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Abstract
The H&mfitonian structure of the ExB drift equations is exploited’ to

describe the onset ‘of stochasticity for test particles.in drift'anes. In

contrast to a longitudinal plasma wave, a drift wave acts over the entire.

single particle phase space. - This feature precludes a simple use of the

techniques presently. available  for predicting the onset of chaos in..

Hemiltonian systems. For two drift waves a generalized Chirikov overlap
criterion is derived. The present work gives conditions on the drift wave
spectrum for global stochasticity -and the validity of the diffusion

approximation.




I. INTRODUCTION

. Thendrift'wavezinstabilities‘ar&sing~from-density gradients in a plasma
produce anomalous transport of particles across the confining magnetic field
as known from laboratory experiments and computef sim.ulations.1 In fact, it

is usual to calculate the effect of the drift waves with quasilinear

diffusion coefficients derived from the ExB convection of the pafticles

across the magnetic field.g’3 in cornitrast, a single drift wave can only
produce a localized convection of the plasma with no mnet transport. The
prgseﬁce of_ é' small sepondary drift wave was shown by Hortoﬁ4 to produce
stochastic motion along the boundarie§ of the convective motion giving rise

to a mnet plasma transport. In this work we find conditions for which the

drift wave system changes from a localized convection of plasma to a system:

..described by.diffusion.

The drift waves considered are low frequency electrostatic waves .in
which the cross—field particle motion is_givén by the ExB drift of the
guiding center. The ExB motion is Hamiltonian with the canonical momentum
being the. radial coordinate in the direction of the plasma iphomogeneity and
the conjugate cﬁordinate being the spatial.coordinate in the direction of
symmetry mutually perpendicular to the inhomogeneity and . the confining
magnetié field. The isolating radial surfaces across which pérticles do noi

5 in the three dimensionai phase space of the

pass appear as invariant torii
Hamiltonian for the drift wave system. We seek to establish the conditions
under which these isolating invariant torii break down allowing the radial
transport of particles.

In Sec. II we define the canonical coordinates for the Hamiltonian of

the guiding centéer motion in the drift wave system and define the

action—angle variables. In Sec. II1 we give the trajectories of the
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integrable single wave system Qnd derive the corresponding Chirikov—overlap
condition5 for the éresence of significant stochasticity in the two wave
éystem. We also give a condition for the destabjlization of the elliptic
fixed points in a special multi—wave system with exact fixed points of the
flow. In Sec. IV we analyze the diffusion approximation to the trajectories
in the regimes of global stochastiéity. Approximate expressions‘for the

- diffusion coefficients and the test particle correlation time ' are ‘derived.

Section V contains the discussion and conclusions.

11. TEST PARTICLE MOTION IN DRIFT WAVES

We consider a nonuniform, magnetized plasma with ‘a fixed density
gradient,dN/dr=—N/rn and constant radial electric vfield Er=—d¢/dr in the .-
slab approximation. The nonuniformity of the equilibrium density and
potential gives rise to the electron diamagnetic driftAvelocity Vde=°Te/eBrh
and the ExB drift wvelocity vE=—cEr/B in the symmetry direction §
perpendicular to the airection x of the vequilibrium gradient and the
direction z of the magnetic field B. The slab supports drift waves'wifh
frequency w and wavenumber §=(kx,ky) related through w4kva=kyvde/(1+kip2)
where p=c(miTe)1/2/eB ~describes the dispersion of the waves due to the
polarization of the plasma. The waves are electrostatic with E=-Ve(x,y,t)
with a single wave k of the form ¢E=Aksin(kxx)cos(kyy—wgt). i

In the presence of N drift waves the electrostatic potential is

o(x,y,t) = E.x + % Agsin(kxx)cos(kyy—w§t+ﬁ§) (1)




—f
where mode coupling effects6 are neglected. In writing Eq. (1) the plasma
is assumed to be bounded in # and periodiC’in y with §=(ﬂn/Lx,2ﬂm/Ly).

We consider the motion of a test particle with trajectory
r(t)=(x(t),y(t)) moving with the ExB drift velocity in the plasma. We néed
not specify ‘in detail the type of particle. The test particle may
equivalently be taken to be a "fluid element with the Lagrangian flﬁid
'displacemeﬁt £(t)=(x(t),y(t)) moving with velocity XE=c§x§/B2. Thus, ihg
fluid element may be looked on as a fluid particle. For the ions and
eleétrons.in a collisionless pldasma the approximation of the ExB drift
trajectory applies most directly to the motion of the thermal ions since
drift waves satisfy the relationship vi/L%<w<<ve/L where 'vj="('rj/mj)1/2 is
the éverage particle wvelocity and L is the effective length of the system
aléng the magnetic field line.  The electron motion is coupled to thes.::
parailel mode structure‘and is éasilyvmade stochgstic by overlappinglw=k"vm
resonances; howe%er, the ion motion must become stochastic beforé a  net .
plasma transportboccurs.

