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ABSTRACT

Particle motién in a slowly modulated waﬁev.as studied. Recent
results for the change in the adiabatic invariant due to separatrix
crossing are used to calculate  the diffusion cpefficient for the
adiabatic invariant of a iéarticle moving in an amplitude modulated
wave. It is argued that the calculated scaling also holds for the case
of a mnarrow spectrum wave field. The present scaling law due to
adiabatic invariant jumps, DJ ~ kDAvg, differs substantiaily from the

resonance .broadening theory result DRB ~ Wg/4/ké/2, where Av¢ is the

spectral width of the phase velocity, and Wb is the energy demnsity of

the wave field.




I. Introduction

A particle under the ‘influenc; of a Hamiltonian with slowly
varying parameters has an adiabatic invariant J to all orders1 in the
slowness parameter ¢. In practice this means  that the phase’ fuhctién
given by the first few terms‘in theladiabatic invariant series is well
conserved except when the particle is ﬁear a separatrix. When the
particle passes through a separatrix, the adiabatic invariant changes
by a discrete amount which has been calculated through order ¢ for the
special. Hamiltoﬁian of Seq.'II in Ref. 2 and for the éeneral case in
Ref. 3. In the adiabatic limit sﬁccessive crossings are uncorrelated
because of the many oscillations that occur between crossings and the
sensitivity of the adiabatic inva;iant change to . the crossing
parameter. Therefore, the result of many crossings is a diffusion-of
the adiabatic invariant.

Tﬁe present work is concerned with the crossing diffusion for a

particle moving in a wave, i.e., H= % p2

+ A(t)cos[koq—w(t)], where A
| and ¢ are slowly varying in the sense that A/A, é << kéAl/z_ >Thatb-is,
the Hamilt&nian changes littlé ih one bounce period. The diffusion is
calculaied for the spécific"véaéé of é beikg constant;
(Best4 'previously calculated the order—c corrections to the adiabatic
invariant for this case.) The diffusion constant scales like .QSAi/Ag,
where ( 1is the. modulation frequency and AI/A0 is the. relative
modulation. The scaling with Q0 agrees with that dedqced by Menyuk.5
This t£eory is also useful for understanding "strong—turbulence”,
by which‘ is meant.the motion of a particle in a stochastic wave field
with a narrow phase-velocity spectrum. For the case of a field with
mean energy density W, = é <A2(t)/k§>, ceniral wave—vectpr ky, and
spectral phase-velocity width’Av¢, it ié well known that quasilinear

6,7

‘diffusion is wvalid provided the spectral - width as sufficiently




——
broad, Av¢ >> ké/ZWé/4. The quasilinear diffusion céefficient scales
like DQL ~ Wo/koAv¢. To handle the opposite limit, Dupree8 developed
a resonance broadening theory that predicts a coeffiéient that
scales like DRB ~ W8/4/ké/2. . However, subsequent analytica19 and

numerical 19-13

investigation have disagreed with this prediction.

The present theory has relevance to at least the particular case
of fixed wave vectbr and fini@e frequency spectra} width. In this case
the prééent theory indicates a séaling of DJ ~ koAyg. This resuli‘ is
qﬁife different from the previous DRB which scales as W8/4 bu£ is
.independént of‘Av¢. Another important differegce between the two
theories is that the present theory predicts diffuéion iﬁ”the édiabatic

invariant while the previous theory deals with diffusion in ‘the

velocity variable.

\

The structure of 'this paper follows. In Sec. II the adiabatic .

invariant‘diffuéion consﬁant is calculated for a particle in an
amplitude modulated wave. In .Sec. II1I the relation of this problem to
the problem of "strong turbulence"” as discussed and the scaling of the

general diffusion constant is given.
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II. Diffusion in an Amplitude Modulated Wave
A. Definition éflthe pfoblem |
The problem of interest 1is the motion of 'a particle with
Hamiltonian,

H(q.p.t) = 2 p° + A(t)cos(a) , © SN Y

R

where A(t) is slowly varying in the sense that

1 dinA

«< 1 . ' (2
wg dt ) (2)

In this expression wy = AIZB is-theboscillation frequenéy of a deeply
0 ce o .

trépped particle. Note that we have chosen units such that‘ko = 1.

