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SHEAR-ALFVEN DYNAMICS OF TOROIDALLY CONFINED PLASMAS

R. D. Hazeltine and J. D. Meiss
Institute for Fusion Studies
The University of Texas

Austin, Texas 78712

Abstract

Recent developments in the stability theory of toroidally confined

~plasmas are reviewed, with the intention of providing a picture

ccomprehensible to non—specialists. -The review considers a classs-of.

low—frequency, electromagnetic® disturbances that seem especially
pertinent to modern high-temperature confinement experiments. It is
shown that such disturbénces are best unified and understood'through
consideration of a single, exact fluid mcment:. the shear—Alfivén law.

Appropriate  versions of this law and its corresponding closure

" relations are derived: — essentially from first principles — and

applied in a variéty of mostly, but not exclusiﬁely, linear contexts.
Among the specific topics considered are: flux coordinates (including
Hemada coordinates), the Newcomb solubility condition, Shafranov
geometry, magnetic island evolution, reduced MHD and its
generalizations, drift—kinetié electron response, classical tearing,
twisting, and kink instabilities, pressure—modified tearing instability
(A—critical), collisionless and semi—collisional tearing modes, the

ballooning representation in general geometry, ideal ballooning
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instability, Mercier criterion, near—axis expansions,
stability region, and resistive and kinetic ballooning

fundamental importence of toroidal topology and curvature

the second

modes. The

is stressed.
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I. Introduction
A. Topic and Objectives
This. review is addressed to plasma physicists, to students, and
to other scientists who are curious about recent developments in
magnetized plasma theory. Its subject’ is the basic physical ideas
underlying a class of plasma motions of special importance to toroidal
plasma confinement.

For the sake of wide accessibility, we have tried to make the
review as sélf—contained as possible.  In fact the reader is presumed
to have no more than a mild acquaintance with elementary plasma theory.
However, we have not attempted any detailed discussion of the relation
between theary and the experimental controlled fusion program. .Sﬁch
. discussions are available elseﬁhere (see, for example, tl]).

In mentioning plasma motions we of course have in mind primarily
unstable motions. Yet the review is not ‘restricted to linear
instability theory. While most of our detailed results are linear, the
basic concepts pertain noniinearly aﬁd are developed in a general
context. Moreover we review in some detail equilibrium theory, the
derivation' of vnonlinear models, and certain nonlinear conclusions.
What is ﬁmittéd, most importantly, is any discussion of plasma
turbulence: all ‘the motions we consider are coherent.

Specialists would describe the instaebilities under considération
as a variety of tearing modes, interchanges and ballooning modes. Such

disturbances are believed to importantly affect the observed

confinement in wvarious experimental devices, including tokameks, .

stellarators and the reversed—field pinch. They have in common the

following properties: (i) they are slow, in a technical sense which
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will be described; (ii) they are electromagnetic, in the sense of
crucially involving perturbation of the magnetic field; (iii) they
cannﬁt, in'general, be described adequately by ideal (dissipationless)

models; (iv) they are critically affected by toroidicity -of the

confinement geometry — at least by toroidal topology, if not by both

topology and the magnetic field curvature necessarily present in a

torus.
The major theme of the review is that plasma motions of this class

are best understood from a single, unifying point of view. Indeed,

they are rélated so closely that a discussion of any one member (such -:

as the "modified tearing mode"”) inevitably raises issues specifically

pertinent to another (such as the "resistive ballooning mode"”). Their

cunification is manifested in particular by the fact that cruciad

features of all can be understood in terms of a single equation. We
call this equation the "shear—Alfvén law", essentially because
shear—Alfvén waves are its most elementary prediction. Our premjse is
that any sufficiently slow, electromagnetic disturbance of a toroidal
plasma is fundamentally constrained by shear—Alfvén dynemics.

The following section attempts to outline thé central physi¢és of
the shear—Alfvén law and this review. Its anticipatory discussion may
be opaque to non-specialists, but still perhaps useful as a survey of
the issues to be studied. We remark that a much more detailed and
concrete version of the following outline can be found in Chapter III;
readers iﬁpatient to see the explicit shear—Alfvén law, for " example,

will find it there.
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B. Shear-Alfvén Motions
Shear—Alfvén motions result from a competition between two
types of physical circumstances, geometrical and dynamical.

The geometrical considerations pertain, first of all, to the
nature Aof plasma confinement in a torus, which is characterized by a
sequénce of nested toroidal surfaces wound by helical magnetic field
lines.i When the  average Winding number, or field line pitch, is
rational, the field line closes on itself after sufficiently many

circuits of the surface; for irrational winding number the field line

trajectory 1is quasi—periodic and ergodic on the surface. The
prevalence of magnetic "shear” — a change in pitch from one surface to
the next — then leads to ‘a construct familiar from Hamiltonian

dynamics: .-the singular yet ‘dense occurrence of rational tori amongsitzra

background of ergodic surfaces [2].

Rational surfaces become dynamically important because of a seéopd
geometrical - ¢onsideration, involving scale—length separation. The
point is that slow disturbances are typically Astable unless their
variation along the local magnetic field is much weaker than variation
in other directions. Thus the important perfurbationS“bare stretched
out along .the field Vlines. The "aspect ratio” associated with such

stretching provides an ordering parameter of fundamental importance,

even in nonlinear theory. Its main significance is that infinite
stretching — constancy along the direction of the confining
field — allows no variation on a magnetic surface whatsoever, if field

lines on the surface.rare ergodic. Thus, if they are not uniform on
every toroidal ' surface, the slow, stretched motions will tend to be

centered in some sense on rational surfaces.
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—8—
The salient dynamical features of the shear-Alfvén law include
plasma inertia as well as terms involving the plasma current density.