The motion of the test particle given by di/dt=XE is anAincompressible

two dimension flow given by

dx c J99(x t
= - _ = 3 3 2
dt B dy (2)
dy do(x,y.t

= L (3)

<
dt B 9x

The flow %X, ¥ is thus a one—and—a-half dimensional Hamiltonian system with
the electrostatic potential ¢(x,y,t) being the Hamiltonian. The appropriate
choice for the canonical momentum is the x coordinate and the conjugate

coordinate is y. In the equilibrium the coordinate y is cyclical (ignorable)
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and the particles are confined to x(t) = x In the presence of the waves

o
¢ = ¢(x,y,t) which in general has a complicated structure as shown by the
contours of constant @(x,y,t) in Fig. 1;. Although steep gradients in the
Hamiltonian mey arise, the physical condition that the energy density W of
the waves be.a'finite fraction of the thermal energy density nT 1limits - the
gradients through the con&ition W/nT=f[¢2+(V¢)2]didy<w. In terms of the
amplitude spectrum.Ak'in Eq; (1) the condition of ‘fiﬁgte W/nT requires
A SC/1EIRYE as |k |ow. |

For motions | in ‘ general. péténtials it is wuseful to introduce

. action—angle variables J, 4. With time frozen the motion given by

Egqs. (2)—(3) takes place along level contours of ¢(x,y) with the velocity.

-vE=((8X¢(x,y))2+(3y¢(x,y))2)1/2. The action J is defined for a given ¢ by

1 area of ¢ contour '
I(e) = = § x(y,¢)dy = . _— (4)
_mn 2m
For closed contours the integral (4) becomes

J(9) = jzf- [x+(y’,¢)—i‘(y'{¢)]dy’/2ﬂ where Yy, are the turning point;
where 8X¢=O.and xt(y,¢) are the two branches of the inverse of o¢(x,y,t)=¢.
For open contours the action is J(¢)=]gy x(y,¢)dy/2n where Ly is the
periodic length of the system. - |

The generating function S(y,J) for the canonicalv transformation to

action—angle variables (J,%) is
Vot N
S(y,J) = é x(y’,¢)dy : : - (5)

with ¢=¢(J) being ‘the inverse of Eq. (4). The generating function (5) gives

x=(38/8y)J and




s = 38G.9) _ 80 .y __gz___l ay” . . : (6)

TR

' : f' ’ — y ’
Upon using Eq. (8) for ¥ and defining the time t(y)=[g dt /VE"[Q /Y

measured along the tréjectory, the angle (6) may be written as

5= 22 AV (e)e(y) | (7)
30 3(57,0)

where the ExB bounce frequency is defined by

= ; - ' - (8)

as 3¢ aj 30 o
a _ _ 3 | (9)

The contours of the potential ¢(x,y,£) change shaﬁe and reconnect on
the period of the correlétidn time Tc=1/Aw._ When wb>>Aw the guiding center
particles follow fhe contours of constant J ﬁntil a separatrix of ¢ sweeps
past them. During thé separatrix crossing the particles begin convection in
a different potential cell thus making a step I/Akl given by the size of the
potential cell. The separatrix crpssing process is studied by Kleva ‘aﬁd

Drake.7
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ITI. Integrable Curves for a Single Wave

For a single drift wave in the expansion (1) the equations of motion

X = kyAk sin(kxx)‘sin(kyy—wkt+ﬁk) ‘ (10)
¥y =vp + kAL cos(kxx) cos(kyy—wkt+ﬁk) . (11)
are integrable. The integral curves are found by making a canonical

transformation to the wave frame x',y’ with the generating function

o s TN ,
F(Y:X :t) =X (y_ k t) ) ‘ . : (12)
. . y o

giving x=90F/dy=x’ and y’=y—(wk/ky)t. The Hamiltonian in the wave frame is. .

¢ ‘=0+3F/3t with

w
o/ (x,y7) = (vg= 2% + Ay sin(igx’) cos(iyy’) . (13)
. y ' : .

To . study the Iintegral curves we use phase coordinates X=kxx’, Y=kyy’ and

measure time in units of the maximum EXB circulation frequency wg=kxkyAk

letting T=w§t. The equations for the integral curves arev.

& sinX sinY (14)
dr o

@ u+cosX cosY (15)
dr ,

with the trapping parameter defined by




wy,—K_V
= _._k__Y_E (16)

u
%%

For u=0 all therrbits'are cloéed and are given in terms of the elliptic
functions by Horton.? For 0<u<l there are open (passing) and closed
(trapped) orbits as shown in Fig. 2 and considered by Hirshman.® For u>1 all
orbits are open or passing. |

For the simplest drift wave dispersion relation the trapping condition

usl requirés the single wave amplitude to satisfy
ety /T>1/ [k, (14K650%) 1~ (o/r ) (14150%) 71

for waves ﬁdth kxp~1. For comparisén with longitudinal trapping ‘we note
that the parallel .trappiﬁg velocity vt=(e¢/m)1/2 at this amplitude is
vf=(e¢/me);/22ve(p/rn)1/2'for the eleétrons and negligible for the ions.
‘The electron trappihg velocity vf is small compared with w/lknl for
sufficientiy small p/rn. | -