In this situation.the adiabatiqwinvarianthris well - conserved---for. -

particles not near the separatrix. The adiabatic invariant is given by

a seriesLI

I e P L e ' , o (3)

with terms ordered in the  slowness parameter of (2). Following

previous convention,z’4 the lowest order term JO is teken to be the
action for untrapped particles and half the action for trapped

particles. This way JO is a continuous function. The action,

I(H,t) = § p(aq.H,t)dq , | (4)

is the phase—space area enclosed by an orbit of the frozen Hamiltonian.

For later reference we define the separatrix action,
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Isx = fiﬂdq p(q.=a) = 8al/2 | (5)

and a particular slowness parameter,

dnl . |
1 sSxX A
— . o (8)

B. Adiabatic invariant jumps
While the adiabatic invariant is well conserved when é'pérticlé
is not near the separdtrix, it is poorly conserved when the pafticlé is

at or near the separatrix. Recent calculations for the present

1 3

specific case and a much mére.general case show that J changes by
an amount of order ¢ when the particle crosses the separatrix. The
results of these authors follows.

Particles 1lying on the line q=0 (see Fig..l) get trapped before

they complete their next oscillation, i.e., come close ‘to (p=0,: x=2mn),

if their emergy lies in the range,

A < H < A+Ah

where bh = - I . - (7)

The change in the adiabatic invariant due to separatrix cfossing is

-,

given by

Al = —eJ _ In(2sin|nh/Ah|) (8)

~ where h=HA. (9)




C. Statistics

To determine the mean and mean—square changes in J one must
know how particles are distributed in the»variable h. Before crossing,
the particle distributibn is assumed to be slowly varying/ in the
adigbatic invariant and uniform in the conjugate angle variable. Then,
in the small region shown.in Fig. 1, the density can be. taken - to be
uniform. This allows us to find the number of particles crossing the
line g=0 between p and p+dp by simply'calculating~the flux;

' 1
An = nopdp At = = nodh At

av]

Since the probability demsity p(h)dh 1is proportional to ~An/At, we

find

o(n) = |an|™1 - (10).

where p is normalized according to

|ah| N
fo p(h)dh = 1

That is, the probability density is uniform in h.

With this result we can calculate the mean action jump,

J = /O dh p(h)al(h) ,

" and the mean—square action jump,

207 I(I,Ahl an p(h) 81%(n) .




We find

AT =0 (11a)

and MR = (ne 1,)%/12 . B . (11b)

D. Diffusion Coefficient
These results can be the diffusion boéffiéient for a particle

in an amplitude modulated wave,

A(t) = Ay + A;sinQt. .

In this situation the separatrix actaon oscillates in the range, -

.o1/2 1/2 o .
BlAy-A, | < Iy, < BlAgHA, | . (12)

It is assumed that A1 < AO. - Thus, particles with adiabatic invariant
in the range (12)-continuglly cross and recross the separatrix.

Each time the partiéle\ crosses the separatirix, the adiabatic
invariant changes by a small amoun£. fThe successive crossings are
uncorrelated inv £he limit Q<< oy for two reasons: (1) The jump
depends sensitively on the crossing paremeter h. (2) The particle
motion undergoes mény oscillations between crossings. Thus, the

diffusion constant is given by -adding the effect of wuncorrelated

changes,

v AJ% : - (18)

o
[
0 fe
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where v = I/ is the crossing rate. (There are two crossings per
modulation period 2ﬂ7Q.) | |
Combining Eqs. (6), (11), and (13) and solving for A in terms of

A= (ISX/S)B, we find the coefficient for adiebatic invariant

diffusion,

D(J) = 2ra{A% - [(J/a)z—Ao]z)/(i/B)“' : (14)
We see_thap Fhe mdximum value of the diffusion coefficient is
b, = 2mnd(a,/ag)? . | (15)

ma

Furthermore, we note that D diverges at J=0 when there is full

meodulation, A; 2 Ag. For these particles the theory breaks down

because the theory of a single jump loses #alidity since the smallness
parameter ¢ of Eq. (6) is no longer small when the amplitude vanishes.
Even so the diffusion constant is still valid for a large -—class of

particles, those having

J > 8(QA/2)1/3 ,

where A is a typical value for the amplitude.
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III1. Application to Narrow Spectrum Stochastic Fields
The present théofy is:'useful for understanding the motion of
particles in narrow spectrum stochastic fields. In this case the

relevant Hamiitonian is

w4 vi(x,t) ,

0 =

for which the force is defined by

Previous work dealt with an electric force aéting on a particle of mass
m. To relate this discussion to those, one simply replaces F by eE/m.

