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Abstract

An approximate solution to the Fokker—Planck equation for the
alpha-particle distribution function in an open field-line fusion.
plasma with electrostatic confining‘potential is presented. Particle
» and energy pitch-angle scattering losses are computed. The electro—
static confining potential is found to substantially reduce particle

and energy losses.
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I. INTRODUCTION

In a reacting deuterium—tritium plasma, the charged fusion
reaction products (alpha particles) are born with an energy néar 3.6
MeV. In an open fiéld—line plasma, those alphas born in the loss
region of velocity space will be lost very rapidly. Those born outside
theA loss region will slow down via collisionsAwith the background ions
and electrons, and some will be pitch-angle scattered into the loss
cone. The fast aipha particle velocity space distribution is needed té
calculate the particle and energy loss due to pitch-angle scattering,
and the fraction of alpha energy deposited in ions and elecffons'during
slowing down. The particle and energy loss and the energy deposition
are needed fof feactor studies [1,2]7 The distribution funétion itself
is needed for microinstability studies where the anisotropy of thei"
alphas is a source of free energy for destabilizing waves [3].

Previous calculations of the fast alpha particle disiribution
function [3-6] have assumed that the loss reéion is a cone in velocity
space. However, tandem mirror reactors will have a sizeable electro—
static confining potential. This electrostatic confining potential
changes the loss region from a cone to a hyperboloid. In this paper we
present an approximate method of calculating the fast . alpha
distribution function including the effects .of the electrostatic
potential. The method of solution uses fictitious particle sources in
the loss region [7]. Including the electrostatic potential makes a
significant difference in the alpha particle and energy loss fractions

and in alpha particle microinstability integrals.




In Sec. II we present the Fokker—Planck equation that determines
the alpha distribution function. Section III is devoted to 'the
approximate solution. Section IV compares the distribution function of
Sec. III to an approximate distribution fuﬁction with a loss cone

rather than a loss hyperbola.

11. THE FOKKER-PLANCK EQUATION

The steady—state Fokker—Planck equation for the alpha distribution

f is [5]
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v is the speed, x the cosine of the pitch angle, =x = v”/v . T is

temperature, m 1is particle mass, n is density, A the mass number,
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u the thermal speed (ZkT/m)l/g, and Z is the charge in units of the

"proton charge. The subscript e refers to electrons, o to alpha

particles, and i to the ion species, mainly deuterium and tritium.
The Coulomb "logarithm is InA , e 1is the electron charge, k is
Boltzmann's constant, and Zeff‘=’§zf(ni/ne) . The source
term S represents the ‘birth of alpha particles at 3.5 MeV, and is
assumed to be S = Sod(v—va)H(x) where S, is determined by the fusion
reaction rate coefficient, v, = (BEa/ma]l/z , E, = 3.5 MeV., and H(x)
is assumed to be 1 (i.e., isotropic birth). The first term in Eq. (1)
represents the irictioﬁal slowiné‘down of the alphas, and the second
term represents pitch—angle scattering by the background ions. The
ions and. elecfrons are assumed to have Maxwellian distributions,‘énd
the inequality u; <v<<u, has been used in simplifying the
equation. Fast alpha—fast alpha .collisions are ignored, as is the
diffusion in the v coordinate [8].

One boundary condition is that the distribution function be zero

on the boundary of the loss region. This boundary is given by

‘ v 2 l—XB 1/2
x = %l () (01 (2)
%0

where Xq is the cosine of the loss cone angle when the electrostatic
potential is ignored, Xy = (1_1/R)1/2 , R is the mirror ratio, and
Vp = (2qa¢c/md)l/2, where ¢, is the electrostatic confining
potential.




Using the transformation of variables,

v = (v3+vg]f
B S va
0'a’'s
t = £9n [(1+V2/V3)
3

Equation (1) becomes
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The boundary conditions are then

1-x2 v vS
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Equation (4) has been inverted to find v(t) , and this result used

Eq. () to obtain Eq. (8).
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ITI. APPROXIMATE SOLUTION

The major‘difficulty in solving Eqs. (5-8) comes from the boundary
condition in the pitch angle, Eq. (7). The solution region is oddly
shaped, and a separation of variables 1is not feasible. Using a
 technique similar to that of Pastukhov [7], we solve exactly a lrelated
problem, in which we remove the boundary cohdition in the pitch angle,

and add a source term to Eq. (5).

Rl (E g%] +5 | | (9)
The solution region is now nicely shgped (—1<x<1) so that we cen use
separation of variabies to solve Eq. (9). The fictitious source S lies
within the loss region, and is chosen s§ that P(s,t) is.zero near the
loss boundary described in Eq.v(8). A good choice for § is then one
where ¢(x,t) has zeros very close to the loss boundary.

To proceed, we expand both ¢ and §,

~

U(x.t) = ] Py(x)ay(t)

n
S(x,t) =) P (x)s (1) (10)
n

where the Pn are Legendre polynomials, satisfying

/

dpP
é% (1) —2] = n(m+1)P,

and we make the ansatz




——

2a(t ) [6(x-1) + 8(x+1)] L Ostst,
§ = (11)
0 t>t
4
where o« will be determined later. ~ The initial condition for @ in

Eq. (6) must be extended for |x| > X o Where x;, = xL(O). We choose

Ix| € XL0

(12)

x| > X10

so that the'boundary @(x,t) = 0 will move smoothly near t=0.

