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Abstract

The effect of the parallel equilibrium current on the linear
;stability of the drift—tearing mode in the <collisional regime is
investigated analytically.

In the appropriate parameter regime, a new unstable mode, driven
by equilibrium current, is found and its relevance to tokamak

discharges is discussed.




Introduction

In the linear analysis of the tearing -instability,1 the
dispersion relation is obtained by matching the external solution for
the ﬁerturbed magnetic field in the ideal (MHD) region with the
internal solution, wvalid.in a narrow boundary layer centered around =a
pafticular mode rational surface;l’z The plasma. response inside the

3,4,5

layer is either derived from kinetic theory or from fluid

6.7 A common feature of such analyses.is the neglect of the

equations.
pardallel equilibrium field Eﬁo) inside the tearing layer, to make the
eigenmode equations analytically tractable.

The scope of the present paper is to discuss the effect of the

>VeQuiiiBriﬁﬁ cur}ent on the drift tearing mode in the collisional

(hydrodynamic) regime, which pertains to the cooler, outer regions:. of. :

some present day tokamak discharges.
The extension of this analysis to the semi—hydrodynamic regime- of

5.7 will be the subject of a future paper.

the tearing instability

The present study shows that the general analysis of the effect of
the éq&ilibrium current can be carried out'analytically; in a most
interésting case the calculation turns out to be quite simple. The
appropriate "classical” drift tearing mode result is recovered
neglecting the effect of the current term in the final dispersion
relation, andl a new strong instability, driven by the equilibrium
current, is found whenever the current term exceeds the usual A’ term.

The present article 'is organized as vfollows: in Sec. I the
notation and some relevant approximations are-discussed; in Sec. II,

fluid equations are used to derive the relevant eigenmode equations in

the inner tearing layer; Sec. III is devoted to the setting up of the




mathematical formulation in the general case of arbitrary

equilibrium

current; in Sec. IV, the dispersion relation for the "weak" current

case is derived; concluding remarks are presented in Sec. V.




I. General System

Let bo = “o/Bo be a unit vector in the direction of the

~

unperturbed magnetic field; r be a unit vector in the radial

~

direction, normal to a flux surface; e G x;. In the slab model of

(o]

1]

the tokamak, these unit vectors, as well as the equilibrium quantities,
depend oniy on the radius.
A usual Fourier representation is introduced for any linearly

perturbed quantity g, so to have

I B -
3t & = T1WE 5 boeVE = ix(2)E
(1)
e Vg = ik (2 ; reVg = §° ,
where X =r-rg, Trg being the radius of the mode rational surface: of

interest. In the vicinity of such surface, where x”(O) =0, we have

(=) = ko ox (2)

It is convenient to formulate the eigenmode problem in terms of the
perturbed electrostatic potential & and the parallel component of the
magnetic vector potential K", since for sufficiently small g (ratio
between plasma pressure and magnetic pressure) it is consistent to

assume

(3)

]
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The radial magnetic perturbation is therefore




B. =ik &, ., (4)

boog = —iK"¢ + iwA” ;
(5)
éog = —1Kl$ ; ;-E = —¢
Also, the parallel component of Ampere’s law is
~ _ _1_ _~u 2~ _ Eu— V
Ty=gm Byl ~ - o (6)-

In Eq. (6), as well as in the forthcoming equations, we assumed the

radial wavelength to be much shorter than the azimuthal wavelength.