For u<i the.unStable fixed points in a unit ceil of phase space as
'designated by the 1labels 1,2,3,4 in Fig. 2 are given by (0,—ﬂ+cos—1u),
(O,ﬂ—cos_lu), (ﬂ,cos—lu) and (ﬁ)—cos—lu), respectively, wheré Ogcos_luSﬂ/Z.
As u*l the unstable pair ¥3:Y4 and the two elliptic fixed pointé at‘

’(Tricos_1

u,0) coverge to (m,0), and the area of the trapped orbits vanishes
as Ja(cos_lu)2=(1~u)g. | .

The ‘homoclinic orbits ysx(t) between Y1~ Yo andAys—y4 are calculated.
The time‘QariationAof Ygx(t) is given by Q=wg(1—u2)1/2=(wgz—5§)1/2 for u<i.

The dimensionless velocity along ¥1~Yo is Y=ut+cosY<1+u and along Y3—V4 is
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Y=u-cosY<l-u.. The homoclinic —-orbits-: ysx(t) along the long side y;-y, is

given here by

[ ' 1/2
i 14u.1/2 wg(l-uz) t] .
g 1+u ’ <
1) temh] 2 "
442 { |
tan(—7) = < (17)
14, 1/2 w§<u2_—1)1/2t] 1
- - - s u>!
- and is required for the perturbation calculation in the néxt section. The

harmonic motion around the elliptic fixed points ('fri‘cos_1

frequency wb(u)=wg(1-uz)l/2~

A. Two Drift Waves and the Onset of Stochasticity

In the presence of two drift waves (Akl, El’ Wy Akz,ka,wz) we again
use the canonical transformatjon qf the type in Eq. (12; to the wave frame
of the larger amplitude wave labeled 1. In this transformation the new

th

x'=k1xx—rﬂ where rm is the r radial node of the larger amplitude wave. In

the following equations we drop the primes on the new coordinates. The two

wave Hamiltonian is

¢ = ux + sinx cosy + ¢ sin(kx+ta) cos[q(y-vt)] . (18)

where u is defined in Eq. (16) and

u,0) rotates with ..




k k A ' rrk
k = —2x q= 2y @ = 2 o = EX rnk
Ky Kiy Ay Ky
and
@ w . . .
v=—t - L (19)
kzy. iy

The test particle flow is given by

e
I

sinx siny + qp sin(kx+a) sin[q(y—vt)]

-
Il

u + cosx cosy + k¢ cos(kx+d) cos[q(y—vt)] . S (R0) -

To estimate the threshold for the onset of significant stochasticity we
calculate the change in the Hamiltonian by perturbation theory along thaﬂiw
separatrix’oflthe single wave flow from Eqs. (14)-(17).

The change in the Hamiltonian A¢ is given by the Melﬁikov—Arnold

integral

--00

A% = qvp sin(a) [ cos[q(YSX(t)—vt)]dt , (21)

00

where st(t)‘is the trajectory along 122 or 3+4. Clearly, A¢=0 for w"=qv>0
and is exponentially small for w“=qv>>wg. Analysis of the integral (21) is
tedious and is givén in the Appendix. We summarize the results here.

For small u the homoclinic orbits (17) are approximately

~ i -1
Yo (t) = - 2 + 2 tan [exp(wbt)]

and the stationary phase condition ?sx(ts)=v is satisfied for real t_, when
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the frequency of the perturbation satisfies wg=qv. This resonance condition

gives the the-onset of stochasticity criterion

ckaykxhk1 o ko o
B < k.

valid for Aj<<A;. The stochasticity criterion (22) is easily satisfied for
long wavelength drift waves. For O<u<l the stationary phase_integral ié
analyzed in thevAppen&ix.

For comparabie.ampiitude:dfifi_waves'A1~A2‘we find that the threshold

conditiohu(BZ) become generalized to

ckqxAxq . ckoyAyp o (k2 %k

B B‘ - .k&,y kly

Condition (23) for the drift wave problem corresponds to‘£hé‘Chirikov
overlap criterion (e¢1/m)1/2+(e¢2/ﬁ)1/2>|w1/k1—w2/k2] for two longitudinal
wéves.5 When. condition -(22) or (23) is satisfied‘ for drift waves
 stochasticity occufs in bands throughéut the single partiéle phase space in
céntrast to:the longitudinél wave problem.

