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Abstract

In tokamaks where auxiliary ion heating leads to Ti > Te’ the néglect

of electron collisions is no longer a good approximation in determining

transport coefficients. The enhancement of the ion heat conduction due

electron collisions 1is determined for (a) the Pfirsch-Schluter regime:.

(b) the banana regime for the case where Zéff is large. The enhancement
ion viscosity is particularly important; the contribution due

ie—collisions is approximately equal to the ii—collision' term even
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I. Introduction

When making calculations to determine ion transport for tokamaks, such
as heat conduction or viscosity, it has been the general! practice to neglect
the effect of collisions with electrons. This is a good approximation when
Te > Ti since the electron collision freqﬁency invariably appears combined
with the coefficient (me/mi); and meve/mi is smaller than v;; by the factor
¢2(me/mi)1/2(Ti/Te)3/2. This approximation will ceése to be a good one for
éufficiently large values of Ti/Te and, in fact, it has long been recognized
thgt in the slowing down of energetic ions injected into a plasma~»that if
their energj exceeds (mi/me)l/STe, the dynamic friction with the electrons
will exceed that with the plasma ions.1 For electron collisions to become
domiﬁant for radial ion heat conduction in a tokamak the ratio Ti/Te?peed
nqt be as large as (mi/me)l/s. This is beFause ions in the ion distribution
tail with velocity v experience a dynamic friction propértional to v72 for
ii—-collisions but proportional to v for'i—e collisions. As a result for
transport processes which are strongly weighted by the ion energy the
electron collisions will be‘relatively moré important. ~Depending on the

particular integral involved the electron term will have.an extra numerical

factor greater than unity.

In Section II the Pfirsch—-Schluter ion heat conduction is determined by
utilizing the published result of Herdan and LiIeyB for the ion heat
conduction parallel to & magnetic field with electron collisions included.

In this collisional regime the ion heat conduction is ‘'enhanced by the factor
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and the electron contribution becomes the larger one for Ti/Ti > 4.

For the plateau regime, where the ion heat conduction is independent of
the collision frequency,‘electron collisions will not change its .magnitude;
but since both the Pfirsch-Schluter and banana regime values are enhanced,
the range of collision frequency for which the plateau formula applies will
be reduced at both upper and lower limits. In the banana regime, to lowest
order in (r/R)l/z, the electron collisions do not contribute to the ion heat
conduction because the important electron collisions involve ‘energy
scattering. Such scattering produces only a weak friction force parallel. to
the magnetic field for @he'tfapped or nearly trapped particles, neoclassical
transport being driven by this friction force. Energy scattering collisions
give a contribution of order r/R and the enhancement of ion heat conduction
‘due to ii—energy—scattefing collisioﬁs' was treated in reference 3. ‘In
Section III the method is given for obtaiﬁing the electron contribution‘to
the ion heat conduction in the r/R order. The solution 'of a Spitzer—type
problem is involved but here only a simplified version is solved which
applies to the case where Zéff >> 1, where Zéff = (ni+¢2 Y nZZB)/ni. Two
solutions are obtained. Case (a) involves the simple addit?on of the extra
collision operator Cie . to the normal steady state ion drift—kinetic
equation. Since this equation is not strictly valid — in the lowest order

the term Cie(f feo)’ which involves electron cooling of the iomns, ' is

io’
unbalanced by any corresponding heating term or time derivative term

involving 9T/dt. A second example, case (b), is therefore solved in which
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c f is assumed balanced by the collisions with slowing down beam

ie(fio’ eo)

ions. For case (a) the electron collision contribution to the banana regime

ion heat conduction (qir) is given by

m

- ry, Te 2.,
(aip)je = —R4 () (ve m, i6Ti)

and the enhancement over the simple banana regime formula for an impure

hydrogen plasma is by the factor

1/2m, 1/2 T, 3/2
28 (5= R

R m, Te)

]

For case (b), the numerical factors 24 and 46 are reduced to. 12.2 and" 24,

respectively.

Section IV deals with the electron contribution to the ion viscosity
“ for low collision frequency regimes (plateau or banana). It is first shown
that the mneoclassical contribution to PHr is closely. related to the sin®
component of the total ion heat conduction parallel to B, to be denoted by

aiﬂs (© being the poloidal angle). One finds

Pyp 2 — may4/ReBR .

