One distinguishes between two cases for the calculation of § /Py and §u. Case (a).
The change in p during one passage is small, k6p < 7. Then the argument kp of the

Bessel function can be assumed constant over one passage, thus Egs. (3)-(4) are integrated

-—-applying the st a-t-ionary—--ph-ase--a-pproximdtion-.»- “This-yields-kép-=2(eEok/mi2q)(m/~ N R

with the detuning rate, yx = d/dt[¢nf2(t)] = kpv), kB = (¢/qRo)sinby the scale length
of the magnetic field. Defining the resonant width Lp = (1/N)(Bo/Eo)?(vpn/c)?p as the
length over which kp changes by w, the applicability criterion for case (a) is written as

. Rog/e < Lg. Thus the magnetic field must change considerably within a length shorter
than the distance Ly required for a large change in kp; Ly is small for high k£ and small
vpr/c¢ (i.e., near a wave resonance). Case (b) with Rog/¢ > Lp meaning that kép 2 .
The change in the argument of the Bessel function leads to modulation much faster than
the detuning due to the change in {2 and the particle executes many gyrations in the
resonant regime, diffusing stochastically over one passage. For lower hybrid heating with
typical TFTR parameters (given in the next section) we obtain a resonant length of a few
centimeters much less than the scale length of the magnetic field and case (b) applies. For
ion cyclotron heating one finds under ﬁhe same plasma parameters that Lg is a few meters
thus stationary phase approximation can be applied.

The phase in the resonant terms of the rhs in Eq. (5) is expanded as
1 o, 1. ., |
&(t) = do + kBl Ev”t + g’vut R (6)
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with &9 = Nxo + N¢ — wto, where the second term inside the bracket comes from the
free streaming and the third tefm, comirig from the parallel acceleration ;J,VB,‘néedvto
be considered only when the turning point v = 0 falls very close to the resonant layer.

Keeping Ry and B constant during the integration we find

81y = 2¢ (/N 12) " *Ro { B Ty (kp) cos B} + (v k/w)Ex (N Ty (kp)/kp) cos 81}

- X cos¢sina, . (7)

Su=2(evy /Bo(1 — €cosby)) (m/vn12)"? {EL cos &}, + Excos B!} (N Tn (kp)/ko), (8)

where @[ and @] are related to the phase difference &y between the gyroangle and the
wave phase at the resonance by §f = &g + 7/4 and &) = & + 37/4. '

We now obtain the displacement of the guiding center turning point perpendicular
to the flux surface, 67* = §* /|V¥™*| as a function of tﬁe induced changes 6Py, 6u. The
quantitieé V2¥ = RV(1/RVV¥) = RI4 and o = €¢/q(¥) are both flux functions in the low 8

“axisymmetric Grad-Shafranov equilibrium; thus'Eq. (2) is of the form F '("ZPJ;"}I,"0*",".'!?*')_5

0. Differentiating Eq. (2) and using the energy conservation
1 2 *
3™ + uB(1 —ecosbg) = uB(1 —ecosf™), (9)

to express 66* in terms of 6IP;, 6u we find the turning point displacement due to the wave

resonance as
1
ér* = (R*B*)? {5P¢ + '[(chz/e2) cos o sino® — E(R*Ig/ﬂ*)} 5,u,} . (10)

It is reasonable to assume that the heating process is stochastic as the stochasticity
threshold with the last invariant P, destroyed is lower than the threshold with constant
Py evaluated in Ref. [10] and shown to be sufficiently small. The angle &, entering the
calculation of §1P,, 6u in Eqgs. (7)-(8) becomes decorrelated within a banana time while
fo,0*  R* change much slower on a diffusion time scale and remain constant over a time
span long enough to perform averaging (- ) over @y. The diffusion coefficient D¢ is given
by

V2e
D, = 47r/ dvdiv? cos A <6r2> 2upf (v, A),
v/2esin 60/2




assuming that on the average a particle receives two kicks per banana orbit; A is the pitch
angle A = tah‘l (v” Jv1) at the minimum B position. The lower limit of 'integration corre-
sponds to banana orbits with their tips touching the resonant surface at .00 while the upper
limit corresponds to marginally trapped (untrapped) particles. Particles with A within the
thin separatrix layer v/2¢ + 61, 6; = (EJ_C/Bv)(H/K,Bv”)l/2 < 1 can scatter from trapped
to untrappe‘a and vice versa within one bounce yielding a radial shift ér = A, = banana
width; however, their bouncing period tends to infinity and they ﬁeed ﬁot be considered.
Particles within the thin layer v/2esin(6y/2) & 65, 63 ~ 1/4(nkpp)/3 < 1 have their turn-
ing point v = 0 within the resonant regime thﬁs the acceleration term v = —ukglIm™!
dominates in the phase expansion Eq. (6) and the resulting jumps 61P4,61 are greater from
the results in Eqgs. (7)-(8), (with v ~ \/EU¢) by a factor /7 Ai(0)4/3e/4(kppr)~1/C,
A1(0) = 0.355. Due to the smallness of 6, the above enhanced local contribution does not

change overall diffusion significantly. The velocity distribution f(v,A) represents a:steady

state reached when the rate of Wave induced velocity difqu__ig{l___.i_§____’?alanced by the ra’;g_‘_ of

pitch angle ion-ion scattering and ion-electron frictional slowing down. This balance can
be achieved without violating the original assumption Up 3> Vi > Vie, as from Eq. (7)
the wave induced pitch angle scattering frequency scales as vy ~ (Eoc/Bv)%vy < 1. In
excluding time dependence from f(v, ) it is assumed that Velocity.relaxation occurs on
a much faster time scale than particle transport; this is generally true for fhe collisional
processes and we will show it is valid for the wave induced diffusion as well. For f (v,A)
far from Maxwellian such as the asymptotic forms obtained by Stix[1] (or by Bernstein
and Baxter[11] if.electron diffusion is considered), numerical integration is necessary; for
near Maxwellian distribution we use Eqs. (7)-(8) in the rhs of Eq. (10), discard terms of
order €%(p/ro) ~ €(p/Ro) or higher, set N = 1 and use the small argument expansion for

the Bessel function to obtain the diffusion coefficient
D = C(37r/4) (ez/mz.!?a) Ege_l/2 [kip2 — 2/c_|_p2/ro + (p/ro)z] , (11)
with C' a numerical factor of 0(1)

