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A systematic perturbation theory to deal with stationary, homogenous
turbulence in a dispersive dissipative system is developed, and is shown to
be renormalizable. General properties of the renormalized equations are
discussed, and for the specific case of Vlasov—Poisson turbulence, it is
shown that the current theory reduces to the conventional weak turbulence
theory. Kramers—Kronig kind of dispersion relations are derived for thé

nonlinear dielectric.




I. Introduction

There is a variety of models used to describe the nonlinear behavior of
physical phenomena in different areas of physics and engineering. Some of
these systems, like the Korteweg—DeVries equation (k—-dV), have been
extensively . studied. to elucidate. the properties of coherent nonlinear
states, for example, the solitons. On the other hand, Navier—Stokes
equations and Vlasov-Poisson equations, etc., have been primarily
investigated to study the turbulent phenomena associated with these systems.
It may be noted that very specific conditions have to be specified for a
nonlinear system to allow a coherent solution. Thus one expects that the
time asymptotic or steady state solution of arlarge Variefy of nonlinear
systems will be a turbulent state; a small amount of dissipation could,: . in.
general, disturb the delicate balance between nonlinearities and dispersion
required to give rise to a coherent state. To deal with the general
probléms, a very elegant and formally powerful systematalog has been
developed by Martin, Siggia and Rosel (MSR). However, the MSR formalism is
not easily amenable to applications, and onlyvlowest—order (in perturbation)
solutions have been obtained so far. Specifically in Krommese, applicationA
to the.Vlasov—Poissoﬁ system, the nonlinear sourceﬂ(defined in the text) has

not been included in a solvable form.

In this paper, we take a less formal approach and develop a systematic
perturbation théory to deal with stﬁtionary hombgenous turbulence described
by dispersive dissipative systems with a quadratic nonlinearity. The theory
will contain Vlasov-Poisson, Navier—Stokes, k—dV, Boussinesq equation, etc.,

as its special cases.
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To deal with a general statistical ensemble of turbulence, we use a

3 to decompose the product of

formal method called correlation expansion
" fluctuating quantities into correlated and uncorrelated parts. This

decomposition is carried out order by order using a diagrammatic technique.

The existence of a formal reliable solution for the fluctuating field
requires that the theory be renormalizable, which in the present context
means that the compensating term added to renormalize the linear part of the
operator must be cancelled by appropriate contributions from the nonlinear
terms to each order. Thus, to each order in the perturbation tﬁeory, the
nonlinear term is uniquely split into the coherent part, which is wused to

‘cancel the compensating (or rendrmalizing) term, and the incoherent part,
which is to be interpretted as a nonlinear source. We show, in this papery
that this 1is indeed possible. This proof of renormalizability puts the
perturbation theory on a firm footing, and one can use it with great

confidence.

The renormalized system, thus obtained, is quite complicated and not
readily solveble. However, some qualiﬁative properties of the system can be
Jdiscussed.‘ For examplé, the renormalized 6perator contains the entire
information about the.response of the medium, and can be seen as a response

' This response function 1is shown to be explicitly so for the

function.
Vlasov—Poisson case. This further suggests that we could obtain
relationships between the real and imaginary parts of the response function
(dielectric function) by invoking causality, and  thus obtain a

Kremers—Kronig kind of dispersion relation. This can be quite important,

because it allows us to determine the real (imaginary) part of the response
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if the other is given (say experimentally). The constraint of causality is

also necessary for the self-consistency of the system.

In Sec. 11, we develop the general theoretical framework for dealing
with a dissipative, dispersive system with a quadratic nonlinearit&. This
kind of .nonlinearity corresponds toc a Yukawa type interaction. In Sec. III,
we discuss the general properties of the renormalized equations, and derive
Kramers—Kronig dispersion relation for the nonlinear dielectric function.
Section IV is devoted to a discussion of Vlasov-Poisson system as an
application of our formalism and Sec. V contains a brief summary and

conclusions.