Since ‘thé initial condition Eq. (12) is even, and Eq. (9)'is
unchanged by the operation x - ~i, ivwill be an ‘even function of x.
Only even terms will enter the sums, and so from here on we assume n
even.

Standard techniques yield

qp(0) = 2x -1 | ' | _ (13)
0 (0) = BEE Ly 2 (xp0)Pr s (xp )] (200) (14)
dqn
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The solution to Eq. (15) for t <t is

qp(t) = qp(0) + at(t -t/2)

() = qn(O)exp[fn<n+1>t] ¥ f(?ﬁl)l
[(t¢ * n(gil))(l-eXp[_n(n+1)t]) -t] , n>1 . (17)
The solution for t > t¢ is
ap(t) = ap(t,)exp[-n(n+1) (t-t )] . (18)

At t=0, the approximate loss boundary is located where the actual
loss boundary is, at x = X0 We choose a such that the approximate
loss boundary closes at t.= t¢, i.e., J(l,tw) = 0. Expanding @(X,t¢)

in Legendre polynomials, and using the fact that Pn(l) = 1 for all n we

obtain
| @(1,t¢) = A + oB | , (19)
where
A = g4(0) +'n§o qn(o)exp[—n(n%L)tw] (20)
B =tZ/2+ ED n?g:i) (n(;11) (1-exp[-n(n+1)t ] )

- twexp[—n(n+1)t¢]} . | (R1)




Thus, to insure that W(l,t¢) = 0, we choose

o = —-A/B . (R2)

IV. COMPARISON

For all of the results shown, we have‘ used fhe parameters
Xg = 0.9 , Vw/va = 0.293 , fc/va = 0.435 , and « = 0.075 . They cor-—
respond to a mifror ratio of 518 , an electrostatic potenfial of
ep = 150 keV, T, = 20 keV, and a 50-50 mixture of deuterium and
tritium. Figure 1 shows a comparison of the desired hyperboloid loss
boundary with the approximate loss boundary (i.e., the line of zeros~of
the approximate ¥): The two loss boundaries are quite close together,
ihdicating that the ¥ calculated in Sec. III is a good approximation: to
the solution of Egs. (5-8). Figure 2 shows a contour plot of V.

The fractional particle (P) and energy (Q) losses due to pitch

angle scattering into the loss region are given by [5]

P = P(t,) (=3)
XL(t)
P(t) = [v(x,0) — ¥(x,t)]dx (R4)
0
P 2 t, 2
Q=fzgdp=f¢uzﬂgdt : (25)
Dvo( 0 va

Note that the upper limits of integration correspond to the closing up




of the loss region at t =t P can be computed exactly for the @ of

0
Section III:

P=1-x, - atg/z : (26)

A numerical gquadrature has to be performed to find Q. Table I
compares the per cent losses calculated from a distribution with 1) a
loss cone (Ref. 5), and 2) a loss hyperbola (Sec. III). Including the
electfostatic confining potential clearly has a significant effect on
these loss fractioms.

Because of their anisotropy, the alpha particles in a tandem
mirrot reactor may drive plasma waves unstable [3]. The growth rate is
partly determined by a resonaht*integra] over the alpha distribution

function. Define

B fo 3f
0

The growth rate of the Alfvén Ion-Cyclotron instability [7]} with
kl-= 0, is proportional to. 47[(w—wca)/k"] when the growth rate
v << w . Figure 3 shows gﬁ(v"] calculated from f with i) a loss.céne
(Ref. 5), aﬁd 2) a loss hyperbola (Sec. 1II). The loss hyperbola

distribution function is generally more isotropic than the 1loss cone

distribution function.




For Figs. 1 and 2, 25 terms were kept in the Legendre polynomial
eipansion. For Figure 3 and Table I, 100 terms were kept. Even with
100 terms, a slight oscillation in the loss hyperbola results can be
seen. The oscillations come from the Gibbs phenomena associated with
the polynomials approximation to the discontinues initial condition
[Eq. (12)]. If qomputationa1<speed is importent, a slightly smoothed
initiél condition could be used to decrease the size of the Gibbs
phenomena, aﬁd thus reduce the numﬁer of terms needed in the Legendre

polynomial expansion.

V. CONCLUSION

We have presented an efficient method of calculating “the steady—
state alpha distribution function in 'a tandem mirror reactor that
ineludes the effect of the electrostatic confining potenfialu The
approximate distribution function involves only sums over elementary
functions and Legendre polynomials. The electrostatic confining
potentia} has a significant effect on the particle and energy pitch-—
angle scattering losses and on typical microinstability integrals over

the distribution function.
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TABLE I

Pitch Angle Scattering Loss Percentages

Particle Energy
Loss cone 25.7 9.0
Loss hyperbola 14.5 5.8

Table Caption

Pitch angle scattering particle and energy loss percentages [Egs. (24),;__‘
and (25)] for alpha distribution functions computed in two different ways:

loss cone, from Ref. 5, and loss hyperbola, from Sec. III.




Figure Captions

Fig. 1. Loss boundary location in velocity space. The solid 1line is a
hyperbola, the desired loss boundary. The dashed line is the approximate

loss boundary, the line of zeros of @, as calculated in Section III.

Fig. 2. Contour plot of the alpha distribution function with an
electrostatic‘ confining potentiél. The outermost contour is at f=0. The
other contours are linearly spaced between f(va) and the maximum value of

f.

Fig. 3. Microinstabiiity integral [Eq.(26)] as function of vy Solid
line is for a loss cone distribution (Ref. 5); dashed line is for a loss

hyperbola distribution, (Sec. III).
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