Inertia appears primarily in the form of plasme vorticity — as in the

vorticity equation of conventional fluid dynamics, which the

shear—Alfvén law generalizes. O0f course the curreht—density terms
repfesent electromagnetic forces. Since the lowest magnetic energy
state corresponds to the vacuum field, these terms provide

electromagnetic "free energy” which is available in principle to drive
various instebilities.
To get a sense of how geometrical and dynamical considerations are

combined in the relevant motions, we first consider the steady-state

shear—Alfvén law, neglecting inertia. The corresponding balance 'of"

"electromagnetic forces plays an-important role in equilibrium theorny’

but also, in view of the relatively slow time scales of interest,

applies approximately to non—-equilibrium situations. The geometrical

considerations become relevant at this point: one mnotices that the -

steady—state equation is in general singular on each rational surfdce.’

In equilibrium theory the singularities are removed by imposing on

the forces a certain solubility condition. Essentially one requires’

the coefficient of each singularity to vanish. For all but highly
symmetric equilibrium geometries, the solubility condition is far from
trivial to satisfy; it is rarely satisfied, even approximately, in the
non—equilibrium context. Thus rational surface singularity plays a key
role in all studies of shear—Alfvén evolution.

»AFailure to satisfy the solubility condition leads generally to
local change in the magnetic field topology: magnetic islands form,

similar to those arising near rational tori in Hamiltonian theory. The

B o B G T T [R1110 [ EREEEEEAS A 1 & SRt



—9—
width of a magnetic island effectively measures the degree to which the
solubility condition has been violated. Linear theory applies when
island widths are neéligibly small; then the singularity is resolved by
including, in a narrow toroidal annulus enclosing each relevant
rational surface, the inertial terms in the shear—Alfvén law. In this
way, divergence of the parallel wave length at the rational surface

leads to a boundary-layer problem. It also requires enlargement of the

theoretical description, since the boundary-layer structure is not.

determined by the shear—Alfvén law alone.
We defer until later chapters discussion of the . layer structure,
but a related issue, boundéry—layer dverlap, requires mention here.

Depending on its harmonic content, a given perturbation ,will have

singularities on several or even many rational surfaces (i.e., on.each .

.surface at which it fails to satisfy the solubility conditions). The
singular surfaces corresponding to a given mo&e are , called
"mode—rational” surfaces; they are not dense, but separated from each
other by some finite distance, A. This observation leads to an
important eigenmode classification: perturbations for which A exceeds
the width of a typical boundary layer have disjdint:layers; in the
contrary case layers centered on different surfaces stronglf overlap.

We shall see that the degree of overlap depends mainly on plasma
pressure: as the pressure increases, interesting instabilities ére
more likely to involve significant overlap. The reason is not any
effect of pressure on layer widths, but father the interaétion between
pressure gradients and toroidal,curvature; Such "interchange' forces,

which are explicit in the shear—-Alfvén law, favor richer harmonic
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content and smaller A, even at the expense of increased variation along

the confining field.

It is not surprising that the mathematics of linear stability

depends critically on boundary-layer overlap. When layers are well

separated, each can be analyzed more or less independently (although
they are strictly independent only in the absence of curvature). The

resulting formalism resembles theories of shock—front structure in a

fluid, with dissipative layer widths and asymptotic matching

conditions, modified by certain details of plasma physics. The

opposite, overlapping case requires a more elaborate and general

treatment. In a sense, one considers the mode-rational surfaces as .

' analogous to a crystal lattice; the linear ‘problem is  to find that

combination of lattice-excitations whose;en?elope yields an eigenmode::

The preceding remarks sketch a framework fof the understanding and
analysis of shear—Alfvén‘motions. The framework is obviously mnot our
invention. The literature shows that a formalism based on shear—Alfvén
time scales, solubility conditions, stretched perturbations, boundary

layers, overlap and so on — what might be called the "low—frequency

orthodoxy” — has been used widely, if not always explicitly, for many -

'years. It is a framework of proven theoretical power, and one which we

intend to codify and explain.

C. Synopsis
Chapter-II established such fundamental equilibrium concepts as
magnetic flux surfaces, ‘“rotational transform” (measuring field-line
piteh), and magnetic shear. It provides a self—contained treatment of

the various coordinate systems used to study toroidal plasma dynamics.

T
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Perhaps most importantly, Chapter Il points out the occurrence, in an
equilibrium context, of rational—surface singularity. The
corresponding solubility conditions are discussed in some detail.

The derivation of the nonlinear shear—Alfvén law is presented in
Chapter III, together with a bréad discussion of its features. . Most of
the central issues of the review are at least mentioned in this
chapter.

A direct attack on the exact shear—Alfvén law, with appropriate
closure relations, is hopelessly complicated and not instructi%e. The
problem is that the essential physics becomes hidden by a plethpra of
terﬁs, whose relative magnitudes are often disparate'but not trivially

estimated. Therefore, in Chapter 1V, we depart from the main line of

argument in order to derive approximate, more  tractable, dynamical. -

descriptions. Thus we consider the closure relation obtained from
(simplified) kinetic theory, as well as a variety of “reduced” fluid
models. While derived primérily for'the sake of later application,
these compact descriptions have considerable intrinsiec interest; in

particular, the fluid models are widely used in the interpretation of

tokemak experiments. The derivations are intended to clarify the

physical processes represented by various terms, as well as permitting
somé assessment of a given model’s accﬁraéy.