I1. General Theory

The nonlinear system under investigation could be written as
L ¢p(x) = N ¢(x) (1)

where ¢(x) is a typical field variable (flow velocity, temperature,
electromagnetic fields, etc.), x = (g,t) denotes the space—time coordinates,
and L and N are respectively the linear and the quadraticélly nonlinear
operators. As usual, we transform this equation to Fourier space, where all

differential operators become algebraic. The transformed equation becomes

-1
(0) _
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v P @ : (R)
k=k1+k2 kl’kz k1 k2

-1
where Gﬁo) is the transform of the linear operator L, and the right hand
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side is the convolution term obtained by transforming the mnonlinear terms.
Vkl'kz is the strength of the coupling between different modes, and k=(§,w)
is the wave four vector. The superscript (0) for Ggl is to explicitly
display that it is unrenormalized or the bare linear propagator. The wave

¢ is diveded into two parts, a random part &k, and what we call an unrandom

.(for want of a better term) part N
o = O + Oy

Notice that &y is wunrandom but has k—dependence. The ensemble averaging

(< >) yields the following equation:

-1
(0) _ =~
k1+k2= 172 1 72 k1+k2=k 1°72 1 72

The equation obeyed by the random part will then be

-1
0 ~ ~ ~ o~
6% gy =2 L Vix, %k, %k * X Vi ok, Pk, % (4)
ki+ko=k 1'% TR 71 ki+ko=k 1778 1R
Defining the renormalized propagator
(0)7t -1
Gy = (Gk + 1Fk) , (5)

we express Eq. (4) as

@, = G, 2 v & @ + G
x = Oy ) K, ko %k, P, + O

\ O P+ G il @ (8)
ke ek ky ko Pk %%, k 'k %k

kl+k2=k

Equation (B6) is the basis of developing a systematic perturbation theory.




B
For this purpose, we very closely follow the methodology of Ref. 3.
Essential steps in this process are
1) Successive iterations of Eq. (6) to an appropriate order,
2) Make use of ‘correlation expansion” to separate the terms into
correlated and uncorrelated parts
3) To each order, cancel the compensating term with the correlated parts,
thus obtaining an expression for irk to the appropriate order,
4) Show that this cancelling can be indeed accomplished to any desired
order, thus proving the renormalizability of the theory
5) Obtain expression for physically interprettable quantities, for example,

the nonlinear dielectric response, etc.

This program is best ‘accomplished using diagrammatic technigues
(Ref. 3). Let a solid line be used to denote either Gy (when it occurs as a
trunk including the top line) or &k (all others), the dotted line Rpy, and a
bubble il . Then Eq. (6) is formally equivalent to

Mm@ (3
k
< + (<\ + s{ ™

A

k
= ’
'
!
Ikz

where the regular vertex represents the strength Vk k. of the interaction.
1'72

Successive iterations of Eq. (7) will generate higher and higher order

terms. We display a typical term which arises when the term (2) in Eq. (7)

is iterated,




_'?_
(2) — /E 4+ eoeo (8)

The displayed term has two vertices, and éonséqﬁently represenfs a secénd
order process, that 1is, the strength of the process is quadratic in V. In
addition, the process represented by Eq. (8) has two distinct parts; one in
which the inner lines are confracted, and the other in which they have no

correlation. That is

| L ('S
7 (ky)

where the first term on right hand side denotes that part of the process for
which k1+k2=0, and contribute to the self-energy of the system. The second
.term is the rest of the process with (kl) and (ky) implying that k,+ko#0 for
this diagram. This is essentially the essence of the “Correlation

Expansion” we described earlier, and in terms of field amplitudes this reads
Oy P = << o >+ (o NPy ) (9p)
kyTka ky kg ky 7 kg

where << >> is the correlation function to the second order (in this case),

and (&kl) and (&ke) are uncorrelated, i.e.

<(5k1)(5k2)> = <¢k1> <¢k2> =0 (10)




—8—

where < > is the ensemble average.