The electron collisions drive ai”s because the collisional energy transfer

from ions to electrons has cos® components proportional to both v, end

V"T{/Ti, where the prime denotes the radial gradient. ' For the particular
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balanced condition of case (b), the electron collisional contribution to Pyy

is given by

2 m T!
- r _e 2 6, .31
(Pﬂr)ie = —ni(R) AVe m; Pio mi(5v| + 2 T, V"]
Assuming T{/Ti ~ Vﬁ/V”, the ratio of this expression to the neoclassical

formula allowing for only ion self qollisions4 is

(Pyr)ie m 1/2(31)3/2

(]
— = 38(—
(Pypdij m; Te

which is close to unity for hydrogen even for TizTe'
2. PfirschTSchluter Ion Heat Conduction

In the general transport equation obtained by Herdan and Liley for a

~collisional plasma,2

they used Grad’'s thirteen—moment approximation and
included both ie—and ii—collisions for iomn transport.. From their Eq. (54),
allowing for the definitions of their non—standard symbols, the ion heat
conduction parallel to a magnetic field is given by

3.1p.V T.
1171
(1)

15
m<Uii+ Tm v

Qy =~

1 e e

where Ver Vij have the usual definitions

E——
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Introducing the energy-weighted friction force G defined by

ve 5T, :
renindieeey M CFORNNE (3)

G = fdsv mv (

where C is the collision operator, Eq. (1) can be rewritten as the balancing
of two energy weighted forces
5 4 »
2P VT = (3 mivi+dmere Jagy = =G (4)
where the equality to -G, follows because —(5/2)in"Ti is the: energy
weighted force due to V"Ti which corresponds to the definition of G in

Eq. (3).

The surface—averaged Pfirsch-Schluter radial ion heat conduction is

given by3.

(qir)ps =~ B, (2§0036G”) ' (5)

where the overbar indicates the ©-average. Since the cos® component. of a4

the Pfirsch—-Schluter heat flow, is given by




p;T:
L1 X coso (6)

Ay =
i eBy R

substituting from Eqs. (4) and (6) in Eq. (5) yields

P m
r 15 e 2 m-
(qir)ps =2 (R] ny(vyg + 4 m. ve) PipTi -
, i

where p?o = ZmiTi/eng. This formula is for a pure hydrogen plasma.

Using Eqs. (R), the ratio of the two collision terms satisfies

mv, m, 1/2 T; 3/2
18 = 22 ()T

-&

21 for

o]
' A\
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in the case of hydrogen. The coefficient 2 in Eq. (7) will not be
completely accurate because of the limitation of  the 13—-moment
approximation. A more accurate calculation by Hazeltine and‘Hinton5 with

only ii—collisions gave the value 1.6.

3. Banana Regime Heat Conduction

A. Method for Solving the Drift—Kinetic Equation

To obtain the electron contribution in the banana regime it is

necessary to solve the steady—state ion drift kinetic equation, namely,

By, 9f. a1 .
o il io _
VI rae T Yar 5 = ¢(fi) (8)
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with i-e collisions included in the linearized collision operator C. Here

fio is the Maxwellian velocity distribution, fil is the perturbation to f

i
which is first order in pi@/L, Var = (mivu/e)a(v”/B)/rae and the other
symbols have their wusual meaning. Concentric magnetic surfaces with

circular cross section are assumed and the velocity space coordinates to be

used bare € = (v2/2)+(e¢/m) and A= hvi/v2=2pBo/v2, where

h = B,/B = 1+(r/R)cos0.

Since the collision term is small in the banana regime, to zeroth order

in the collision frequency, Eq. (8) can be integrated to give the standard

forms
f o mihv" afio (9)
i1 eBO dr

where g 1is independent of © and is to be found by solving the constraint

equation
§@C(fil) =0, ' (10)
M
which is obtained by integration from Eq. (8). As. is well known,® it

follows from Eq. (10) that g is zero in the trapped region.