Fof u<l- the analysis is given in the Appendix. The principal change. is
that the faster velocity along the 1-2 separatrix governs the breakdown of

the invariant torii. The condition for a resonance along 1-2 becomes’

Away from the resonance conditions (22) or (R4) the Melnikov—Arnold integral

becomes exponentially small-

il B - (=3)
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' A¢~exp[—qv/wbi(1+u)]. (25)

In Fig.13 we show the variation of the stochastic .region with varying v

for fixed ¢=A2/A1=0.1 and u=0.5. The maximum velocity along the homoclinic

orbit 1-2 is ﬁmax=1'5f For v=0.2§ to 0.5 the invariant torii along 1—2»‘are
'still preserved. For v=3/4 all fﬁéxinvariant torii appear to be destroyed.
At v=3/4 only small islands éf stability about the elliptic fixed p&ints
remain. For V??max

returned.

Bt:Destruction of the Elliptic Fixed Points

We would like to establish conditions under which the primary elliptic. .

fixed points become unstable. To consider this problem we construct from

the N wave parameter set {g,wk,Ak§ special Hamiltonians which have an exact
elliptic fixed point (%*=0, $*=0). Linearizing the equations of motion
about x*,y* leads to a generalized Hill equatioﬁ for the motion of -6x(t)
about the fixed point. The stability condition on the parameters in #he
Hill equation then lead to the condition for destruction of the. last fixed
points. The analysis.is lengthy so we brieflf summarize the results here.

The idea here 1is to use the result of Schmidt and Bialek9 that shows
for the standard mﬁp model of the surface of section that the critical
parameters for destabilization of the fixed points give approximations for
the destruction of the KAM surfaces and a qualitative understanding of the
diffusion approximation.

Consider the stability of mneighboring orbits 6x(t), 6y(t) about a

stable fixed point kxx*=(n+%)ﬂ, k y*=mm of the principal wave

y

=1.5 approximate invariant torii along 1-2 appear to have.




Aksin(kxx)cos(kyy) to perturbating waves Z p; sin(k; x) cos(kiyy—wit+5i)-
1 .

For simplicity we consider the special. case u=0 and restrict the large class

of perturbating waves {wi'kix’kiy'wi’ﬁi} such that x*,y* remsins an exact

equilibrium of the perturbed problem and the frequencies wg=wi—kiy(wk/ky) of

the perturbations are equal wj{=w". The condition that (x*,y*)=y(x*,y*)=0

: : 1 ' A
yields the constraints z¢1k1x°1“2¢1 iySi =0 where °i=c°S[(n+§)kix/kx] and

si=sin[(n+%)kix/kx].

With these restrictions on the perturbation, the equations for the

neighboring orbits are

“ - N 2
6% o(t)zc ¢1k1Xk1y » Ak+7(t)zsi¢ikjy ox

4 - | | f] o - L (26).

| | ki Ts ok - |
| %y _ | Ak_y(t)gsi¢ikix;3  o(t)Zc 19ikixkiy d L9y

where o(t)=sin(w"t) and y(t)=cos(w"t). Eq. (28) is a Hill stability problem

with the equation for 6x(t) of the form 6x+P(t)6%+Q(t)6x=0 with explicit

expressions for P(t) and Q(t) easily worked out. To simply further the
analysis presented here we further constrain the perturbing wave parémeters
to reduce Eq. (26) to a Mathieu equation. For perturbations with

2
Zsiwikiy=ici¢1k1xk1y =0 the problem reduces to

dzéx
at?

+ 4, (A + cos(2w”t)2 3 ¢1k )éx = 0 - (7)

)2 and

which is the Mathieu equation 6x+(a—RqcosR7)d6x=0 with a=(R24/w"

= 2 wyR
g—ZAZsi¢ikix/(w )<
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For resonant perturbations a=1

2wy =RA=0" | | ' (28)

the orbits are destabilized for an arbitrarily small amplitude pérturbation.
For 2wb=2A<le[ (a<1) the neighboring orbits are stable for
—q2/2<a<1—q—q2/8. A simple estimate of the stable domain follows from

Q.ritS$1—a and yields the condition

% s;oikiy < @ (Zwb — ) ‘ , (29)

valid for a!/®=gw, /|w"| < 1.

In Fig. 4 ‘we- show the results -of increasing the amplitude of the: -

perturbing waves acting on a stable fixed point x*,y* of the type analyzed
here. In this example the Hamiltonian is
k .

o . . 1. | :
¢(x,y,t) = ux+sinx cosy + A[s1nk1(x—xI)— E;s1nk2(x—xi)]cos[q(y—vt)]

with . A=A8/A1. Instability of the elliptic fixed point is observed to occur
at approximately the conditions given by either Eq. (28) or Eq. (29) are
satisfied.

7,18

Additional calculations for the onset of diffusion have been

studied using drift wave maps obtained for an infinite, discrete frequency

N ~+-c0 .

model lim ) cos(nw,t)=Rm ) 6(w,t-2m) for the broad band frequency
N-o N n=—ow

spectra6’10’11 characteristic of drift waves. Although the analysis is
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- complicated --and - incomplete global étochasticity and diffusion appears to
occur when K=kxkyAk/wo>>1.

Even for simpler systems the transitional region just beyond the
critical resonance for the breakdown of the bounding surfaces is‘difficult
to analyze with regard to transport.13 We do not attemptA to analyze the

13

leaky barrier region where a slow, nondiffusive transport is_expected.