Following this procedure, we can prove the full cancellations of the
diagrems containing (irk) with those diagrams containing self-energy, which
yields

u/ _ .

ke k' . kZ kl
_ (::;:23 + ?::]::5 + + l‘l’ﬂi '+ + oo
O k-k;-kz k-k; k-kz -
e el - . ! kl
L

(11a)

or
—-ir, = V. b Gy Vo <<Lpy. pF >>
k 1% ki kk; Vkky 'k-kg kK '

1

7 <Py v P >>
+ ) Vkl,k—kl ik, sz,k—kl—kz S,k V—kl-—ke,k ki"koTk+ky
kl]kg

+ A . Gy V 1 1 G o V _ G, . V_
k%»kg ki k-k; "k-k, ko, k—ky ko "k-ki-ky 'k;,k-ky; "k ko ko, k

<KLpy, P >> <@y @F >>
ki "k koTko
+ Ve yn Gy Vo oy oy Gy Vo oo o o Gy .
. 12{ o kol kel kg kel ok Okekgcky kg kekg—kgokg Ckk—kpkg
1Kz K3
<Py Py Py O >>
Vi kg K k) TkoTkgTk ok

+ ... ' (11b)

After the full cancellation, the remaining part will be.




)
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or

O = G L Vi p P, ROy
K, 1 1 ¥p 1
+ G V. . G,V o 20 o o (@ Py )
k kgkz ky kg Ukl kg kkg—ky S0k k(P )9k,
v . G V e REy . <<B FX >> o
k kgkg Ky kky Tk-ky kg k-k ks “Pk-kg K,k ko

+ G
K k1%2’k8 ey kg Ok Vi kkg -k Ckky—kp Vkg k—k;—kpkq
B k. kot (P ) (@ ) (@)

+ G \ G V. G v G

k kl’gg»k4 kykky Tkl kg kekg—kg Ukkg -k Y-k k-k, “k—k,
v e R <<o of >> (o M@y )+ ... (12b)
ky kko—k, “Pk—ko—k, k, %k, ko Pk,

We notice that in Eq. (12), which is an expression for E&k, no

sub—self-energy terms [see Eq. (13)] appear. In fact, the general rule for
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constructing terms in Eq. (18) is to retain all kinds of topologically
allowed diagrams which do not contain self-energy structures. All external
lines are uncorrelated. The correlated parts have been drawn explicitly in
terms of internal lines and multi-wave structures. The general construction
rules, as well as the proof of renormalizability to any arbitrary order very
closely follows the procedure discussed in Ref. 3. Referring the reader to
Ref. 3 for all detail, we simply sketch the major steps in the
renormalization program. The proof is based on the following observations

which are a manifestation of our iteration procedure:

Observation I. To a given order all possible self-energy structures must

appear except those (ahd never those) that contain self—energy

sub—-structures. Henceforth, an allowable self-energy structure (in which:no .

self-energy sub-—structure can be isolated), will be called a completely

overlapping diagram.

Observation II. A given diagram can appear only once. There is no repeated

diagram.

Observation 1III. For non-self—energy diagrams containing self-energy
sub—structures, all types of self—energy structures produced in the lower

perturbative order are reproduced totally in the higher perturbative order.

Observation IV. In the higher order diagrams there exists no new type of
self—-energy sub—structure which has the same order as the self-—energy
structure that has already appeared in a lower order diagram. The detail of

proof for these observations can be seen in Ref. 3.
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Observation I suggests the choice of =il to be the sum of all types of
possible self—energy structures that must be overlapping in topology. For
example, the following diagrams, which we call sub-self-energy diagrams, are

prohibited.

The combination of the observations II, III, and IV means that as soon
as the cancellation takes place for the lowest order diagram containing il

the same cancellation occurs for the higher order diagrams that have

structure plus 1rk with the diagram with that structure plus all self—energy

structures.

The spectrum equation to the lowest order is readily found to be

_ 2 2
Iy = 416 0% T IV gy |
k 1

1

I, . I (14)
k kl kl .
where Ik = <Lpppf>> in Eq. (14) is the fluctuation spectrum. Notice that Gk
is a functional of the spectrum Ik' For higher order solution, it will turn

out to be a functional of the spectrum as well as higher order correlations.