The procedure to be adopted to solve Eq. (10) is an adaptation of the
method used by Hazeltine et al. to obtain the higher order correction to the
neoclassical electrical. cpnductivity;7 In Eq. (9) g is expanded in powers of

61/2 = (r/R)1/2 in the form




miv”h afio

o] 1 v
ia = - + + + ... . 11
i1 EBO ar g ) g | (11)

1

The two terms in the brackets are of zero order in 61/2, g- is first order,

etec. In Eq. (11) the terms in each order are now rewritten in the form

hv
£ = flg;—ﬂ fo+ 1) & (5, +n() 4 . 2

where hV" is the mean ion velocity parallel to B in lowest order and h(o) is
"localized”. This means that although the magnitude of h(o) is 0(61/2), the
derivative v”ah<°)/ax is localized being 0(1) in the trapped region and 0(5)
in the untrapped region. Similarly £, is chosen such that ) 4
"localized"” havin i i (1) i 1/2y 4

, g magnitude 0(6) with v"8h /3\ being 0(6 ) in the

trapped region.

Because of the “localization” qf h(o), in the zeroth order
approximation to the constraint equation, C can be replaced by the

approximate operator

C° = 2vp,h(1- %)1/2 L= 2 | , (13)

giving

§ L om0y = o . (14)
M ' ‘ '
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with
m.v, h T. 9f.

n(0) = - 2y ¢ —1 _lo)

. +
I"io
Ti eBO aor

from Egs. (11) and (12). Also using Eq. (8), the mean radial diffusion for

the ions in lowest order is

m. '
O =S 82 v D= T 820 vy e (P
- i do (0))43 |
= - —= J zﬂ.j v, €°(n'"))d% (15)

where the approximation 1is possible because C(f§?)) = C(h(o)) and- because
the dominant part of C(h(o)) is Co(h(o)). Because of detailed ambipolar
balancing,8 Fi must equal the electron neoclassical diffusion (reNC)‘ . Here
reNC will be assumed small compared with the separate ion terms in Eq. (15);
this is equivalemnt to assuming (me/mi)l/g(Ti/Te)S/z << 1. Thus the

approximate ambipolarity condition is

/ g% mv, c®m{®)adv=0. (18)

This equation determines +the radial electric field which is rapidly
established to produce the neoclassical am.bipolarity.8 Since the . .assumption
Te/Ti << 1 will also be made, the magnitude of this ratio is limited by the

double inequality




1 >> T /T, > (m/m)/3 (17)

(1f T,/T; is too small to satisfy Eq. (17), the zero in Eq. (16) must be

replaced by reNCeBO)’

Following Hazeltine et zal.,"7 in first order, f, is chosen to be the
solution of the equation
c(t,) = —(cc)a(®) (18)

which 1is @& Spitzer type problem. The first order constraint equation then

reduces to

$ LDy = ¢ comt)y =g (19)
M Vi

and only h(l) in this order contributes to the mneoclassical transport.

Substituting from Eq. (13) into Eq. (19), since h(!l) = gl—f., one obtains

At 4 | ;

</1-A/h — |

gl ( Y A >) |
A <«/1-r/n> %

or
' f,
1A/ —
L)Y an </1=3/h> ¢

where the angular brackets denote the usual magnetic surface average
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and the subscript u denotes that this term applies only for the untrapped
region and is to be taken as zero for the trapped region. Since away from

the trapped or near trapped region

<13 /E —>
v o 3t ,
</T=7/h> -’

1§

making ah(l)/GA 0, it follows that 3f,/3\ is needed only for the trapped

or near trapped region as the transport integrals depend on ah(l)/ax.

For the case of a pure hydrogen plasma, with electron coiliéions

neglected, the well-known solutions to the zeroth order Eqs. (14) and (16)

are6
T. n/f T V. .
(0) - i S e SRS X R :
Ep ) = VyBg + — [ - (5~ =,)] (21)
1 1 1
and
- 1
m.vfi. T, _R Vs L
nl0) - _ 1 7do _l{-v - _L)(h¢j:§7— ~ [1+0 ___JQL___] (22)
Bp Ti v v A 2<V/IA/B>

i

where




3 2
fd vuiPAvﬁ(vz/vTi)fio |
= - - =1.33 , (23)
Ja%vvipsvitio

<l

5
e | pote

VipA being the pitch—angle collision frequency for C?i given by

v v v
vipy = 5l5) 0 via(7) [0 = —)e(—=) + o~ o7] . (24)
_v Ti
Here ¢ is the error function and vy = (ZTi/mi)l/z. Also, the mean radial
i .

ion heat conduction in this order is given by

(o) _ _ 1/2_ 2 .,
qiy’ = —0.6867 "n 07T (25)
In the next order the ambipolarity condition is
[ 75 o m(lhady = o (26)
27 b -id :

and Hazeltine et al. found that the solution to Egs. (18), (19) and (28)

gave Vﬁl) = 0, a more correctly Eﬁl) = 0, since it is Er which changes

rapidly to satisfy Eq. (26).