(*) the speed of light c¢ is taken to be unity for convenience




II. Eigenmode Equations

The electron parallel response is conveniently summarized by a

generalized Ohm’'s law of the form®'7

w9 " _ 2 .
at o (nm_beu) = —neb+E - b Vp,

R oom 5
- (ne)znbou[l + 3 " £ ) 3 2n T_] (7)

- 2 2° dt €

nne
“ 30’ 3 a’ 3 -
—omb+VT |1 — == —=— 4n T_ — “— —— An(b.VT
on e[ v Jdt ? e v dt ( e)]

7q,a',a"urare numerical transport coeffiéientsrdéfined in Ref. 6 and 7;
7. is the Spitzer—-Braginskii resistivity; v is the electron éollisién
frequency; b a unit vector in the direction of the total magnetic
field g? The physical origiﬁ and relevance of the time—dependent
thermal force terms in Eq. (7) have been.discussed in detail in Ref. 6;
here, we shall only remark that they are responsible for the
VTe—driven tearing mode growth rate in the final dispersion relation,
and they are not necessary to obtain the new instability discussed in
the present paper. |

Linearization of Eq. (7) is carried out, through Eq. (1) and (8),

neglecting terms of order KED/w , D = Te/mev, to give

K.u
i _u_ — — 3 ’ Q g
in o+ [o-wf - (1+a)wf ~ iaa » w3 ]k,
(8)

In Eq. (8) the "drift"” frequencies w*

n w% are defined to be




ln’
wkr = - —= T
n eBn ©
K
L
wWHh = ——= T/
T eB ‘€

(9)

The equilibrium parallei current appears in the last term of Eq. (8)

and is related to the electron drifting velocity ug

{0) _
iy = -neug

(10)

In Eq. (8), perturbations in density have been eliminated by continuity

equation

*
wn

w

R

(=l =1
-alco'

(11)

Temperature perturbations in Eq. (8) are now eliminated through energy

balance equation

_T_e.=w_{‘§§"
Te w Te

to get a first coupled equation in K”, $:

In “Ohm’s law” Eq.'(lS); we defined

(12)

(13)




. inTS
= - —=
a2
Qg = w-wk - (1+a)wf'— ida'w%A%
2.2
wSa®s
Ty = —E;—— (14)

a = plasma radius

7n(Z=1)/0.51n(Zeff)

7]
Il

The effect of the equilibrium current appears in R through the
drifting velocity u,. Vg is the electron thermal velocity; wp is the
-plasma frequency. Ignoring this term, Eq. (13) would reduce to the
familiar express‘ions’4 T” = off . The crucial point 1is to realigze
that, although the effect of the equilibrium current 1is usually
neglected due to the smallness of the facior ue/ve, the parameter R
appears in Eq. (183) divided by the frequency 02, which is essentially
the "residual” tearing mode growth (demping) rate, after the VT —driven
growth rate contribution has been subtracted out. From the classical
analysis of +the tearing mode,7 Vnz turns out to be also quite small;
" therefore it is not corre;t to nééledi'the‘term'R/Qé‘a-priori, although
of course 02 has Vto be détérﬁined.vseif—consisteﬁtly. A second

coupled equation in ¢, ¥ 1is obtained by momentum balance equation4




N . .
mn; ” v+ Vpi = eni(§+YX§), (15)

which, upon linearization, give the standard result4

X§¢" = xy", . (18)
. w(wtw})
where Xy =
(xjvy)
(17)
K ! (
wr = - —= Pi
_ 21 eB n

v, 1is the Alfvén velocity. In deriving Eq. (16), radial gradients  of
the equilibrium current have been neglected.

We note that the equilibrium current term alters sfgnificantly the
structure of the eigenmode Eq. (13), (16). |

By defining a new radial variable

'z = XA, _ (18)

where the "shift” A is defined to be

A= R , (19)

1
2 -ifg

the dimensionless conductivity becomes then & symmefric function of z.

Also, if is convenient to define




Q=% _o . (20)
zZ—A

The eigenmode equations become then

d)ll = _0-_ [_lz Q - - (21)
2 ,
XA

pr = 22 o (22)

Z+A

where o(z) = (zz—xg)o* . ‘ (23)

We note "that, in the absence of equilibrium current (i.e., A=0),
Eq. (R1) and (22) are identical with Eq. (1) and (2) of Ref. 3, and:the
variable Q(z,A) reduces to Q(x) = E”(x)/x of Ref. 3. Also, one
realizes that the equiiibrium current introduces a scalé length in the.
conductivity given by Eq. (23) even in the hydrodynamic regime.
Finally, E”(x) does not go to zero outside.the tearing layer, defined
as the region in which %"#0; it is rather the variable Q(z,A) which
goes to zero when ¢¥"->0.