III. General Properties, Kromers—Kronig Relations

An examination of Eqs. (14) reveals that even in the lowest order, the
system 1is quite complicated and not easy to solve analytically. To obtain
the spectrum Ik, and other higher correlation functions one will eventually
have to resort to numerical techniques. In this paper, however, we discuss
only the general aspects of the nonlineaf equations. We begin with
categorizing the nonlinear systems which can be studied within the framework

of our equations. There are two principal categories:

Seli-Excited Turbulence: In this case the source of turbulence 1is some
store of free energy in the system which dri&es ohe or mofe of the unrandom
modes of oscillations unstable. For example,  spatial inhomogeneties:  or
velocity space anisotropy can provide free energy for a host of plasma
instabilities. Notice that the unrandom modes of oscillation need not. be
linear; they could be nonlinear coherent modes like the solitons prdvided
the original equation Ly = Np allows a soliton solution. In this case, the
solitons solutions are to be interpretted as nonlinear normal modes, and the
'turbulence built around them will be called soliton—excited turbulence. We
remind the reader that one of the principle aims of turbulence studies is to
determine the effect of turbulence on the properties of the ambient system;
it could be to determine turbulent transport, or the effect of turublence on
the structure of the solitons. It is simple to find the conditions under
which turbulence does affect initial wunrandom state. Making wuse of

Eq. (9b), we write Eq. (3) as
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-1
(0) -
Gy b = Z Vkl’kg ¢k1¢k2 + Z Vk1’kz Ikl 6(k1+k2)
k,+k =k k. +k, =k
1°72 172
= \ o, & 4+ Y V. _I_ 6 (15)

where the second term on the right hand-side determines the back reaction of
turbulence on the unrandom state [plasma distribution function, or a kdV
soliton for example]. Clearly, there is a back reaction only for k=0 or the
d—c component of the original state. However, if vp,_p=0, the initial state
is unaffected by the presence of turbulence. Thus we conclude that Vp,—p¢0
is required for the turbulence to cause either anamoulous transport or
distort the structure of the soliton. To determine these effects, we need
to know the spectrum Ip, and it is to determine Ip that the renormaliized

equations are derived.

Externally Excited Turbulence: In several problems of interest, the
turbulence is not due to an internal source of energy, but is caused by an
external stirring source. This situation occurs, for example, in plasma
heating experiments where high amplitude electromagnétic wa?es are excited
in antennas or waveguides placed near the plasma edge. The propagation
characteristics of these waves in a turbulent plasma (the turbulence is
created by these waves only) can also be studied within the framework

established in Sec. II.

Thus these is a large body of physically interesting problems which can
be studied by making use of the renormalized equations derived in. Sec. II.

Continuing with our attempt to delineate general structural properties of




the equations, we now derive for the nonlinear system an appropriate version

4 In its simplest form, the

of the Kramers—Kronig dispersion relation.
Kramers—Kronig dispersion relations are mnothing but an expression of

causality. The final result of Sec. Il can be schematically written as

¥(k,w) = G(k,0) S(k,w) (16)

where ¢(k,») is the response, S(k,w) is the nonlinear source, and G(k,w)
plays the part of the dielectric function. Since G is a function of w, it

implies that the relationship between ¢(t) and S(t) will be

® G(1)S(t-T)dT . (17)

The above response can be made causal, i.e., the value of 5(t) at any time
is determined solely by the value of the source at times previous to the

time of observation, by demanding that G(7)=0 for 7<0. Thus

o(t) = é“ G(7)S(t-7)dr , (18)

and we can wuse the above equation to obtain the constraints on G(w). for
our purpose, it turns out to be more convenient to deal with the inverse
causal equation
0 -1 ~
S(t) = [ G (1) e(t-T)dr (19)
—00

because we are interested in determining the constraints on G_l(w). The

fourier transform of Eq. (19) is obviously
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S() = ¢ Hw) F(w) (20)
with
¢ ) = jD ar ¢ 1(t) exp(iwr) . (21)

We notice that under reasonably mild conditions, i.e., G_1(7)+O sufficiently
fast as 77, G—l(w) is an analytic function of w in the lower half plane

including the real axis. Cauchy’'s theorem now leads us to

_1 v s
G_l(w) = __1_ § G_(i‘,)_)_d_‘*l_. ) (22)
_mi W =W

where the closed contour consists 6f the real axis and the great semicircle

at -infinity in the lower half plane. It is wuseful to subtract.the
) asymptotic_vglpe*[G_l(w)]asy = G_l(w) _ from both sides of Eq. (22). . This
w0

step followed by the substitution of the expression for G_l(w) [Eq. (5)]

leads to

— - - . e 1 il (w .k .
iT(w,k) = G 1 (w) -G 1(w)asy = il(w,k) — 1F(w,k)asy = o $ 41 i?_w ) dw