We noted above that shear—Alfvén ~motions occur in two Dbroad
categories: those with well-separated boundary layers and those who
boundary layers overlap. The non—overlapping category is_ the subject
of Chapter V. Begihning with the simplest, "hydrogen atom"”, case — a
fluid-model layer with mnegligible plasma pressure — we find the

dispersion relations for a variety of tearing instabilities and other,

T
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closely related, modes. The model is then enlarged, first to include
plasma pressure and next to allow for the more complicated closure
relations that become pertinent'at longer mean—free—path. While the
ejgenmode equations  are derived and discussed with care, the
corresponding dispersion relations’are usuelly obtained from heuristic
arguments, _ emphasizing  physical ideasA'rather than mathematical
technique. Finally, Chapter V considers the nonlinear evolution of a
coherent (single helicity) boundary layer.

The case of overlapping boundary layers is studied in Chapter VI.
It is most easily treated using a relatively new technique, the
"ballooning formalism". The requirements of large perpendicular

wavenumbers and toroidal periodicity are satisfied by an eikonal

‘representation, in which modes on neighboring rational surfaces:are. -

'aséumed to have nearly equal amplitudes. Beginning with a formaf
treatment in general toroidal geometry, we show how the béllooning
reprgsentation separates the three—dimensional problem into an ordinary
differential equation along vthe magnetic field lines, followed by a
global eigenvalue condition for the perpendicular structure. The local
equation cén be solved in both the Ilimits of strongly and weakly
overlapping layers. The resulting flows are more or less ‘like
aneurisms on the magnetic surfaces, from which the term "ballooning"
springs. Finally, the complications introduced by closure relations
are .discussed. While we would prefer to close this chapter, like the
last, with a discussion of coherent nonlinear effects, this important

problem has not yet received sufficient attention for review.

T
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II. Locél Equilibrium Theory
A. Introduction
Magnetic confinement is inconsistent with thermodynamic
equilibfium. A magnetically Qonfined plasma can at best approach
mechanical equilibrium, in which the dominant fluid forces

approximately balance. Sufficiently isolated plasmas are characterized

by & nearly scalar pressure, P, so that force balance is expressed, in

Gaussian units, by

I xB = cW : : (2.1)

where B, the magnetic field, satisfies

and where

1= (c/4m)V x B (2.3)

is the current density.

Equation (2.1) neglecfs anisotropic contributions, ug to the

stress tensor. Such contributioné are not negligible in open syétems
("magnetic mirrors”) or in closed systems with externally driven
anisotropy (such as may be associated with certain plésma heating
schemes). Even for completely isolated plasmas,_ 1\ ‘does not vanish;
rather, it is émaller than P by at léast one power of the ratio

(typical particle Larmor radius/system scale—length). Nonetheless our

T
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analysis, which is closely based on early work of Kruskal and Kulsrud
[3], treats Eq. (2.1) as if it were exact.

"Confinement’ can be taken'to imply that the surfaces of constant
pressure are closed, nested, and reasonably smooth. It is evident from

"Eq. (2.1), or

that the field lines lie in th¢ constant pressure surfacés, and this
fact (with the assumption that B does not vanish within the confinement
region) requires each surface to‘be a topological torus. In other
words, a magnetically confined plasma is characterized by é set. of

nested toroidal surfaces containing the lines of force and on which. the

plasma pressure is constant. Because the surfaces consist of lines of

force, they are called magnetic surfaces or flux surfaces.

Thebinhermost flux surface is evidently a single toroidal 1line,
called'bthe magnetic axis. The other, nondegenerate, surfaces occur in
oﬁe of two different types:

(i) periodic surfaces, on which each field line closes upon itself
éfter one or more circuits of the torus;

(ii) quasi—periodic surfaces, which are covered quasi—-periodically
by a single field line. That is, a particle moving always parallel to
B eventually comes arbitrarily close to any chosen point on the flux
surface.

An extreme example of the periodic case is +the bumpy torus

configuration in which, ideally, every surface is of type (i), with




closure occurring after a single toroidal circuit. In more common
experimental devices, a typical flux surface is quasi—periodic.

Of course a flux surface configuration is determined both by
currents flowing in external conducpors and by plasma currents. The

relative importance of plasma current differs in different machines.

Thus stellarators possess quasi—periodic flux surfaces in the absence

v J
of plasma current (vacuum flux surfaces), while tokamaks, for example,

depend crucially upon plasma current to provide ergodicity. The point
is that tokamaks are axisymmetric (symmetric with respec£ to rotatjon
about the major toroidal axis), and external coils in an 'axisymmetric
device cannot by themselves produce ergodic, toroidal flux surfaces.

In addition to the periodic and'qUasi—periodic cases, there is a

‘third possibility: the magnetic field lines might ergodically fill¥.a -

three—dimensional region. This case is pathological, in that any
ergodic volume could not support a pressure gradient. Yet arguments
from the Hamiltonian theory of Kolmogorov, Arnold and Moser [2] show

that small ergodic volumes are certain to - occur, unleés the

configuration 1is rigorously axisymmetric. Fortunately.it is possible -

to design asymmetiric systems in such a way - that the ergodic regions
occupy a manageably small fraction of the total plasma volume. This
issue is instructively considered by Grad [4].

In the remainder of this 'séction we assume that any .ergodic
regions have negligible volume. We also ‘exclude from detailed
considération'the purely closed field liné case. Thus we bqnsider
magnetic qonfinement systems with nested flux surfaces, almost evefy

one of which is ergodically covered by a single magnetic field line.

T
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It is useful to distinguish two kinds of equilibrium studies:

1. Global equilibrium'theory attempts to calculate g(g) throughout
the confining region, wusing Eas. (2.1)—(2.3), appropriate boundary
data, and knowledge of the pressure profile. Especially for
three—dimensional (asymmetric) geometries, such calcﬁlations are rarely

tractable analytically and always device—specific.