Equation (21) and (22) are now combined to obtain a single

second—order differential equation for Q:

2, \2 . 4
xA(z A) o) +o(z) q= BEOXA(Z 2) ’ ’ (24)
2_.R ' 2
(z-2) XA [(z—k)z—xi]

where E

o' @&n integration constant, is related to A’, the well-known

stability parameter of the tearing mode thédfy, by




o .
EA == | o(2)Q 4, (25)
° 2 La ZHA
XA

‘Here, we recall, A’ = (W4—¢;>/W0 and the asymptotic behavior of ¢ has
been taken to be Y = Y +yix for |x| > . Tﬁe value of A’ is
presumed known from the solution of the external problem, and appears
here as a free parameter.

In order to derive Eq. (24), a "constant ¢¥-like" approximation has

been employed in the form

xz(f) - (x¥2k)2(;f%;) : . o (26)

From Eq. (25) we recognize that Eo is really an integral operator;.

multiplying Eq. (24) by l/xi (1/z+1) end integrating, we obtaim an
integro—differential equation for Q:
xi(z—x)z . imx, 1 4xi(z—k)

1 +o(z)@=-[a" +
(z—x)z—xi Q] o(z [

(x,+21)? [(z—A)z—xi]z
(27)

w (2°=2) [2Ax8+(z "=2)3
L i .
(23 [(27 1) B8]

In the integration, Imx, > 0 has beén'aSsuméd;/and}*iw;has.been defined

to be
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A= (sign ImA\)A . ' (=28)

Equation (27) is the main result of this section. Let us note the
following:

(1) whenever the equilibrium <current is neglected, i.e., A=0,

Eq. (24), (25), and (27) reduce to Eg. (3), (4), and (6) of Ref. 3, and
the constant ¢ approximation (26) is no longer necessary.

(2) Since the kermel at RHS of Eq. (27) is not symmetric with
respect to z,z’, it is not straightforward to derive a variafional
principle formulation to ;btain @ﬁe mode dispersion relation; this is
presented in the following section.

~'(3) Tge ﬂ presenéé vof | thév curfent | term N in the
quantity [A’+iﬂxA/(xA+2i)2], however, makes the special casezofﬂé -
mode much broader than the scale of the conductivity quite simple to
treat.

Indeed, expanding for small A, one finds corrections of order Az
from all terms in the equation, with the exception of the
term [A'+iﬂxA/(xA+2i)2] which gives a contributibn of order A.

Therefdre, in the small A limit, it is sufficient to keep the
effect of the current in this single term only, therefore performing a
very simple variational calculation with a trial function of definite
parity. Let us stress that it is precisely because the equilibrium
current alters the "boundary condition term” [A’+iﬂxA/(xA+2i)z] that
such simple calculation is possible. This calpulation is presented in

Sec. IV.
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II1. Variational Formulation for Eq. (27)

Let

Q = @(z.2) Q= Q(z,-h) .

Q, satisfy

(p4(2)Q5) + o(2)q,

(P_(2)Q)) " + o(z)q_

e xB(zen)?
where pi_(z) = ——W
(z¥2) —-X)

" inx
L
(xy+2n)?

axf(z70) (2 7)) [£2ax+ (2 70) 3]

A"t ] X.(z,2)Q,.(z")dz

a1 fw K (z,2)Q_(z")dz’ ,

K,(z,27) = Z
' [(z?%)z—xi] (z’ix)s[(z’Ix)z—xi]
Noting that Q, (z) = Q_(-2)
o_(z) = q,(~z) .

we can construct the functions:.