(23)

Realizing that T(w,k) goes to zero as w»®, we can follow the usual procedure
to obtain the required dispersion relations [P denotes the Cauchy principal

value]

Re[iT (w,k)] = - i p [ I—m%{‘:—kn dew” (24)

-]




Im[iT(w,k)] =

p /+w Rellr}w,k§| dw’ (25)

W —w

3 =

—00

relating the real and imaginary parts of the renormalizing factor il(w,k).
We remind the reader that Re il(w,k) implies a frequency shift (dispersion),
and Im il (w,k) represents resonance broadening (absorption). The essence of
the Kremer—Kronig dispersion relations (a direct consequence of causality)
is that any resonance broadening must necessarily be accompanied by a
frequency shift. In addition, if either of these is known, the other can be
automatically calculated. Thus these relations can be used as an important
practical tool when some empirical knowledge_of the system is available. At
the vefy least; theyrare an important constraint which must be obeyed by any
physically reasonably theory. We end this section by obtaining an explicit
_expnession_ton_LFaSya
first term will contribute to il(w,k) because all other terms have higher

powers of w in the denominator. Therefore

2
v lo(wy, k) |5V, _
K,k 1 k =k,

ir(w,k) = J/ dw;dik, (=6)

W e w—w;—f (k=K )+iM (0w kK )

A—(wﬁ | (27)

~ L 2 _
== / dw,dk, Vk,kl Vk,—kl }w(wl,kl)] =

where A(k) is real, and which helps us rewrite Egs. (R4), (R5) in the form

Re[il(w.k)] = Alk) _ % p [ do” In[if{e” k)] ~ (28)

w W —w

; Re[[(w” k) ]-A(k)/w’ (29)

Im[il(w,k)] e

L P f dw
o

From Eq. (lla-b), we notice that_ as w»*e, only. the .




Sec. IV Vlasov Poisson System and Nonlinear Dielectric Response

In this section, we demonstrate the scope of our formalism by applying
it to the Vlasov-Poisson system. The perturbed Vlasov equation (k#0)

(okev)fy = L(k) f, &, + 7§ L(kl)fk_k1¢k1, (30)

k1¢k

and the Poisson equation
P = O fy, (31)

where ,ﬁ(k) = (~q/m)k+3 , and 0 = 2%? / dy (with q and m as the charge and
k
mass of the particles, J as the gradient in velocity space) can be combined

to yield

fy = GkL(k)fOOkfk + L(kl)fk_k Op fi  + Gpilfy (32)
k#k 171

which is of the same form as Eq. (6) if we make the following transformation

P fk , &y fo . Vkl,kz = L(kl)Okl . (33)
‘We must keep in mind that Ok does not act on the propagators which are
. . (o) 1 . -1 . -
produced by iteration. As usual Gk=(Gk + 1Fk) , and in this case
-1
{0 =6 - xey
Diagramatically, the dotted 1line used in Sec. II is now changed to a

shaded bubble to denote the zero momentum quantity fo with the operator ﬁ(k)

acting on it. For example, typical terms in Eq. (1R2a) change as




k : K k '
(k|) (kl) (kl) (kl) .
/" (kz) — ? / (kz) - (kz)
. (kz) ‘ ; (k;)
, ks

We remind the reader that the terms depicted in Eq. (34) have only one
external line which must carry momentum k while the terms depicted in
eq 135)__Beidhg- to the class of terms which contain more than one exterﬁal
line, none of which could carry momentum k. It is indeed, in this sense,
that the former (with only one external line) are called the coherent terms,
and the lette;, the intrinsically incoherent terms. Formally we break up fk

into a coherent (fﬁ) and an incoherent part (?k), i.e.
— ¢C - 7
fp = fg + T = A1+ T, (36)