IV. THE DIFFUSION_APPROXIMATION
When the 'cohditions for stochasticity given in Sec.:III are satisfied

the phase spacé consists of largé regions from stochastic orbitézahdfsmaller

regions with chains of islands with stable orbits. The presence of small

islends of stability in a sea of stochastic orbits is perhaps the generic:y

" form of the x—y phase space in drift wave turbulence. In this regime it is
an important theoretical assumption to describe the motion by diffusiom.
The basié condition for diffusion is that the particle moving along its
trajéctory g(t) ékéerience a shqrt correlation time T,. The intrinsic
stochasticity.of thg systgm gives rise to thé short correlation time.

The definition of the diffusion temsor follows from ~the formal

integration of the equations of motion
t .
r(t) = é vg (2(ty).ty) aty . (30)-

along the unknown trajectory r(t).
Introducing the average < > over the intial conditioms r(t=0)=r in the
stochastic region of phase space the diffusion tensor is defined through the

limit




2 . t t
<r®(t)> = lim Jdt, [ dt, <vp(t,)vp(t,)>=2t D . (31)
t/'rc-mo 0 1—0 & "wE'"17-E*"2 o )

The approximation <£2(t)>=2t2 is expected to be valid when the correlation -

time Te along the orbit is short compared with nominal orbital period l/wb

where wy=c kxkka/B‘ In terms of 7, the integral in Eq: (31) is estimated

by Dz<v§>7c.' For a general Hamiltonian ¢(x,y,t) we define the action J and

bounce frequency w, through Eqs. (4) and (8). The dimensionless parameter
q b

determjning the'nohlinear regimé of the system is
R=owr =<vl/2 /s - (32)
b'c f E c

where 7, is the correlation time and 6 the spatial correlation scale of the

stochastic Hamiltonian ¢(x,y,t). We assume here that ¢(x,y,t) ist

essentially isotropic in the x—-y plane. The quasilinear regime is defined

by R<<1 where Egs. (30)—(31) give D=<V2E>TC==(62/TC)R2.4 The value of R

determines the average rotation of the phase in action angle variables

according to Eq. (7).

| In the strongly nonl inear regime -R>>1 the trajectories make many
orbital. rotations in one correlation and thus the action integral J is a
good adiabatic invariaﬁt. In this regime there is a diffusion which occurs
in the action wvariable <AJ2>=DJt for time scales long cémpared with the
orbital period 1/wb. In this regime a fraction of the particles croés the

moving separatrices in each correlation time.7 By crossing the separatrix

they circulate in different convective cell moving across the a distance 6

when averaged over Wy - The maximum rate of this diffusion is Dm;GB/Tc.
From computer experiments with two drift waves with Elxgz'; # 0 and

kyA(wk/ky)~wk we find a maximum of the diffusion coefficient for R~1.




To calculate the diffusion coefficient in terms of the Hamiltonmian
¢(x,y,t) we introduce a statistical description of the test particle

distribution function

Np
n(x,t) = ] 6(x-r;(t,r,)) . o (33)
i=1 .
for NT identical test particles with different initial conditions ry- The"

initial coordinates are given by the probability distributioniP(Eo) with

<n(§,t)>=Nde£OP(£O)6(“—£1(t,EO)) with the initial value <n(x,t=0)>=NpP(x).

A simple example 'is shown in Fig.. 5 where the initial distribution has

. NT=50 particles uniformly - distributed in y at X=kX1x=ﬁ/4 as shown in

Fig. 5a. Figures 5(b)—(f) show the surface of sections for the two drift .

wave system

o(x,y,t) = uX+¢1[sinx cosy + coskx cosq(y—vt)]

for increasing values of ¢1 with the parameters u=0, k=v=1, and q=2. The
critical condition (23) for the onset: of global' stochasticity gives
¢,c=Kv/R=0.5. At ¢,=0.4 in Fig. 5(b) the flow is stochastic around the
boundaries of tﬁe convective cells! At ¢1=0;5 in Fig. 5(c) the last
invariant surfaces’ are -bfeéking up. At ¢1=1.0 in Fig. 5(d) there are no
more ihvariant surfaces and no fixed péints with islands visible on this
scale. At ¢,=2.0 in Fig. 5(e) the system appears ergodicvfor the 200
iterations used in these figures. At ¢,=7 in Fig. 5(f) adiabatic islands
produced by the rapid convection have emerged in the flbw. (For irrational
k, q values the adiabatic islands disappear). FigurefS'shows the diffusion
coefficient D for this flow computed from Eq. (31) and averaged over the N

test particles.




For very large ¢; the white adiabatic regions of Fig. 5(f) expand to
form a pattern of mnearly regular convective cells and the diffusion is
reduced. To eanalyze ¢;»» let t’'=b;t then ¢(x,y,t)*¢'(x,y,t’) with
parémeters ¢ =1, u’ =u/e,, f’ = v/¢1 and k' =k, q° = q. In the limit
b o, u’"=v’ =0 so that ¢’»p’(x,y) is integrable and the diffusion
coefficient vanishes. Rather large values of ¢, are required, however, to

~reach this regime as seen from Figs. 5 and 6.