2. Local equilibrium theory, on the other hand, studies conditions

"in the «close wvicinity of a single flux surface. One considers, in

particular, how quantities such as B = |§I, or. some componeﬁt of J,
vary on a given surface. The variation of field quantities from one
surface to another is conveniently parametrized, but not predicted.

We restrict our analysis to local theory. The point is that our

.main - .interest is not in equilibrium theory by itslf, but in stability, -

and a widé class of plésma stability issues depend critically upon

conditions near a single flux surface.

B. Toroidal Coordinates

1. Flux coordinates

Smoothly varying coordinates on a toroidal surface are

necessarily angle coordinates: multivalued functions of position,
which change by fixed amounts when either the magnetic axis or the
major toroidal axis is encircled. We denote these angles by ¥ and ¢;
¥, the poloidal angle, is assumed to change by 27 on any closed path
encircling the magnetic axis, and to be 'single—valued on all other
paths. Similarly, the toroidal angle, ¢, changés by 27 only on

circuits of the major axis. We assume that the functions 0(3) and ¢(x)

i
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are suitably smooth. Any ¥ and ¢ having these periodicity and
smoothness properties are called '"good"” angle variables.

A third, "radial', coordinate, F, 1labels each surface and is

constant on it

BoVF:O, . (25)

but varies smoothly from surface to surface. We call any such function
a flux—surface label; an example is the plasma pressure, P.
Notice that any two sets of . good angle variables, (¢,¢() and

(0",¢°), are related by

B =9 + gl(F"a’()

]

{/

where the functions g4 and gs must be &m—periodic in ¥ and ¢.
Next consider the magnetic field. It is not hard to show, from

Eqs. (R.1)—(R.3), that B can always be expressed as [3]

B=VF x VG ‘ ' (2.7)
where G(F,?¥,¢) has the form
G = ay (F)v-ag(F)¢ + Go(F,,¢) . < (2.8)

Here oy and Ag depend only on F, and the function G0 .is an arbitrary
periodic function of ¥ and ¢. The form of Eg. (2.8) is determined

essentially by the requirement that B be single—valued.

¢+ gg(F,ﬂ;c) | | (2.8)

7
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We emphasize that Eqs. (2.7) and (2.8) pertain for arbitrarily
chosen (good) angle variables and flux label. Various simplified
representatiohs for B are obtained by suitably rgstricting the
Qoordinates. The most important restfictéd coordinate set is obtained
from (F,¥,¢) by the replacement ¥ 6f =3 + Go/al, which 1is clearly

permitted by Eq. (2.6). It is also convenient to repiéce F by x(F)

where dx/dF = 05. The result can be written as

Vx x V(qﬂf—s‘f) . (2.9)

sto
It

This "flux representation” for B differs from the - general
representation of Eq. (2.7) mainly in that the Go'ofvEéf—(z.B) does not
appear. Coordinates (x,ﬂf,{f) which yield this simplification are
called flux coordinates. The signifiéance of the quantity q(x) will be
considered presently.

Equation (2.9) suggests a natural decomposition of B into poloidal

(Bp) and toroidal (Bp) components:
<P T

B=2B + B,

Bp = V¢ x VX', Bp = qVx x Vo (R.10)

fhe quantities x and qﬁf - ff uniquely specify an individual field
line; just as xy is the flux surface label, qds — g is sohetimes called
ihe field line label.

Flux coordinates are evidently not unique; in particular, we have
"yet to specify the toroidal angle. Two particularly wuseful flux

coordinate sets are symmetry coordinates, denoted by (x,ﬂo,fo), and
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Hamada coordinates, denoted by (x,ﬁH,gH). The first set requires
axisymmetry; one chooses ¢{ such that V¢, ¢ Vﬂo =V¢g * Vx = 0. Hamada
coordinates, which ao not depend upon symmetry, are chosen such that
the inverse volume element Vy « Voy x V¢y is a flux label. Both
systems are developed in some detail below.

Not all useful coordinate systems are flux coordinates. For
example, Shafranov coordinates, (r,ﬂs,qs), satisfy only Egqs. (2.7) and
(2.8), rather than Eq. (2.9). This system nonetheless simplifies the
study' of ‘large aspect-ratio axisymmetric confinement; see for example
[5]. . The reduéed coordinates of Chapter IV are also not flux
, coordinates.

In constructing and using the'vgfious cobrdinate>§YStems, we will
omit identifying subscripts whenever itvis' clear from context which
system is under consideration.

Finally, notice that most of the useful coordinate systems are not

orthogonal. Thus products like Vyx ¢« V8 cannot be presumed to vanish;A

€. Rotational transform

Consider the flux surface, SF, labelled by F, and let ¢ and {. be
any good angle variables on the surface. We cut the torus by a
constant—¢ surface, S(’ in order to create a volume, #(F), bounded by
S¢ and Sp, inside of which ¢(x) is'singie—valued. The magnetic flux

through S< is called the toroidal flux and denoted by

w,i, =/ ds +B (2.11)
P = »

where dS is the vector surface element. It should be evident that Y7

TiT
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~is independent of the choice of angle coordinates, and is in fact a
well—-defined flux label.

A more convenient expression for WT is given by
eryp = [ ax V¢ + B . (2.12)

The equivalence of Eqs. (2.11) and A(2.12) can be seen by applying

Gauss’ theorem to Eq. (2.12), which can be written as
ey = [ dgV . (¢B)

Notice that Gauss’ theorem is applicable omly because of the cut, i.e.,

the integrand must be single—valued. The surface of % consists of SE’

“which clearly cannot contribute, and both sides of S¢, acroés which*{j

chanées by 2n. Thus one obtains Eq. (2.11).
Similarly, the flux through a constant—¢ surface (ribboﬁ) is the

poloidal flux, yp. It can be written as

eryp = [ dx V8 « B ‘ (2.13)

and is also a flux label.