Teking all the coherent part to the left hand side, we obtain

~

Ty

i

(l—g)fk (37) -

Making use of Egs. (12a), (34), (35) and (37), we can write down the

diagrammatic structure of A.
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(38)
_Operating both sides of Eq. (37) with Oy, and using Eq. (31), we obtain
O fy — O Aty = g — 0A O lp = (1 - 0,8)p, = 0T (39)
where A = AOk.
Symbolically, Eq. (39) can be case into a form
‘é"k Pp = Py | (40)

where ék = 1—OkAk is the dielectric function used by Duprees‘ 5k. is
thought to be the clump functione. However, this definition for the

dielectric function given by Eq. (40) is not the same as that in statistical

" mechanics by7,

é_l— 1';_ 5¢k(<ﬂ(e)>
BT am o gy(e) “ote) o
éfk(w(e))
=14 0< > (41)
k 6¢£e) gD(e) -0

where ¢(e) is unrandom external field associated with the bare source p(e)
within the plasma. The plasma, thus, shields the bare source. Because the
source 1is unrandom, the shielding, or the induced field, is coupled to the

background plasma. This coupling gives a contribution to ék [defined in
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Eq. (41)] which results from the correlation between the incoherent waves.
In Appendix A we shall show a derivation from Eq. (41), in which ék goes
over to <9k [Eq. (40)] in the limit of weak turbulence, when this coupling
is turned off. In the general case, this coupling does exist, 1i.e., the
dielectric function defined by Eq. (40) is mnot the dielectric function
defined in statistical mechanics. The point of defining this dielectric [in
Dupree’s sense] 1is that it is a measure of the average dielectric response
of a plasma to internally excited fluctuation which could be thermally
excited or be due to an instabiljty. For example, the simulation has shown
a granulation structure for <?k?;>6. In the approximation of clump model
the separation to the coherent and incoherent part still mekes sense, of

course, not in a sense of ék.

In the 1limit of weak turbulence we write down ék for the

Vlasov—Poisson system.

3
+ 2) .aﬁ )—k,k Iy
k 1’ 1

1

aéz) (4R)

ek

1+ %g / av Gﬁo) ﬁ.§f0, is the usual linear dielectric function,

(2)
where £y

and
A LA S ek [R30{Vr; + #;.30(0)8] . 31 (43)

with Ik = <¢k¢ﬂ> as the spectrum of the perturbation.
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Generally, wave—particle systems cannot be +ireated by the simple
formalism described here if the propagating characteristic of the wave is

taken into account. For example, the system

i Qﬂ + Ll - g2¢¢ =0
at aXB
2
e = - a_z_ (¢*0)
Ix

which can be used as a model to describe Langmuir turbulence cannot be
treated by our theory because for this system the renormalization of

“particle” propégator is not sufficient. Any attempt to shrink the wave
propagator would cause a Fermi type interaction which is unrenormalizable ' 'in

the systematology given in this paper.

Sec. V Summary and Conclusions

We have developed a systematic renormalized theory to deal with
stationary homogenous turbulence described by dispersive, dissipative
systems with a quadratic nonlinearity. The nonlinearity is broken into two
parts; a coherent part which modifies the ‘“dielectric function”, and an
incoherent part which serves as a nonlinear source. Several general and
structural properties of the renormalized system are disussed including the
constraints imposed by causality which leads to Kramers—Kronig type of
dispersion relation for the nonlinear dielectric function. Thus, mnonlinear
dissipation (or frequency broadening) is related to'nonlinear dispersion (or
frequency shift) and either of these can be calculated when the other is
known. We have also demonstrated that the nonlinear dielectric function €y
defined in our formalism 1is generally mnot equivalent to the standard

definition in statistical mechanics, but is a meaningful description of the
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average dielectric response to internal plasma fluctuation. We have
obtained' an expression for &y in the weak turbulence 1limit for the
Vlasov—Poisson system. We have also shown that our results in the
appropriate 1limit are in complete agreement with: the results of the
conventional weak turbulence theory. We believe that the set of Egs. (11),
(12), and Egs. (R7)—(R9) can provide a very firm starting point to deal with

a broad class of turbulent problems.
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Appendix A. The nonlinear dielectric function in the 1limit of weak

turbulence.