A stochastic force 1is described by its correlation function,
<F(x,t)F(x",t’)>, and various other statistical moments. For the
present case of homogeneous, stationary turbulénce the correlation

function depends on only x-x’ and t-t’, and so the spectral density,

Fk,w) = [ gﬁ gﬁ eTIKEHOT by )F(xhE, t=T)> |

is independent of x and t. For scaling purposes we assume that ko and

wg are typical values of the wave vector and frequency in the support

of %, while Ak and Aw are the spectral widths. We further define

Wy = = [ dkdo & (k,0) = % <FR(x,1)> .

QI =

In the case of an electric force, Wb would be the mean energy density

of the electric field.
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The result of quasilinear theorys’7 is that particles diffuse in

momentum space with the quééilinear diffusion constant,

Dor(v) =7 [ &k F(k.,kv) , (18)

provided
K5 av >> W, | ()

where Av, is the width of‘DQL(v). That is, the phase velocity spectrum
must be sufficiently broad. In terms of kO’ Av¢, and WO, the

quasilinear diffusion coefficient scales like

Resonance broadening theory8 was _deve1oped io work outside the
validity range (17) of quasilinear theory. Resonance broadening theory
states that particles diffuse in velocity space, but the diffusion
coefficient is modified outside the validity range (17). In the narrow

spectrum limit,
K Avh << W, o - (19)
it scales like
Dpg ~ wg/4 k51/2 . (20)

As a case study of diffusion we consider the potential

V(x,t) = A(t) cos[kox—¢(t)] ,
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where A and ¢ vary stochastically. In terms of the spectral function
&(w) = kg / gl e 10T <A(t)ei¢(t)A(t+T)e_i¢(t+T)> ,
Il .
the spectral density of the corresponding force is given by

Flk0) =5 EW)s(kky) + 7 E(-w)o(keig) .

B =

(One can show that for stationary turbulence &(w) is real.) This model

is special in that only single wave vector is present. Nevertheless,

as this model contains a phase velocity spread, quasilinear theory and’

resonance broadening theory should apply.

Now in the narrow spéctrﬁm.limit a thebry analogous to that of
Sec. Il should apply. In the naerW'specirum limit, ‘one can use a
Galilean transformation to go to the frame in which &(w) is centered
around w=0. In this frame the characteristic fateé of change afe

roughly given by the spectral width,

dinA dp ldzgll/z

dt dt at®

~ Aw .

With the narrow spectrum limit (19) this implies

2 1/2 1/4
dinh dop - dg T << Ky <AR(1)>

dt ' dt 2 ~ G -
dt

where~50 is the typical bounce frequency. Thus, the narrow spectrum

limit 1is one in which the adiabatic invariant is well conserved except

~during separatrix crossings.




Unfortunately, the calculation in Sec. II of the diffusion
coefficient cannot be applied directly to'the present case since that
calculation assumed ¢=O; When.é is nonzero new processes are present,
and the statistical descriptions become much more complicated. An
example of a new process is shown in Fig. 3, in which a particle is
trapped when the-phase velocity is at a positive fluctuation, ¢ = +Aw,
and detrapped when‘the phase velocity is at a mnegative fluctuation.
Nevertheless, vthese additional processes yield contributions to the

adiabatic invariant diffusion of order
Dy ~ kinw® | (21)

as was found in Sec. II. Thﬁs, we infer the scaling law (21) for the

adiabatic invarignt diffusion in a narrow spectrum stochastic field.
This scaling law is completely different from that of resonance

broadening theory. Résonance broadening theory predicts a diffusion

constant depending on .the spectral energy but not the spectral width

(20), whereas the present has the opposite behavior.
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Fig. 2
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Figure Captions

Phase flow near the x-point of the Hamiltonian. Particles
with H—-HSX < Ah are trapped before they complete their next

oscillation.

Separatrix action versus time. Particle with adiabatic
invariant J between min(ISX) = BIAO——Alll/2 and
mak(ISX) = BIAO+A1|;/2 experiences a change in the value of J

at crossing times‘t1 and t2‘

New process present when ¢#0. In Fig. 3a the separatrix is

centered at v=p = kOAw and growing so that a particle bécomeS»

trapped as shown in Fig. 3b. Then the separatrix remains
constant in size but moves down in phase space carrying the
particle with it as shown in Fig. 3ec. Finally, in Fig. 3d

the separatrix shrinks in size, releasing the particle.
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