- The rotational transform is defined by

dy .
¢ = Rm ——B~. (2.14)
dyp ,

It measures the average winding number, or field line pitch, on a flux

surface. Consider the successive intersections of a single field 1line




with the "surface of section”, Sf' In general, each intersection'wili
occur at a- differenmt <; the change in 9 between successive
intersections need not be constant, but the average change; affer many
toroidal circuits, converges to ¢ [3]. In other words : equals the
average change 1in poloidal angle when a field line is followed over a
complete tofqidal circuit. From Eq. (2.14) and the properties of Yp
ahdb Yp,» it is clear that . is independent of the choice of angle

variables, and that it.is a flux label.
Let us spgcializé to flux coordinates. We substitute Egl (2.9)

into Eq. (2.12) to write the toroidal flux as

2WWT = f d3§ qVx x V@f * V(f

\

This expression simplifies because of the geometrical identity

g3y - _dxdede (2.15)

= Vxe (VoxVe)

which ~ gives the Jacobian <(volume element) for any right-handed

coordinate set (x,ﬂ,{). Thus
Yp = (27v)_1 é dv; d¢s fF dx q .

Here,

1t

2m _m
§ av, d¢g fo ddg fo dés (2.18)

and

TN YT
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Since g is a flux label, we have
Yp = 2r jF dx q(x) . (2.17)
We can similarly compute

Yp = 2n ]F dxy = 2n x(F) . (2.18)

Thus the flux label x 1is simply related to the poloidal flux.

- Furthermore, Eq. (2.17) shows that dyp/dx = 2mq, or

=q=%1 (2.19)

The quantity gq is called the safety factor. It is an alternative
measure of field line pitch which will be used, instead of ¢, in most
of this rgview.

FA naive measure of field line pitch is the ratio d¥/d¢, where d®
and d¢ (not necessarily flux coordinates) are measured along the field

line trajectory:

[ve)
<l
(S

ds
d¢

|$

st
.
<]

e

This quantify depends upon .the choice of angle variables and generally

varies on a flux surface. Thus, if the cut toroidal surface is
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unrolled, the field lines on it are not generally straight. Suppose,
however, that flﬁx coordinates are employed, and that the wunrolled
surface is deformed into a square on which the lines of constant %, and
(¢ form a Cartesian grid. On this surface, the field lines will be

straight, because Eq. (2.9) yields

Wy BV
dds §°V€f a(x)

(2.20)

Equation (R2.20) expresses the major advantage of flux coordinates,
which are sometimes called “"straight field-line coordinates”.

Equation (2.20) also shows that the'field lines on a surface with
rational safety factor must be closed. Thus if q =m/n, a field line
starting at x will return precisely to x after m toroidal cigcuits
‘(Aﬂ = 2rmm/m A¢ = 2m). Thus these rational flux surfaces are
necessarily periodic surfaces. Conversely, when q.is irrational, which
_is the +typical case, the poloid&l and toroidal periods are not
raiionally related — the field line is quasi—periodic — and the flux
surface is covered ergodically. | |

A relevant quantity in this context is the magnetic shear, which
.describes the change in field line pitch from suffaée t; surfdce. It
is measured by, for example, dg/dy. Systems without shear (sﬁch as the
bumpy torus, in which q is everywhere infinite) need not have ergodic
surfaces, but ergodicity will clearly prevail whenever shear is

present.




We note finally that Eqs. (2.10), (2.18) and (2.19) allow us to

express B = gP + §T in terms of its fluxes:

o}
el
I

(am)~! Ve x Vyp

(2m)7 Vyp x Vo, . © (2.21)

w
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3. Magnetic differential equations

Equations of the form

B+ Vu(z) = S(x)., - - (z2.22)

~where . S(x) is a prescribed source and the single-valued function u(x)
is to be determined, are called magnetic differential equations. They
occur frequently in both equilibrium and stability investigations. We
study Eq. (2.22) using flux coordinates, suppressing the f-subscript.

AFirst note that Eq. (2.22) can determine u only up to an additive

_functioh, h(x), which satisfies
B+ Vn(x) =0 . | | _‘ (2.23)

.On any ergodic flux surface, Eq. (2.235 requires h to be a flﬁx label,
h(z) = h(x(x)) .

since one can follow a field line, without change in h, to a

neighborhood of any point on the surface. If h(g) is assumed to be
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continuous, then the existence of a dense subset of rational surfaces
clearly cannot affect this conclﬁsion.

Suppose on the other hand that the confining volume includes a
shear—free region in which q = m/n is rational. An acceptable solution

is then any function of y and the field line label:. -

h(x) = h(x,mo-n¢) . - (2.24)

The main point here is that dependence on the variable n(gd—¢) is

consistent with periodicity (single—valuedness) of h,

h(x,9+2m, &+2m) = h(x.%.¢) . ' (2.25)

‘only when q‘ié rational.