B. Solution for Impure Plasma

In order to simplify the problem of obtaining the electron contribution
to qir,,the assumption will be made that Zeff is large. For such an impure
plasmé the lowest order solutions are somewhat modified. Thus since VigPA

has the simpler form [c.f. Eq. (R4)]

Vi,pa = (3\/ﬂ/4)(vTi/v)3uiZ , (27)

where

_ 2
Vig = ¢2(nzZ /ni)vii ,

one finds

Vig/Vig =1, ‘ _ (28)
where ;iz’ v¥, have similar definitions to those of Ui’. v¥ implied in
Eq. (23). This value for ;iz/V{z must be used in the expressions for Eﬁo)

and h(9) i Egqs. (21), (22) and the expression for q§g)&is changed to

(02) _ 1/2 P :

Considering now the effect of electron collisions, in the zeroth order
their effect is small. Thus the pitch angle scattering collision frequency

for ie—collisions is v p, = Ve(me/mi)(ZTe/miva) so that




“iePA | "e T 1/2 31)3/2( v Eg) (30)
VigPA  n, 2% M Te v, T

The assumption (me/mi)l/z(Ti/Te)S/z << 1 has already been made in Eq. (17)
and it will be aesumed that Ti/Te is sufficiently large such that values of
v/vTi greater than Ti/Te'will be unimportant‘ because of the Maxwellian
exponential. Thus the ratio in Eq. (30) will be small compared with unity
even without the factor ne/nZZB.

In the 6%/?

order, energy scattering is involved and the ratio of the
ie—collision frequency for -dynamic friction (v, pg) to the ii—collision

frequency for energy scattering is

Vi m, 1/2 T; 3/2 3
ZieBS _ (CeyMR1)¥E v

: (81)
YiiEs M4 Te T, g

1

This is substantially larger than the ratio in Eq. (30) and can be of order
unity for the ions of the distribution tail which are important for heat
conduction. 0f interest therefore is the part of the first order
perturbation f, which 1is driven by electron collisions_and which is the

solution of (c.f. Eq. (18))

C(t,) = _Cie<h(0)’ feo)'— Cie(fio’fel)
o C' (0 ¢ Tey 1 3 (.3 (0)
T Trie ’ eo) = _Ue(m.) 2 3y (vCh ) - (}32)

1V




In Eq. (3R2) foq is the perturbation of f_ caused by h(o), i.e. it 1is the

solution of

C(f,,) = € (1., n(®)) . (33)

ei( eo’

Since the assumption has been made that Zeff >> 1, it follows from Eq. (33)

io’fel) is smaller

that f_, contains the small factor (Zeff)_1 and that Cie(f
than Cie(h(o),feo) by this factor. ﬁence only the larger contribution is
retained in Eq. (3R). Also the last approximation in Eq. (32) involves the
amiséion of an extra term smaller by the factor Te/Ti' The most important
simplification which arises from the assumption of large Z ;. is that Cc(f,)

can be replaced by C°(f,) in Eq. (32) to -a good approximation. This

simplifies greatly this Spitzer—type problem to be solved for f,.

An'important point whichlmnst be madé is that since Te < Ti and since
we are retaining terms of order ve(me/mi) the constraint equation which is
zero order in pie/L will contain the non-zero term § (d@/v”)Cie(fio); this
term will be unbalanced unless either an ion heating term is included or
afio/at is non-zero. In general, whatever balancing process is operating on

f.

jo’ it will also operate on fil and affect the ion transport. It will

$alanée, at least to some extent, the effect of Cie(fil)' Here two values
of qr will be obtained; (a) the linear contribution due to Cie with other
processes omitted; this will come from the solution of Eq. (32) and (b) the
net value of q;, for the case where Cie(fio) is assumed balanced by the
(heating) collisions with injected beamtlions. For case (b) an extra
collision term is mneeded on the right hand side of Eq. (32) to allow for

beam ion collisions.