The distribution of test particles satisfies the conservation law

on(x,t) v : .
e pme-glem ol )

since V-XE‘= 0. In the diffusion approximation the average distribution <n>

satisfies

3y <n>= -V°<nXE> = D:V2<n> : (35)

-
-~

whose solution gives <£2>=f§2<n>d§=22t consistent with Eq. (31).

To calculate the correlation function <nyp> in Eq. (35) we find the

response dnSQ to a gradient V<n> through the renormalized perturbation

14

expansion of Eq. (34). Following the well known calculation for the

renormalized response function ggn=(n_quE+iyg)_l we obtain

g0 = 5 ¢QL_~_szg-j<n> (36)
quE+1Va .

with Vﬂ given by




2\ 2
2 J (kyxg+z) <I¢E1w1' >
v, =-Im — /& . (37)
q 2 - wq—Ky Vptiv
B X 0, 17¥1yVEH VK

From Eq. (36) the flux <nyg> is calculafed as

c 2 _
<nyp> = B Y 1zxg¢q6nq = - 2-V<n>
9
where~ ™
' Y- 2
: R (zxq) <|¢qQ| >
D=- = Im - - . (38)
= B an fquE+1ua o

" Equations (37) and (38) determine the diffusion tensor from the spectral
components of the Hamiltoniam ¢(x,y,t)= ) ¢ exp(ikex-iwt).
kw e

The theory leading to D 1is not “exact but is an infinite order

perturbation expansion in. R. The terms retained and mneglected in the

summations leading to (37) and (38) are given in Horton and'Choi.14. In tﬁe
.renormaliZéd perturbation expansion the vaer_of'R~ckq¢k/Buk is  limited even
for large ¢k since the decorreiation rate incréases with ¢k. according to
Eq. (37).

The equations for D confain@ktwo limiting cases. In the preseﬁce of
meny small amplitude waves the correlation time in Eq. (37) is determined by

the dispersion A(Q—quE)>vq rather than the nonlinearity. The diffusion

becomes the quasilinear diffusion

~ L _ 2 L
= gq = <yp>7d

e
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with

Tgl = <|Q—quE|—1> ~ 1/(AQ~AquE).

As R approaches unity the nonlinear decorrelation v EA(Q"quE) determines

9

“the rate of decorrelation and D<D3%. Although notbexact, the equation for

v_ can be approximated to give the estimate

g

2 1/2 '
c .2 2.y 2.1/2 2.1/2
vV, o= k.xgez)"<| o > = <wy.> = <(geV > . (39
g (Bz K L (kyxgez)™<| klwll ) @y, (g°vg) (39)
£1%1, ' : :
for the nonlinear decorrelation rate for R<1. With the  nonlinear

.decorrelation rate uq~<w§>1/2 the diffusion coefficient becomes

2 (2x@)®egl?
p=% I
5B g g

= <v§>1/2/<k> ) ’ (40)

with the maximum diffusion occuring for R~1 where

[4¥]

at R~ 1. - (41)

)
?
4‘&

max

0

For the simple example in Figs. 5 and 6, the predictions of Eq. (39)
and (40) are that 3% = 1/qv = 0.5 with D3* = ¢;6% for ¢;.<<¢,<¢,, and

To = 1/1/q = 3/kqd, with D, = eg¢; for ¢;>¢,,. The transition occurs where

R

Yq

Fig. 6.

kq¢1/3~qv or at ¢1t=3. The measured scaling of DX with ¢1 is shown 1in
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For R>>1 we find the diffusion is less than Dmax which we interpret as
due to the adiabatic invariance of J in regime wac>>1.

The scaling of D for large by reported here appears to contradict the

weakly increasing ¢i/2 dependence found by Kleva and Drake.7 The difference

may lie in the choice of the ¢, spectrum considered in their work and here.
An exact understanding of the discrepancy requires further analysis.
The well known1 scale for anomalous transport produced by drift wave

turbulence follows from Dmax with the estimate of the:- cross—scale

correlation distance as 6~1/<k§>1/2~p and the correlation time .as

Tc=1/Awk=rn/cS. The drift wave diffusion coefficient is then de'
7;1/<k§>~(p/rn)(cTe/eB) times a function of order unity containing the other

dimensionless parameters of the system.