V(z)

¢(z)

1/2(Q,(z)+Q_(z))
1/2(Q,(z)-Q_(z)) .

(29)

(s0)

(31)

,(32)_

(33)

(34)

(35)

(36)

The function  ¥(¢) is of even (odd) parity with respect to the

"shifted” radial variable =z.




From Eq. (30) and (31), a coupled system of equations for the

definite parity set ¥,p is obtained:

My = Np (37)

My = Nv , S : (38)

where the operators M,N are defined to bé

’

[(p_tp,)¢’] + 2o¢ + 271

M¢ [T (KK, ¢(z )z (39)

~

’

[(eoper] + &7 7 (KKDeDE . (40)

N¢
for an arbitrary function ¢.
Since the kernels K, are not (z,z")-symmetric, the operators’

M,N are not self-adjoint, in the sense

‘. <f,Mg> # <Mf,g>

<f,Ng> # <Nf,g> ,
where . <f,g>= [ fgdz
-0
for suitably behaving trial functions f,g.
The operators M,N can however be made self-adjoint by invoking a
widely used approximation in the m>2 tearing mode theory; namely, let

us assume the radial width of the mode to be much larger than the

Alfvén layer- Xy The kernels K, are then approximated as




> K_*K, = 4x%[ L + L 1. (41)
A Bz (2°4+2)3(z=1)3

Denoting by M,N the corresponding self-adjoint operators, Eq. (37)

and (38) reduce to

My = Nop : : (42)

(43)

§
I
Z

It is now possible to formulate a variational principle for Eq. (42)
and (43).

It is straightforward to show that the bilinear functional
S(V,0) = <¥,M¥> — <p,Mp> — 2<v,Np> (44)

is variational, in that

Il
(=}

6Sl
pconst
(45)

i

6S
Vvconst

reproduce Eq. (42), (43) and that S=0, for V,p solution of (42) and
(43). Here, for the pﬁrpose of lightening the formulae, the same
notation V,¢ is used to denote both the solution of Egs. (42), (43) as
well as the trial functions, containing variational parameters, which

appear in Eq. (44).
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Let, for example,

v=pvo(a) 5 9 =g (a) , (46)

«,f being variational parameters. The mode dispersion relation is then

obtained by solving the system: - -

B _g . B_y . s-0. (47)
do :

Denoting by S;(«) = <Wo,ﬁwo>; So(a) = <¢o,ﬁ¢o>; Sg = <¢o,ﬁ¢o> the

variational Eq. (44) reduces in this case to:

S(a,B) s'ﬁzsl(a)fsz—zﬁs3 . (48) .

The system Eq. (47) gives therefore:

B%s,-S,-2655 = 0

BS; = Sq ' . (49)

B%s{-s5 - 2655 = 0 ,

where S! = 2 S. (j=1,2,3). We note that, when A+0, the operator

] Jo  J
N becomes identically =zero, 1i.e., the integral S8 vanishes. - From

Eq. (49) we conclude that p=0 and the system Eq. (49) reduces to

So=0 ; S;=0 . (50)

Of course, the system Eq. (50) is precisely the usual variational
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principle formulation for the one parameter — definite parity trial
function corresponding to the classical analysis in which - the
equilibrium current is neglected. Our variational formulation,
Eq. (4?2) through (49), is therefore capable of treating analytically
the - general A -case, making continuous contact with the conventional
analysis.

The choice of the trial functions Eq. (46) deﬁends, of course, on
the class of modes under cénsideration. In particular,3 for solutions
which retain‘tearing mode_symmetry in the A=0 case, we shall choose,

for the odd parity function

S A e - - - . E - . B — e -

p(z) =——— | Re w0 . | (51)

We remark incidentally that this choice for the odd part of the trial
(. .

formulation requires to retain terms in xi in the wvariational

integrals, whenever such integrals are calculated to zeroth order in
Ial/ahl,

in the case of a mode broader than the shift A, to insure the

convergence of the integrals.
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IV. Dispersion Relation
The dispersion relation for the small A 1limit is easily derived,
as pointed out at the ehd of Sec. II, by expanding the quantity A to
first order in A and evaluating the variational integrals with the