C. Case (a)

Returning to the solution of Eq. (32), after substituting for h(o) from

Eqs. (22), (28) and replacing C(f,) by C°(f,) the equation to be solved is

A

df

ST L WITE = A(y) (WIS (140
2v{,pa BVISA/H ™ WI-r/h = A(v)[h{1 A/h _xf

where
v.m_ T 2
A = SRR AT,
€ i v v v

) (34)

2<V1-)/0>

(35)

-1/2 ' ‘ :
Multiplying Eq. (34) by (1~ %) and integrating with respect to A from O

to A yields
ot 1
S * A dx Tos dx
1zPA E) (| é Vish/h fx 2<¢1—x7h>)
1 : ,
__da A hiIA/B dA ’
= A(v)[nA + |20 VITR/R [1+40 da h/i-A/h_dng (36)
A

+
2<v1-A/h> I0 0

Noting from lowest order neoclassical theory6 that

1+6 1 1 1/2
< dA - > = 2/2(0.69)6 ,
é [Vl—x7h (<¢1—A7h>)u] ( )

'so that

<V1-7A/h>

(37)
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1
m _d\ _ 1+6 _darx ~ O_ 1/2
é (<¢T:X7H>)u = é (<¢T:X7H>]u] ?-2/2(0,69)¢ ’ (36)

Eq. (36) reduces to

| ot ' ‘ 1/2
Rvi,palk VI-A/R o = A(v)[A-2(1-0.689vR25"/F)

1
+ h Vvi—r/h j 146 __dr + ]}‘ M] . (39)
. A </1-A/h> 0 </1-A/h>

The value of the left—hand side is needed to order 61/2 for the trapped
region, where A varies from (1+6) to (1+d)_1, and for the near trapped
region. For this range of A and to.the required ~accuracy A=1, the: first
integral in the square brackefé.is zero and the second integral is unity, so

that
31» 1/2
(vi,pa?h VI-A/h 757)T = 0.69v26"/° A(v) | - (40)

‘where the subscript T denotes the value for the trapped or mnear trapped

region.

The contribution to ion diffusion caused by h(l) is given by

m.
I 0 (1)y 43
(riNC)ie = <eB® Jav c®(nt)a%v> .



After substituting from Eqs. (13) and (20) and integrating by parts with

respect to A, this becomes

31,
</TA/h —
314 Y TN

) ]Bﬂvzdvdk >

i
. = - < — vV, AN-— +
(Ninc) eBy JI vvsgen M=+ «T/B> u
= - jEi—-[ 0.69v26 A(v)2nvidv < [ | L _ ( 1 ) Jaa > (41)
' eBg vi-3/h <V1-2/h>"u

using Eq. (40). Finally from Eqs. (35) and (37), the integrals yield

‘ T
- r €y & 1
(riNC)ie = —2.1 n; (R)[ue i) P5o T, (42)

Since for the impure plasma considered here most of the positive friction
fofce exerted on the electrons due to h(o) will be balanced by a negative
friction force from the impurity ions; there will not be. an eléctron
diffusion term with éomparable magnitu@e to match (riNC)ié' Hegce, the
ambipolarity condition réquires a first order correction to the radial
.electric‘ field, namely Egl). The diffusion contribution due to this

electric field in lowest order is found to be

eEgl)

Ty

1/2
r; &) = 0.73n; (T) / Vi 05|

(43)

Balancing the two contributions from Eqs. (42) and (43) requires




eEﬁ;) - ( ng ](me 1/2 Ti)3/2 r 1/2 T{
i nZ? M Te R Ty

) - | (44)

The contributions to the radial heat conduction due to h(l) and Eﬁl) are

(1)) o _ i mv® 5 1 e0m())a8es = - ry, e 2
q; (h'77) = <eB@ / hv”( 2 > Ti]C (h ))d v> = =21 ni[R) Ve = Pio Ti
(454a)
and
1)
3T, 1/2 eu{
1 i r 2 r
a;(E{Y) = —0.73(77Imi(3)  vigPTol T
3T, m T! .
i r e 2 i
= —2'1(_5_]ni{§)ye — Pio T, (45b)
: i i

using Eq. (44). Note that qir(Eﬁl)) has the opposite sign to Fi(Eﬁl))

because the total heat flow is 1less - than 5riTi/2' The resultant héat

conduction caused by ie-collisions is the sum of Egs. (45a) eand (45b), .

namely

(0: ), = ~24n (Z)y_ € o2 (45)
Urlie = ~R4N;(Flve — PTQT]
i |

The large numerical coefficient arises because of the high power of v

occurring in the v—integral in qir(h(l)).