In the first part of this appendix we shall show that the dielectric
function defined by Eq. (40) is not the same as defined by Eq. (41). The
difference comes out of the coupling of induced wave to the background wave.
If this coupling is turned off, the contributions to ék only comes from the
coherent part. When the coupling is resumed, the calculation started from
Eq. (41) gives the result in agreement with Ref. 2,8. Obviously, 6‘2) term
in the expression for ék in Ref. 2,8 stands for the correlation of induced

wave to the background wave.

In the second part we derive the spectrum equations in weak turbulence

starting from Eq. (40). The same scheme can be generalized to the second

order in the renormalized theory. It is found that Eq. (AR2) still holds

for the renormalization with the same definitions for &, gﬁz)k )
2
(2) (e) - (0) ‘
Er 'k k.» &y ' in which Gk is replaced by the renormalized propagator
107273
G-
The Vlasov equation in the presence of an unrandom external source ¢(e)
is

[0t + %V + Vo(o(®)y . 3]1(e(e)) = 0 (A1)

(g=m=1 for simplicity). We define f’ = f(¢<e))—fo where f <f(dJ(e> = 0)>,

as usual, satisfies (9t + 30V)f0 = 0. The equation for f° in the Fourier

representation (with k#0) is
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A A K S T (42)
k
1

with Géo) = (w—ﬁ°3+ia)_1, k#0, ¢ = ¢k(¢(e)). The Poisson equation in the

presence of an unrandom source is7
4
by = ¢ﬁe) - :g [ a¥sy . (A3)
k

For an infinitesimal ¢£e), fy is expanded to get

611,
p 4r > , k (e)
o = ol — 2T 1 a3 [17(0) + ole
k k- 22 / [£1.(0) 1% (5¢l(§e)]¢(e)=0 )
where
t:(0) = f£(¢(e)=0), o) = ¢£(¢(e)=o)
and
614,
4m > k e)
$ = 6 s - T dv —_— o\ (A5
k l{:’ [ kk f{B j (6¢1({e/))¢(e)=0:' k )
Substituting Eq. (A4) into Egq. (AR) yields
/
P 0)s 0 ,
klaﬁo,k
( ke kl) (AB)

Iterating Eq. (A6) to the second order gives
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f1; = “Gl({o)l_%oéfofbk - Gl({o)ﬁ.gf0$k
+ 03 afOr.36l0) @RI (o +8 . ) (0 45 )
k1¢0,k 1 1 1 1 1
0
- o ofO1,-36(0) Rp36{0) i (B R5)3 £o(o )
k2¢0

oy, +B Y (b, . . + F )
k2 kz k k1 k2 k k1 k2

+ higher orders which are neglected in the standard weak turbulence theory).

(A7)
Ensemble averaging both sides of Eq. (A7), we obtain
s = _glo) (0) (0) (p_
<fp> = G /R £ <E > 4+ L Gy Rl‘éck—kl(ﬁ k)
k1¢0,k
o B <by .+ b > — Y c{0) g .3 c(0) p_,3c(0) (B-%.-E.)
S kgo K100 Sl ek (R
kg #0
o 3 (<o, 0 @ > + <F > <v 0 >4+ <Fy > <o b o >
o} [ kl k2 k—kl—k2 kl kg k—kl—k2 k2 k1 k k1 k2
+ <$k—k1—k2> <¢k1¢k2>] + nonlinear terms in ®. (A8)

In obtaining Eq. (A8) we used the decoupling condition

(i) <¢k$k,> = <b> <G>
<Py by by > = <Fy > <by Py >
k k2 kS k ke kB
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Because of the homogeneity in space and time <Oy > = Ik 6(k1+k2)’ thus,
1 1

Eq. (A8) is reduced to

<tp> = _G£O)K.§fo <& > - ) ;O kGéO) k.3 Gégﬁlﬁgoé
K10’

Gl0) (BB, B_).3f_ . <b, 6, o >
k—k~k, EE 2)+of, 1y ®lep Moo, g

-7 efO rda R e, (B3, I B>
k,#0,k 1 1 1

~ v el® 3o, (B3 6 BB 1 <B>
k,#0,k 1 1

+ nonlinear terms in & (A9)

“In obtaining Eq. (A9), we noticed that the choice'k1=k has been excluded.