~trial function (51). Explicitly the variational functional reduces to

S(p) = A(I+I5) + Ig , | (52)
where : Aeat + 10 gin A : (53)
Xy XB :
. A
and
2 2 ..,

- z7-x)
Ip = {m 0.250"dz (54)
(-]
Iy = 2xh | 220 dz
—o0 (22_X2)2
A

The calculation of S, Eq. (52), to lowest non—vanishing order in

|a1/2xAl, is carried out in detail in Ref. 3; we shall just quote the

final result. The main difference 1is, of course, the A term in
Eq. (53).

The variational S = S(a) 1is, to lowest order in lal/ngI,

(65)




The variational parameter o« is obtained by 98 =0 to be
o
. 4/3 o4
al/z - (56)
?/2 4iﬂ1/2 Jé
i | xA
The mode dispersion relation is
o3 o (3)4( L A _ 4iﬂ1/27jL] (57)
A 4’ ‘4v2-5'" 1/2 21
N ST Xy

"The roots in Eq. (57) must consistently satisfy Re"o(l/2 >0, Re ax > 0,

as given by Eq. (56). Let us now proceed to discuss the dispersion.

relation Eq. (57).
Contact with the classical case is established by setting A=0 in

Eq. (57); we therefore obtain the collisional drift tearing mode

dispersion relations’4

3 1 .4
oy = = () [4¢2—5)(ﬂ?/2] ' (58)

We find, in complete agreement with Ref. 7, that in this hydrodynamic
regime, the real frequency and the VTé driven part of the tearing
mode growth rate are given by

w, = WX + (1+a)w$ A : - (59)

w

. %o
= oo’ T wE . 60
'}’VTe v T ( )




In Eq. (59) and (60), a,a’ are the numerical transport coefficients

of Ref. 6. The RHS of Eq. (58) containing A’ provides, in this drift
ordering y/w, < 1, a small damping to the growth rate Eq. (60); we
recall from Eq. (56) that the mode is consistent when A'<0.
Continﬁous departure from the usual result Eq. (58) follows by assuming

A#0  but

|a°x, | > 4nln/x,] (61)

in Eq. (57). We can then treat the A\—term as a perturbation of the
classical result; 1in particular the (in)ffactor in the definition of
"N, "is given by the usual magnetic part of <. Expanding to the lowest

significant order we find

=G

3,41 (-4 )4[ , 116m\ _ 96m

4v/2-5"" _1/2 I (62)

1R 2
Axg (a5d)

From the definition of o¢,, given by Eq. (14), we see that the first
order change in the eigenvalue affects the real frequency of the mode
(the x sign depending on the sign of ImA, which in the scaling
Eq. (61) depends in turn whether the classical mode is stable or
unstable), whereas the growth rate is affected only to second order in
the small quantity ?\/(A'XA)j It appears that the effect of ‘the
equilibrium current is to (slightly) destabilize the mode.

However, the ﬁost interesting physics appears to be described by -

the scaling opposite to Eq. (61), namely




a7z, | < 4min/x,]| . (63)

Indeed, even though all this section is .based ‘on the assumption
IX/XAI <1, the m>2 tearing mode is characterized by IA'xAI < 1 and
therefore the approximate scaling to use whenever current is included
is likely to be Eq. (63) rather than Eq. (61).

Let us then neglect .A; inAEq; (56) and {57); now, of course, the
—i0g factor appearing in A has to be computed self-consistently.