V. SUMMARY AND CONCLUSIONS

The ExB flow of plasma is a d=1-1/2 dimensional Hamiltonian system. In
contrast to the Hamiltonian‘for motion in longitudinal waves where locaiized
velocity resonances occur, each wave in the ExB system acts over the entire
single paftiéle phase space producing a two dimensional array df trapping
~cells. In the'presence of a second perturbing wave stqchasticityv:of the
motion sets iﬁ along the web  of critical contours given by
@b(¢)=8¢/8J~ckxky¢/B~0 which define tﬁe separatricees’ of the integrable
single wave system. |

For the two wave system we derive conditions (22}—(24) for the onset of
stochasticity as shown, for example, in Fig. 3. The onget of stochasticity
is derived from aﬁ analysis of the Melnikov—Arnold integralifor the effect
of perturbatiéns along the critical flow contours defined by wb(¢)=0.

"The onset of stochasticity guarantees +the presence of anomalous




transport but is not sufficient for the diffusion approximation to be valid.
To find conditions for the complete stochastization of phase space we follow
the procedure of Schmidt and Bialek9 of finding the parameters for
perturbations to destabilize robust stablé fixed points.

In Sec. IIIB we derive‘the condition for destabilization of special
fixed points in  the multi—wavé ‘Hamiltonian with the wdve paraﬁetérs
{¢i,gi,wi} chosen to provide an exact stable fiked_point at finite valués_of
the amplitudes ¢i' With a given.freéuencf range Aw=w" the condition (29)
derived for destabilization of the flow is approximateiy 5b2Aw Whére'&b is a
circulation frequenéy in the pefturbing waves. Figure 4 shows how the
entire phase space becomes stochastic as this condition is satisfied. In
this regihe of global ‘stoéhas{iciiy the phase space is mixing and the
averggevmotionlis described by diffusion <£2(t)>=29t.

In the globally stochastic regime the diffusion process takes on '

different forms depending on the strength of the convecton 6b=<w§>1/2 and

1/2

the correlation time 7, through the pérameter R=5ch=?ETc/6-where ?ﬁ=<v§>
and 6 1is the spatial correlation distance of o(x,y,t). For R<1 the '
diffusion occurs in the x,y coordinates and 1is derived in Sec; IV from
renormalizéd _turbulence theory. FSummation of the secular contribution; to
perturbation theory gives the approximate formulas (39) énd (40) for the
nonlinear correlation time and the diffusion coefficient valid for R<1. For
R<1 the diffusion coefficient increases as D=<V§>1/26 reaching the m&iimum
D 0y=0°/T, at R=l.

For R>>1 the convection is rapid compared with ‘thg rate of

decorrelation. In this regime the motion occurs as a shown in . Fig. 1. with

the level contours of ¢(x,y,t) changing slowly on the time scale Teo- The




—23—

adiabatic .invariance of the action forces most of the diffusion to occur
from the process of trapping and detrapping.7

The motion studied in this work is that ofvtest partiéles in a two
dimensjonal incompressible flow. Thé.test particles may be actual charged
particles of ‘the coliisionless plasma or the Lagrangian motion of fluid
elements with a velocity Z=(—3y¢’3x¢) giveﬁ by the stream function ¢(x,y,t).
For drift waves with T;<<T_ the distinction between the fluid and ion motion

is immaterial. For other systems, such as ideal MHD, the test particlés

must be viewed as elements of a fluid field such as mass density. - Ih this

regime the fluid particle does not have the same stream function Hamiltonian _

as the charged partiéles - due to diemagnetic and finite Larmor radius

currents.

Finally, we point out that the test particle may also be an'elemént ofi:

any physical quantity F convected th=atF+z.VF=o by a two dimensional
incompressible flow. Immediate applications are the convection of the
pressure dtp=0‘in pressure gradient driven instdbilities4, fhe convection of
vorticity dtw=0 in éhéared flows, and the convection of magnetic flux dtw=0
in tearing mpdes. In these examples, the anomalous transpoft and diffusion
coefficient derived here produce an anomalous thermal ‘conductivity,
anomalous viscosity and anomalous resistivity, or magnetic diffusivity,
respectively. In this context, .the maximum rate of diffusion Dmédz/fc
derived here for the test particle motion is the same as the widely used
' mixing length estimate for the rate of anomalous transportl The mixing

length level of saturation for drift wave turbulence Axldn/dx|~dn is, in

fact, the R=1 regime with 6=, and 7_=1/Aw.
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APPENDIX

Evaluation of the Melnikov—Arnold Integral

The criterion for the onset of‘stochasticity is based on the magnifude

of integral (21) that gives the change in the Hemiltonian A¢ along the

homoclinic  orbit in Eq. (17).  The last barrier to the onset of

stochaﬁticity is given by the orbit-éonnecting the hyperbolic fixed 'pqints
labeled 1 and 2 in Fig. 2. The equation of motion of the homoclinic orbit
is dy/dt = wg(cosy+u), where wg = ckxky¢/B and u = (w, — kyVE)/wg. For
0 € u<1we define the functions of u
/ . 1—u.1/2 .
wy = wp(u) = wg(l—ug)l/z and R = (EIE) (A1)
with 0 SR < 1.