D. Case (b)

Here the simple example case is considered where the cooling effect of
Cie(fio) is assumed balanced by the heating due to injected beam ions. The
distribution function for the beam ions (fb) is taken to be isotropic in
pitch angle with all particle velocities being greater than those of
interest for the ions in fio' This means that the collision frequency for
dynamic friction due to ib—collisions is zero. (There are no beam ions
within the velocity space sphere of radius v.) Also if G is the Rosénbluth

potential

¢ = /[ vyl

G reduces to

. g
v 3v

and the parallel velocity diffusion coefficient is

dv’ = = <> ' : (46)

where oy, is the density of beam particles and <1/vb> is the average value of

v1 for the beam particles. The required collision operator is then

19 (2%0

230 7 oy ) (47)

i

™
3 b v

Ciplfio) =




—22—

where 7=4ﬂe42nA/m?.

To zeroth order in piO/L the drift—kinetic equation required

m 1 9vS Te 34,

m.,v Jv

Y1 af
S N L it Y (48)
3V, R v v . :
If
T, =T
and
M o1 My me,. - Te
A [CE (49)
3 Vb Ti m; T1

then the Maxwellian with temperature T, is a solution for f; 'in Eq; (45),
since the +two sides of the equation vanish separétely. This simple
condition is4hﬁfealistic for the case consigered here where fio is assumed
to‘ be Maxwellian forlall values of v; it imblies that all the heat received
from the beam particles is passed to the electrons; However, for the two
'componént (non Maxwéllian) ion distributions observed in 'PDX,Q the
experimental results suggest that the two terms on the right—-hand side of
Eq. (48) do balance for the higher energy part of f; . Here, the equality

of Eq. (49) is assumed to hold and the balancing of the two collision terms




is taken merely as an example to illustrate that the physical process

balancing the electron cooling can modify the ion transport.

Turning to the operation of Cie and Cib on h(o), which 1is -writtem in
the form h(o) = ﬂfio’ since the pitch angle scattering part of C,p can also

be shown to be small,

T g2 v
e \n@y oL 3, Zeyle M 1y 2 3
(C;etCip)(n'Y/) 2 v [Ve(mi] = + <Vb>) veE av]
1t 8 ¢ My Ty oo dh
= 2w eln ) mn Vo 3y
v 1 1
L m.T! v_m
= (WIa/R — [1+6 dA -2y L3 rree 34 0B Ry 1 (50)
( { ey eB@Ti) ¥ v [Zmi ( 1" ol

using Egs. (22), (28) and (49).

Replacing the right-hand side of Eq. (34) by the expression in Eq. (50)

and following through the analysis of subsection C, one obtains

., =-12.2 n, (2} v e 52 T - (51)
ir/ietib ' i‘g e m, Pieti -

Comparing this value with that of Eq. (45), it is seen that the effect of

the beam ion collisions is to reduce Qi by approximately 50%.
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4. Ion Viscosity

To illustrate qualitatively how the electron collisions contribute to
ion viscosity, consider the neoclassical formula for the ion pressure tensor

component PHr

_ 4@ 3
PHr = f o f miv”vdrfi d°v
% S [ sin® a9 [V (l mvz)[i+$2)f asy - (52)
2eBR m e 1

where § = v"/v. If one omits the 52 term, the d3v integral is sim?ly the
total ion heat flow parallel to B, namely ai” =q + (5/2) TiVi”, and the

©O—-integral picks the sin® component of &i"_to be denoted by ai"s‘ Hence"

(53)

From the cosO component of the ion heat balance equation, to first order in

B E '

9 9 : 3r _8 (P; sind) _ _5

B roo (qi”831n®) “ 2B 790 is = —Q, ;,C0SO (54)
where Qiec is the cos® component of Qg the collisional energy transfer

from ions to electrons, and (ﬁissine) is the part of the ion pressure which

varies as sin®.