In the context of linear stability theory, perturbations which
satisfy Eq. (2.23) are called flute modes. We have observed that flute
modes strictly can occur only in shear—free fegions. Similarly, a

perturbation g(x) which satisfies

B« Vg(x) z 0, (2.26)

i.e., which is nearly constant along @, is called flute-like. For a
variety of reasons, variation along B tends to be stabilizing, so that
flute—like modes are often the most dangerous. A significant issue in
stability theory is the construction: of functions which are
single—valued yet satisfy Eq. (2.26), in the presence of shear. The

modern treatment of this issue is reviewed in Chapter VI.
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Next we return to Eq. (2.22). In flux coordinates,
BoeVu = B vy gy o (2.27)
b - I? 3¢
Also, since u(y,?,¢) is periodic we may write
w=l ()P mo-nt)
where

Uy () = 6 (d—“’d)% u exp i(n¢-m) a (2.28)
7

is "the Fourier coefficient, and we use the abbreviation of Eq. (2.167%%

Since q is a flux label, the W satisfy uncoupled equations:
i(m.—nq)umn = (S/Q-Vﬂ)mn . _ _ (2.29)

- Note that the découpling depends upon our use of flﬁx coordinates.
An impbrtant-feature of Eq. (2.29) is that the 1left-hand side

vanishes on each rational surféce Xﬁn’ where
QX)) =W/m . (2.30)

Let us require each W, to be a continuous function of y. Then a

solubility condition for the magnetic differential equation is

(S/B:V8)_ =0 when x = (2.31)

an'

T
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This condition is clearly necessary; that it is also sufficient was
first demonstrated by Newcomb [6]. Kruskal and Kulsrud [3] noted the

necessary (but not suffiéient) solubility condition,

(S/B:¥8) 4y = 0 B (2.32)

which must hold on every surface. More concise formulations of ‘both

conditions are considered below.

4. Flux—surface average
'As in Eq. (2.12), we let %#(F) be the volume contained within the

flux surface.labelled by F:

V() = [ 4. » (2733)
Similarly,
AY = f dx _ : (2.34)

meaéures the differential volume between two neighboring surfaces, F
and F + AF. The flux-surface average of any quantity A(x) is then

defined as

<b>p = (o)t /AF dx A (2.35)

in the limit of vanishing AF. It 1is clear that <A>F depends upon

position only through F.

™Y
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The crucial property of +the flux—-surface average is that it

annihilates the operator BeV. That is,

<B+Vu(x)>p = 0 (2.36)

for any single-valued function u(x). Equation (2.36) is an immediate
conseéugnce of V.g = 0 and Gauss’ theorem.

It can be seen that -the perpén&icular distance betwee# two
neighboring flux surfaces is'given by dF/|VF|; hence the volume element

is

dx = dSdF/|VF| , : : - (2.37)

where dS is the surface element and F is as usual an arbitrary flux“

label. By choosing F = ¥, we can express <A>F in terms of a surface

bintegral,

ds :
<A>nL = — A . (2.38)
o ISF VY|
Next let A be an arbitrary (single—valued) vector, and consider

its averaged divergence:

1
<Ved>, = —— dx VeA
“F A'V AF -~ .“
1 f A VY
= —— [ ds=
AV 'S,p Aad

S GRaEn t: 6 e
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Here the integration surface, SAF’ consists of the two flux

enclosing the volume A 7. vThus, in view of Eq. (2.38),
Vs>, = L oauvrs
<°F dy = F
A corollary is the useful relation,
<VF+VxA>p = 0

for any flux label F, since VF+VxA = V. (AxVF).

In terms of arbifrary toroidal coordinates (F,%,¢), Egs.

and (2.35) provide the expression

dF f‘dﬂdt A(F,,¢)

<Ap av VF VoxV¢

By choosing A=1, we obtain a useful expression for dF/d¥ :

dar ,~1 iy dod

Gy VF.VoxVe

In parficular, fof F =‘f/we have

SR - S
VY e VxV¢

In flux coordinates, Eq. (2.40) becomes

surfaces

(2.39)

(2.15)

(2.40)

(2.41)

(2.42)

mr
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F av B+ Vo, '

which is to be compared with Eq. (2.32): the latter can evidently be

written as

<S>p =10 . (2.44)

Similarly, the necessary and sufficient solubility condition of

Eq. (2.31) has the expression

<S8 exp i(n{-m¥)>; = 0 , on Xmn - (2.45)

We next derive an alternative version of Eq. (2.45), following-

Newcomb [6]. We begin with the explicﬁt form

(S/B:V9)__ = § % g exP i (ng-m)
2T -

=(—‘1)—2— ﬁ do g“i—é—g S exp i(n¢-m9) .,
27 - '

suppreésing the f-subscript. Next we change integration variables,

(%,¢) » («,4), where o is the field line label,

o = ¢—q¥ (R.46)

and 2 is the arc length along B. The 2-integration (at fixed «) is

performed first, using

B R RE VR0 1A 11 18/110 1 sSEmtas cnamm 1, ¢ auisaoht



a¢/BeV¢ = di/B

\
\
|
|
|
end denoting by L the total arc length along B for one toroidal ‘
|
circuit. The result is i

|

1

P

S _ da
<§‘Vﬂ mn $ (2m)

> I(a)exp(ina)

where a goes from O to 2n/q and

(o) = § 2 52, ¢)

BeV¢ q %
= fL(a)g& S (2.47):
0 B
ThPs, Eq. (2.45) has been reduced to the requirement that
§ da e (a) = 0 (2.48)

"whenever nq is an integer.
Notice that the contour in Eq. (2.47) is not in general closed,
since a field line on Xmn closes only after m toroidal circuits. By

extending the contour (along §) until it closes we obtain the quantity
1. =§ 95 | (2.49)

B

which is related to I(a) through

TOT

T
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m—1
I,= ) I(at2mp) . (2.50)
p=0
We mnext show that, because of Eq. (2.48), 1.~ vanishes.