" The orbit in Eq. (17) may be solved for t as a function of y:

1+Rté.n!2{2!] ’ (AB)

T =wt = 4n
bt " [1—Rtan(y/2)

and the mapping of the t to y plane constructed. The real t axis (—=,+®)

‘maps to [yl,yz] with tan(yl/z) = —1/R and tan(y2/2),= 1/R. The imaginary vy

axis (—iw,i®) maps to the interval (—itl,itl) with ty =A(2/wb)tan—1R. The

orbit and mapping is invariant to t » —t and y » -y.

The integral in Eq. (21) reduces to




A (n,u) = I+” eiky(t)—iw”tdt ' (A3)
—
ﬁhere k is the ratio of the wavenumbers and " 1is the frequency of the
second wave. We consiﬁer the case where " and k are positive, real
numbers. The function exp(—iw"t) is eﬁtire and exponentia1ly deéaying_ for
Im(t) < 0. The function exp[iky(t)] has branch points along the imaginary t

axis found by solving Eq. (A2) for exp(iy) to obtain

(a4) . .

S B (1—iR)eT
Leiy(t) 1+iR-(1-iR)e N
' (1+iR)e"-1+iR
The simple poles of Eq. (A4) are at tﬁ = i(2ﬂn—2tan_1R)/wb and are the
branch points of the integrand shown in Fig. 7.

The dominant contribution to Eq. (A3) arise from the resonance at the

point of stationary phase where

%% = wg(u+cosy) = %: . (A5)

We define‘ys, 0 and {1 by

€

-and ] = — .

5|

cosy = 2 _ u =
S k -

£
(o e}




There are three cases for evaluating Eq. (A3):

(i) yg = teos I(fi/k) for k<<

(ii) y=0 and - t, =0 for 0=

k

k

(iii) yg = if, with B = fcosh™I(f/k) for [f|>k .

We calculate y = wg‘sinyi = (wgw“/k)sinys at the points of stationary phase

and determine the contours of stéepest descent shown as contours Cl’ C2’ and

C3 in Fig. 7 for cases (i), (ii), and (iii), respec

(i) For |fl|] < k, the points df'stationarj‘phase occur at *t. on . the

real axis and the dominant contribution is

2 cos(ws—ﬂ/4) o 1/2

A (Q,u) = . :
©h a(1-f%/k?) /%

where

Q] _

_ ~ 2 ~2\1/2
vy =k cos_l( k+Q+3(k Q%) ]
k Wy

|
Kk+{-R(k2={1%) 1/2

The contribution (A6) increases as {I » k until the

is greater than from §(ts)'

tively.

S

(46)

contribution from §Q(t3)




—29-

(ii) TFor i ~ 12 approximation (A6) fails and is replaced by

R

[ at e—iwg3(1+u)2£3/6
_ 2r(1/3)cos(n/8) 6 1/3
3 w23 (1+u)®

Ap(Q,u)

(A7)

In this case the resonance occurs at y=t=0, where ws=0.

(iii) For @I > k the stationary phase point occurs at

1+iR tanh(g./R) _
Ly tanh(f./2)° Rlag

wbts = 2.
. with tanag, = R tanh(f,/2) and-ﬁS = —cosh({i/k). The stationary phase point t:
is always closer to real t axis than the nearest branch point as shown in
Fig. 7.

The stationary phéﬁe contribution gives

' 1/2
A (0,u) = J; exp(—kﬁs—z(w”/wb)tan_l[R tanh(ﬁs/Z)]) x |- en ] / . (A8)

Wy (R /xR-1)1/2

For {l >> k the result simplifies using Bg = 2n(280/k) > 1 and tanh(f /R) = 1

to

27\-)1/2 20 k-1

.y . ) exp{—z(w""/wb)tan—lR}. . (A9)

a(am) = £
[o]
“y




For the special case u=0 the orbit? 2y(t) is the pendulum orbit and the
result (A9) agrees with that of Chirikov in his Eq. (A.11) with k-m and
tan IR = n/4. For u~+ 1, tan !R =R and the exponent in Eq. (A9) becomes
exp(—w“/wg).

The stationary'phase integrals show that the effective range of the
strong interaction time intervals 7, are given by (i) Tint = 1/(wbw“)1/2,

(i1) Tyng = /(050 )13 and (i11) 7,0, = 1/]07].
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Figure Captions

1.

" Contours of- constant-electrostatic potential, gxg :flow and the

action integral.

Integrable ExB flow in a single drift wave given by Eq. (13).
Effect of 10% secondary drift wave, Egs. (18)—(20), on the
integrable flow as the frequency of the perturbation is wvaried
through the resonance condition (22).

Destruction of the islands in the 'special_four wave system in

‘Sec. IIIB constructed to have a fixed point in the ExB flow.

. Breakdown of the boundinéisﬁrfaces and the,onéet of diffusion as é

function of wave amplitude ¢1 fér the example in Sec. IV.

Measured diffusion as a function of wave amplitude ¢, compared With
the theoretical scalings of ¢? and ¢1 given in Sec. IV.

Contours of integration in the complex t plane used in the

evaluation of the Melnikov-Arnold integral.
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