The ﬁis term leads to a contribution to‘P"r given by miFiEr/B@ where [
is the neoclassical ion diffusion; this small contribution has been known
for many years.lo The new contribution considered here comes from Qiec;

substituting from Eq. (54) into Eq. (53)

rm Q... ' .
r - %ReB :

More accurate neoclassical theory leads to the formu1a4
2 2.2
m. . m’ h%v
- 1 9 1 .22 49vs — 1 I 3
Py, = Br or r< f 5 MV v fd0v> - < / > c(f;)a%v> . (586)

S

The first term has already been treated in reference [4] in obtaining
the neoclassical formula for PHr due to ii—coliisions; this tefm.is closely
related to the divergence of the radial heat conductién and for sufficiently
large Ti/Te some modifications wouldbbe necessary to allow for ie—collision
as described in Section 3. Here we are concerned with the extra contribution
to the second term due to_C_ie which has not been treated previously. Only
the balanced case given by Eq. (49) will Be éonsidered; otherwise a
fictitious contribution is obtained from Cie(fo)' Also neutral beam heating
is involved in those tokemak experiments which exhibit large unexplained ion
viscosity. The ions will be assumed to be in either the plateau or banana
regimes and in the appendix it is shown that the perturbation to fi which is

even in Vi and varies as cos@ is gz given by




2 (o2 2 ,
miVy  (HBHVHVY) my vy

r
g, =1, 3 cosof
R Ti Qg Ti
2V, n’ T/ m.;2 % m. v’
I 1 _1( 1 _3)])_6_( lll)f
0
QO n; Ti 2T1 2. Ti eBO
Here V” is the mean ion velocity parallel to B at radius r, being

the mean toroidal velocity to good approximation; § is the part
electrostatic potential which varies with O, 9” = van” and ;2
For simplicity the assumption has been made that Er/BO z-V”

corresponds to the case observed in the tokamak PDX where the

poloidal velocity [= (BOV”/B)—[Er/B)] was found to be very small.ll

(57)

equal to

of the

2

= 2uB+v :

,  which

impurity

Omitting the parts of fe’ fb which vary as cos®, the contribution due

to C(g+,f ) + C(g+,f } in Eq. (56) reduce to
c’ eo c’ bo

2.2 +
2 h*%v m T. g
eBe 2 R my v2 v omy v fio
After substituting from Eq. (57) one obtains
2 m 3T
= _n (L _e 2 [ §
Pip = i(5) ve m, iomi(5 Vi * 2T, Vi)

(58)

(59)




Allowing for the poloidal nonuniformity of ng introduces an extra
collision term in Eq. (57) given by (ﬁeccose/ﬁe)cie(?io’?eo)’ where fi, cos®
is the part of of ng whiéhvvaries as cosO and the overbars have beén added
to emphasize the ©-average is involved. This term will not depeﬁd on the
sign of Vﬁ or V” but on the sjgn of ﬁec which will generally be positive
irrespective of the sign of V”, giving a positive contribution to PHr' The .
corresponding term due to ﬁb(e) will be given only approximately by
(ﬁbccose/ﬁb)c(fio,fbo), the approximation being associated with the fact
that <Vgl> will in genereal be somewhat smaller for the ions in ?bc' This
will generate a negative contribution to Pur (assuming ﬁb; is’ positive).
However, the beam ions associated with ?bc_will contribute directly to PHr
in the same way as gg in Eq. (58). In fact a more accurate value of Pir
would  be obtained by combining ?bc gnd gi and taking the term C(?bc+g2).
The positive ‘contribution coming from ?bc in general will more ﬁhan
coﬁpensate for the negative contribution due to C(fio'?bc) and hence

Eq. (59) is an underestimate.
5. Summary and Conclusions
The results of Sections 2—4 can be summarized as follows:

1. From Eq. (7) the ion heat conduction in the Pfirsch-Schiuter regime
is given by
m, 1/2 T; 3/2

=)l (60)

2
2 ’
(a5, )ps = —#ni (r/R) p$gv;iT{[1+5.3(
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This formula is for a pure hydrogen plasma. For an impure plasma one would
expect the expression in the square brackets to be replaced by
i 1/2 3/27 i i = /2
[zlee + 5.8(m/m; )21, /7)) with zi,; = (n+E J 0,2 )/ny.
z
2. For the banana regime, assuming the cooling effect of the electron

collisions is balanced by neutral beam heating, the ion heat conduction is

1/2 o . r1/2mg 1/2 T; 3/2
PieviilZers + 24(5) T (=) (T
1 e

(2 ) pan = —0.73ni(-§) ] . (61)

This formula is only accurate for Zéff >> 1; it will overestimate the

‘electron contribution as Zéff > 1. (When the mneutral beam particle

collisions are omitted the numerical coefficient 24 becomes 46).