(o4

Substituting the Fourier decomposition of I into Egq. (2.50), we find

that
m—1
I, =) Iy exp(-ika/q) )} exp(Rnikp/q) .
k p=0
But the sum
m—1 ' - om1 : N
Y exp(Rmikp/q) = ) exp(2nrikpn/m)
p=0 p=0 )

vanishes, unless kn/m = k/q is an integer. Since Eq. (2.48) rules out

such integral contfibutions, we have

ﬁ aL

dt 5 _ ¢ (2.51
: (2.51)

on each rational surface.
‘We have thus shown that Eq. (2;45) is equivalent. to the "“Newcomb
condition”, Eq. (2.51). Since the magnetic differential equation can

always be written as

B du/dL =S ,

the form of the Newcomb condition is not surprising.

meRinetiing e
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5. Hamada coordinates

The volume element for arbitrary toroidal coordinates can be

expressed in terms of the Jacobian, VE, as

dx = Vg dFded¢ .

In other words [recall Eq. (2.15)]

(2.52)

Both sides of this relation are‘positive since we assume (F,%,¢) to

form.a right-handed coordinate set.

The Jacobian for flux coordinates is evidently given by

VE; = (VxVoxV¢) ! = (Bevw, 7!

Consider the flux—surface average of I/JEf:

-1/2_ _

$ dvgd¢s/d dvgdly Ve
where, according to Eq. (2.41),

§ aved¢s vVep = a¥/dx .

Hence

<;/Bp = (2m)? ayav

|
|
|

TIT
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and a trivial change in only the radial coordinate, y » V(x), where

V= y/(am)F (2.53)

convéniéntly makes the averaged Jacobian eQual unity. Recalling that
flux coordinates are not unique, we are led to ask whether some choice
might - make the unaveraged Jacobian equal unity at each point. Such

coordinates were originally found by Hamada [7]; they are denoted here

by (V:'l’Hi éH) N
Becgﬁsé Hamada coordinates are a special case of flux coordinates,

we must have

B=Wx(V) x V(aoyty) N  (2.54)

together with the defining property

Vo Vo x Ve =1 . (2.55)

Equation (2.54) suggests that

Vg + K('@fr(f)/q

Yy

g = &g + K(Bg.8) o | - (2.56)

which is consistent with Eq. (2.6) for any periodic function K.
Substituting Egs. (2.56) into Eg. (2.55) one obtains, after simple

manipulation, a magnetic differential equation for K:

T T
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VK = q X 1wy,
B K( a gy [1-VVe (Vo,xV¢e)] . (2.57)

This is soluble if it satisfies the Newcomb condition,

o
w [

[1 — We(VoexV¢)] =0 o (2.58)

on each rational surface. Equation (2.58) has been verified by Greene
and Johnson [B8]; we omit the proof [cf. Eq. (2.89) et seq.]. Notice
that the simpler, necessary solubility condition, Egq. (2.44), is
clearly satisfied, in view of Eq. (2.40). | |

One advantage of Hamada coordinates is that they simplify the form
of the flux—surface averagé. From Eqs. (2.40), (2.53), 'and (2.55).,wé
have

;d@deﬁ

<A>n = §———— A . (2.59)
F (2m)?

6. Symmetry coordinates

The natural toroidal angle for axisymmetric systems is the angle,
o which measures rotation about the symmetry axis (major toroidal
axis). The distance between a point, x, and the symmetry axis is the
major radius of x, denoted by R(x). Notice that (R,{;) comprise
ordinary polar coordinates on each plane normal to the symmetry axis,

whence

IV¢ol =RL . | (2.60)

|“ TR DR T " = e m



Axisymmetry obviously implies

Further, it is possible to choose the‘poloidal angle, ﬁo, such that

Vg ¢ ¢y =0, (2.62)

while still retaining the flux representation,
"B = Vx x V(qﬂo‘fo)

Thus, in the sense of Egs. (2.61) and (2.62), symmetry coordinates are
partially orthogonal. (In general, Vy « Vo, remains non—zero.)
The most important consequence of partial orthogonality is that

the toroidal field,

is parallel to V¢

By x V¢q =0 . . , (2.64)

A stronger version of Eq. (2.64) can be obtained as follows. Consider
the line integral of B around any circle, C, centered on the symmetry

axis. By axisymmetry and Stokes’ theorem,

4n [ dse] (2.85)
o4

&nBpR =
T A ==
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where the surface of integration, A, is the disc bounded by C and g is
the current density. Next consider a different circle, C’, which lies
on the same flux surface as C. Because Eq. (2.1) implies current must
flow on flux surfaces, gon = 0, the new contour cannot change the

value of the right-hand side of Eq. (2.65). Thus
BTR = ?(X)
where I is a flux label. The form

Br = 1(x) V¢, ' _ : (2.686)

is often more convenient than the flux representation, Eq. (2.63); but

it should be emphasized that Eq. (2.66) pertains only in axisymmetric-

geometry.
Equation (2.66) also provides a wuseful expression for the
Jacobian, Jéa , corresponding to symmetry coordinates:

1

veg

i BeV¢o = 1/(R%)

in view of Eqs. (2.20) and (2.60). Since I and q are flux labels, the

Jacobian varies with @O only through Rg,

VEp = (/DR (x,9,) - | (2.67)
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Note finally that if f is a physical equilibrium quantity in any
axisymmetric. éystem, then one can take f(x) = f(x,%), i.e., 3f/3¢( = 0,
for any choice of toroidal angle ¢. However, Vfe V¢ will wvanish in

general only‘if { is the symmetry angle, (.

7. Tensor notation

The vector relation

JxB = cdP/dx Vx _ (2.88)

has its most interesting component in the direction of Vxy. One way to
isolate this component is scalar multiplication with Vo x V¢. In view

of Eq. (2.52) and the vector identity,

CVoxV¢ o (IxB) = (J+V8)(B-V¢) = (J:V¢)(B-Vo)

one obtains in this way

VE [(3-V8)(B+V¢) ~ (3+7¢)(B-V8)] = caP/dy . (2.69)

Multiplication of Eq. (R.68) by some other cross—product, such as:

Vx x V8, yields an identity, since J+Vx = BeVxy = 0.