1-6 )
= / 0, du(l+2eu) 52 K(u2) "t (u? - sin(00/2)) /2
sin ? + 65




and 1/ro = 3/9,(¢nBg) (ro is the minor radius of the torus). The diffusion is proportional
to the total rf-energy dénsity E% = E% 4+ EZ and for given Eg the expression is insensitive
to the details of possible mode conversion.

-The first term inside the bracket in Eq. (11) results from the change (6§1Py) in
the angular momentum due to the toroidal field componént Ey = Fie/q and in the
regime of short wavelengths krg < 1 it dominates the contribution from. the change in
the magnetic moment (5,u) given by the third term, as well as the contribution from the
cross-correlation (6IP;6u) given by the second term. (During electron cyclotron heating
E)| can be significant and with E4 ~ E) the electron diffusion is enhanced by a facfor
(g/€)?). In case of wave propagation along the minor radius ki = kcos¢ = 0 (Fig. 1b),
6IP in Eq. (4) vanishes leaving a residual neoclassical-type diffusion due to <6u2>.

A heating time 75 can be déﬁned by g = Uz/ijrf and _Drf given by 1~)rf =

vy (Av? ) and Eq. (8). Defining the diffusion time 7p = r2/Dy one obtains the ratio

71/ = (p/r0)*k*p® < 1, which justifies our assumption of separation between velocity

and spatial diffusion time scales.
The diffusion coefficient for passing particles can be obtained using the same pro-
cedure. Computation of the radial shift for 67** at the point of minimum )| (i.e., § =)

leads to 6r** = ¢6r* thus Dpassing ~ eg/thmpped.

3. CONCLUSIONS:
It is of importance to define the amplitude E,. at which the induced diffusion
becomes comparable to the neoclassical, D¢/ Dy ~ 1 where Dy, = q2p2ueie_3/ 2. Using

the leading term in Eq. (11) one finds approximately that for ions
E;. = (vpn/va)Bo(vei/2:) /2 ?g . (12)

For TFTR-type parameters T; = 10%eV,B = 5T,n; = 3 x 1038em=2,k = w/vpp, € = .15,
and ¢ = 1.5 we have E,, ~ (vpn/va) X 60V /em. Thus, given that the actual diffusion rate
exceeds the neoclassical by an order of magnitude and if the electric field near resonance
is not to exceed a few tens of V/em during large scale ICRH the directly wave induced

diffusion poses no real threat to confinement.
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The 3.5 MeV a-particles produced by fusion experience the same cyclotron reso-
nances as the deuterium. Therefore the calculational prbcedures we have taken for ions
are applicable to a-particles as well except that, due to the large Larmor radius p,,
we should revive the original Bessel function, replacing the square brackets in Eq. (11)
by 4 (JZ(k1pa)) [1 = (kiro)™2%] and multiplying Eq. (12) by kipa/2 <J12(klpa)>?/2. We
note here that a description with terms of order of (p/R)? more acurate than the guid-
ing center description yields additional corrections no larger than ¢(p/R)? to the dif-
fusion coefficient. This correction is much smaller than the terms kept in Eq. (11),
thus our analysis remains valid for a-particlés. From Eq. (11) we find that D% /D% ~
4(J2(k1pa)) /(kLpa)? which can be much larger than unity. From Eq. (12) we can write
down the equivalent critical rf-power densﬁ;y P,. above which the wave induced dlffu—

sion dominates the neoclassical one for a given particle species and find that P2 /P2

| (1/4)klpa (J2 kJ_pa)>_1 (To/Ta)~%/? < 1. Tt is clear that a-particles suffer severe diffu-

smn 1f resonance 1s ‘present. | Thls ‘o pump-out durlng heatmg near the deuterium-tritium

hybrid resonance may be avoided when tritium is a minority (then Whybrid ~ {2¢) by hav-
ing the deuterium resonant surface outside the plasma. After ignition, on the other hand,
with the o particles produced mainly in the plasma core, this wave induced transport may
be utilized for rapid and preferential o heat distribution through the plasma volume to
avoid heat accumulation and the heat runaway instability as Wéll as for the ash transport.
Applications of the present theory to trapped particles of astrophysical plasmas such as in
the Van Allen belt might be also relevant although the toroidal direction plays a different
role, as the basic physics is similar.

It is of interest to observe that the present wave-diffusion process preserves the
Onsager symmetry|[12], because it is microscopically reversible. In the presence of plasma
turbulence, however, the Onsager symmetry may be broken in a way similar to the neoclas-
sical transport case[13] studied By Molvig et al. It is tovbe noted that the present process
causes a preferential ion diffusive flux I’ rif > I'; leaving a possibility of an ambipolar

potential build-up, while the neoclassical process has I't, = I'¢,.
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FIGURE CAPTION

1. (a) Guiding center orbit for a trapped particle. (b) Geometry for induced diffusion.

The vectors €, , €, the wave vector k and the gyroposition 7 lie on the same plane

perpendicular to E(él|).
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FIGURE 1