The dispersion relation reduces to

,Q*XA = _,I‘_Z(‘_E’_) ( 1 ) . S . - (64)

0f the seven roots of unity, one finds from Eq. (56) that e>i7/7

(growing roots) are consistent.
In addition to the growth rate Eq. (60), one therefore finds a

new, rather strong, growth rate driven by equilibrium current,

e e R (65)

For clarity, the speed of light has been set in Eq. (65) equal to c.
As a function of the relevant plasma paremeters, the new growth rate

scales as

4]

u )4/7[m_£)5/7 1‘9_ 6/7 v

m, Lg ﬁ8/7

v ~ (66)

o |




In Eq. (66), L the density scale length, is taken to be comparable

n)
to the electron temperatufe scale length; 9 is the wusual plasma
B = 8mp/B°, Lg is the shear length.

For simplicity let . us define, in addition to Xps the

3

scales Xe Xy to be the distances from the mode rational surface

where the mode frequency equals K Ve Kﬁvg/v, respectively. Typically

fxg| < |x,| << a, a being the plasma radius. We recognize x (%) to

be the scale over which the collisionless (semi—collisional)

n3 varies.

"conductivity
Let us now list the scalings wused in deriving the new resﬁlt
Eq. (64) and (65), which define the region of parameter space in which

the mode exists:

X '
=2 < 1alRx, | <1 (67)
X

r
IA’XAI < IA/XAI <1 ‘ (68)
X o<1 , ” (89)
wO

With the variational «!/? standing for the (mode width)™!, Eq. (67)

requires the mode to be broader than x, as discussed in the

calculation, but narrower than x to justify the neglect of K%D/w

r
terms in the fluid equations. Equation (68) has already been

2

emphasized; Eq. (69) has been invoked in taking xj to be basically

real and positive in going from Eq. (64) to (65). Substituting for
al/z, A, v in Eq. (87) through (69), we find the independent

constraints:




—<p (70)
v Va
|ax,| < p>/7 (71)
X, 2 '
A .
p¥/7 < wTS(:;] , (72)
where the adimensional parameter p is

u, xX_ X
P = =22 TV . (73)

Ve & &

The plasma radius a is not, of course, a parameter in the problen,

since in Eq. (72) and (73), a® in the denominator cancels out with

the a2 factor appearing in the skin time Tg-

The parameter p scales with respect to the relevant plasma

parameters as

(74)




V. Conclusions

The most brelevant result of the present paper is given by
Eq. (64), which follows from Eq. (57) whenever Eq. (63) is satisfied.
Whenever the set of conditions Eq. (70) through (72) are satisfied, the
presence of Aeguilibrium parallel current, uéually neglected in the
innér tearing analysis, is the primary driving ‘source of instability
for the tearing mode, with growth rate gifen by Eq. (65). For some
choices of the parameters, such gfowth rate can even exceed the one

driven by Te gradien’cs.s_B A detailed comparison with a particular

N

machiﬁe is avoided since the new growth rate is strongly dependent on
the plasma parameters'which can usually vary among different discharges
for the ?éfy éaﬁe machiﬁé.' Furthermoreirmany tokﬁﬁéks operate'nowéﬁa&s
in a “mixed” collisionality regime, in that aithough most of plasma
column is in‘the.semi—hydrodynamic regime, its outer part is more in
the collisiohal regime.

Perhaps the most dramatic departure from conventional theory is
that the eqﬁilibrium current “takes on" the role of sustaining the mode
(see Eq. (56)) previously played by the A'—term. It is precisely
because A’ is typically very small in the m22 tearing mode that one
should not mneglect the effect of the equilibrium current, although
small in the sense ]A/XA] < 1. |

As we already remarked in the discussion following Eq. (13), the
equilibrium current term appears in a rather subtle way, since,
although sﬁall in some ordering, it turns out to compare with terms

which are also very small in theuconveﬁtional'analyéis.
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We identify the driving physical mechanism in the coupling between
equilibrium current and temperature (resistivity) perturbations in
Ohm's law, Eq. (8).

It is perhaps worthwhile mentioning that, although the same term
in Ohmis law is responsible for the ‘rippling mode” of Ref. 1, the
present instability is a completeiy new one, and in particular, it does

have tearing solution symmetry.
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