Teking the functional derivative of fi with respect to ¢£e)’ we have

<>

= —6{0) k.31, - (0)z .3 (0)
sof®) s(e)og = %k 3, El Gy /Bpe3 Gy

. [K.§G_k(—ﬁ1) + (—Kl) . 3Gkﬁ] c 3 f 1 <> |¢(e)=0 (A10)

o 'k
1 (e)
6¢k

The nonlinear terms in % vanish when ¢(e)=0. We rewrite Eq. (A10) in the

form

6<fﬁ> 6<$k>

—_— e (A11)
6¢£e> ¢( )=0

6¢ﬁe) ¢(e)=0 -

where




Q = 6{0) (R.31 « Tt ok, (30D (#y) + (kp)o36{OE] + 31, 1 )
1

(A1R)
Substituting Eq. (A5) into Eq. (Al1l) yields
5<fy > 61y,
- k = Qk [1— in f av < k > (e) ] (A13)
sole) 1° sofe) p'o/=0

Integrating Eq. (A13) over velocity space, and making use of Eqg. (38), we

obtain

ﬁg -1 2 -1
- (e -1) = [a¥ Qe . (A14)

Here we noticed that

6
<f>
(e) K
5o}

-9 <fk(¢(e)) >
6¢ée)

Equation (14) leads to

47
g, = 1 + %5 [d¥ Q (A15)

where Q is defined by Eq. (AlR). This derivation justifies Eq. (4R2).

However, when the coupling 1is resumed, i.e., <¢k&k,> can not be
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decorrelated, a further iteration gives the same result as obtained in Ref.

2,8, for ék.

In the following, we show that the expression of £ given by Eq. (39)

is in agreement with the wave energy equation of weak turblence.

From Sec. IV, the wave equation is

ey b = (1—¢kA)¢k = 0,1y (A18)

Writing the r.h.s. of Eq. (Al6) explicitly in the limit of weak turbulence,

-we have

£y by = %g [ ¥ Géo) T k.3 cﬁ?% )31 0 Oy (A17)
& k, 1 1 1

Multiplying ¢ﬂ on both sides, and ensemble averaging yields

_ AT (.5 o(0) 2 (0) (p_p *
g Iy = .2 [a¥ G E .3 Gk_kl( K,).31, <¢k1¢k_k1¢k> (A18)

1

The term <y by ¢§> is calculated in the standard weak turbulence by using
1 1

the quasi—Gaussian approximation:

<t b axs = <olBle o exs 4 <op olR) o> 4 <o, o, o or(R)s
1, ®ude, K X, “k-k, *k k, *k—k, *k ke, "k ¥k

with
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Cﬁz)k
(2) _ 1:72
by - @ %k, %k, (A19)
k o=k gy
Defining
(R), . _4r¢ [ & (0) (0) :
£ - — [ dv G kE..3 G Koe3f (AR0)
k ks e k 1 ko' *2°%%0
and substituting Eqs. (A19), (AR0) into Eq. (A18), we obtain
*
o) ik
€, I, = € — <, b, X, bF >
kK +% o Fro¥eo.(r) TRy EpkiTkp
1 k
K{+ko=
2),
+ Y Eéz)k L2 ST NPLINE A%
K. k= 152 (%) 1 Ko *2
18 ky
k{+k =k
2)
(2) 1R
+ € <b, b b, px> (A21)
) o Erokg o (1) TRy k{kg'k -
k+k, K,
k{+k 5=k

The correlation function <¢k ¢k ¢k ¢k > 1s determined by the Gaussian
1 72 73 ™4

process, and then Eq. (AR1) becomes

ael®) o ofB)y 2lef®)y |
1 K=Ky Tk, =k 1% 5
(ak - Z D Ikl) I, = - 5 ) ———:RES——— Ikl 1k2 (A22)
kl Ek_kl k1+k2— €

Substituting the expression for & of Eq. (39) 1into Eq. (AR2), we just
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obtain the wave energy equation in the standard weak turbulence theory.
above exposition clearly shows that the 5(2)—term in the coefficient of

of Eq. (ARR), i.e.

5~
[av]
J ~

€
1

o~
4V
.~

[ k—

=

1 Ky

Iy

o

The

Iy

is irrelevant to the dielectric function ) It is contributed from the

interaction of source term with the wave.
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