3. Combining the neoclassical formula for PHr due to ii—colLisions,4
the classical contributioh2’12 and the contribution found here due to

ie—collisions from Eq. (59)

r.2 o 6 m, 1/2 T; 3/2 me 1/2 T; 3/2 V|T{

P,. = —0.1n. (=) o%.v..m. — = — . = - 1
Il 1n1[R] pTevym {[1+ o2 + 17(mi) (Te) ]Vn+21 mi) (Te) T, }
(62)

(A term found in reference 4 which is third order in pPie/L and related to T;
but independent of Vﬁ and V" has been omitted for simplicity. Note that the
classical term, the one containing q—z, exceeds the neoclassical term due to

ii—collisions unless q2 2 6, where g E'rB/RB@. The ratio of the two terms

was incorrectly stated by a factor of 4 in reference 4.




—29—
The above results all assume that the ion distribution in lowest order,

f is Maxwellian. However, thefe is experimental evidence that at least

io’
in hot ion plasmas where Pio is a significant fraction (Z 0.2) of the minor

radius, the distribution is non-Maxwellian and has an enhanced tail. (For a

summary of the experimental evidence see reference 13.) Such distributions

£ 13

can be explained as a result of neoclassical transpor and even with only
ii—collisions have increased transport. But for the enhanced tail particles
electron collisions will be particularly important. The further enhancement
of ion transport due to ie—collisions with such distributions will be the
subject of a future paper. In addition, as discussed in Section 4, the
'slowing down beam ions, which constitute another form of non-Maxwellian

tail, will also meke important contributions +to ion transport when the

neutral beam injection powers are large.

Appendix

In this appendix the part of fi which is even in I and varies as cos®
is derived to firét order in r/R from the drift—kinetic equation.  Using
velocity space coordinates u and i and assuming in lowest order that fo is
a moving Maxwellian with velocity V” parallel to B, with fi=fo+g, the

drift-kinetic equation to order (r/R) gives

By E B _E afo__y_a_Bafo)
B’''rao vy 90 av”

afo eEr afo Bee 3% of

o
- + + . Al
vdr[ar mv, Bv” Bm rae] av" (A1)
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with fo given by

exp{- T [uB + (v,-v,)%/2])

=19

f = —2
¢]
(’T\‘I/BVT)S

3

In this appendix only the hydrogen ions are considered and the subséript i

has been omitted.

The simple case is considered where Er/B@ = V“. This was observed
experimentally in PDX  where the impurity poloidal velocify
.[z(BeV”/B) - (Er/B)] was found to be very small.ll Also, since the part of
g which varies as cos® will be indépendent of the collision Irﬁuency in
lowest order, a simple Krook model is taken for the collision operator.

Changing the velocity variable from v to ;H where

and 9/3r transforms to (S/Br—Vﬁa/aeuJ, Eq. (A1) becomes

B.2 “
Ov
Br oo T V8 = folTgr H50 T2

r r T(v”+V")

~ 2 ~ ~ ~ ,
BH(vy V)] a3 vieE,  mv,Vy
R e e I
» n T(v”+V”)
B, v,e A% = ;o tR v Vi
O "I~ a9 1 99 T’ mv 3 [
o2 L, L Aml T, 3y, (42)
B rT 90 Br 30'm = T'2T 2 T




with vz = 2pB+vﬁ. The part of g which is both even in 3" and varies as cos©

is denoted by g:. After integrating Eq. (A2) with respect to © and teking

the cos® component, the small collision term can be neglected giving

| 2 "2
r mVy (uBAVIHVY) myj

+ .

g, = 1, B cosof T T T
eV . PR ¥ mv
AR T - N - -2
Qg "n T'2T 2 T eBy 0

where Q@ = eBO/m and Er/BO = V” has been used.
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