Of course arguments of this sort can always be usea to find the
relevant components of a vector equation. But é much more efficient
way to obtain, and especially to write, results 1like Eq. (R.69) uses
tensor notation. Only the most elementary features of tensor formalism
bwill be required here [9]. Thus we introduce, for flux coordinates

(éx,éﬂ,éc) = (x,%,¢) and an arbitrary vector A, the contravariant

T TTITTITI T RN It
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components A% = (AX,Aﬂ,Af) and covariant components A“ = (AX,A@,A().

Readers unfamiliar with tensor formalism can consider these quantities

to be defined by A¥ = A.V¢H, or

AX = AWy, A% = A.Vg, AT = A.V¢ ~ (2.69)
and
A, = Vg V8 x V¢er
Ay = VE V¢ x Vxea (2.70) .
: A¢ = vg Vx x V@.é ,

respectively. We can expand A in terms of either component set:

= AV v v : .71
A= ATx + AT + 4,7¢ o (2.71)

VE {aXV9 x V¢ + APVe x Vy

+ AUy x Vo) . - (2.72)
From Eqs. (2.71) and (2.72), it is easily seen that
° =ll1‘ T= X 19 (
4B = A“B, = MB, + A’By + A'B,

agrees with the usual scalar product. (A sum over repeated dummy
indices is always implicit.)

The vector product,

E]
I
>
X
st

T I
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has contravariant components

uw _ —1/2
W =g L AK BA ) (2.73)
and covariant compohents
w o=gl/® ¢ a% g (2.74)
g s . .

Here EMKA is the usual antisymmetrical matrix, with non-zero components

axﬂf = f:(X18 = €ﬁ¢x =1, EﬂX( = Efﬂx = EX(ﬁ.= -1 . Thus, for example,

W, = g1/2(a%B¢ — AlBY) .

The coordinates, ¢*, do not constitute contravariant components:of.

any vector. However, each g“ [e.g., gX = x(g)] can be considered as a

scalar function of positionm.

Next we need to write three differential operators in tensor form..

The gradiemt of a scalar, VS, has a natural covariant

representation:

a5

(Vs), = . (2.75)
g
In particular, when S is one of the coordinates, then
VeVy = : .
(Ve"), = 6,, (2.76)

where 5pu is the Kronecher delta. Thus, for example

T T Il
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v = 9 )
( P)# Iy 6NX

Notice also that for any vector A,

A.VS = a¥ 35 (2.77)
e

The divergence of a vector is conveniently written in terms of its

contravariant components:

V-.5=—1——§~¢E A , (2.78)

VE ag#

Finally, the curl,

g:Vxé
has contravariant components given by

& .
_ kA QA .
B* = _ A , ©(2.79)
Vg afK

in terms of the covariant components of A.
As a simple application of these formulae, we consider the
magnetic field. From Eqs. (2.9), (2.52) and (2.69) we find that B has

the following contravariant components:

BX =0, B% = g /3, B¢ = 8% . (2.80)
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The covariant components, e.g.,

BX = vg V¥ x V¢eB

do not have such a simple representation.

In Hamada coordinates,
B =yx" W x V(g¥y¢y)
where

x (V) = ax/av-. ' | (2.81)

Thus, suppressing H—subscripts, we obtain the contravariant Hamada..

components

V=0, B =x", B = qx" . (2.82)

B
Notice that both B® and B¢ (rather than only their ratio) are flux

labels in the Hamada case.
C. Plasma Current

1. Significance
In this section we consider the force balance relation and
Ampere’'s law explicitly. Plasma currents are important, firstly,
because they help to determine the flux—surface configuration. Indeed,

for axisymmetric systems, toroidal flux surfaces are not possible

T IR AT RN =" T IR
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without toroidal plasma current. Secondly, the disposition of plasma
currents has striking effects on plasma stability. Thus equilibrium
current along the direction of B can destabilize certain
“current—driven“ modes, while current perpendicular to B is associated
with "pressure—-driven” instabilities."

Subsection C.2 considers those properties of current flow which

follow from Eq. (2.1) and the quasineutrality condition,

VeJ =0 , (2.83)

an immediate consequence of Eq.'(ZLS). One finds that these relations

always permit a simple parameterization of J in terms of two flux

labels. =~ Equations (2.2) and (2.83)v also reveal an important
constraint, related to the Newcomb condition, which  bears on the
existence of Hamada coordinates.

Ampere’s law 'is studied in Subsection C.3. If is found, in
particular, that the sign of the poloidal current characterizes
important features of +toroidal equilibria. The concept of “return
current” is also introduced.

v The arguments of Subsections C.2 and C.3vpertain iﬁ an arbitrary
toroidal geometry. The sPeqial case of axisymmetric geometry allows
more explicit conclusions regarding the plasma current. These are

derived in Subsection C.4.
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2. Force balance

In this and the following subsection we use Hamada coordinates
exclusively.‘ Thus the force balance relation, Eq. (2.68), 1is written

as

x (qi®=3¢) = cp’ : (2.84)

in the Anotati&n of Eq. (2.81) [cf. Eq. (2.69)]. Certain formal
consequences of Eq. (2.84) enter stability studies; we derive them
here. |

We first substitute Eq. (2.84) into Eq. (2.83). Since the Hamada

Jacobian is unity, we can write [recall Eq. (2.78)]

ar® a1
Yy + ?;; =0 . v (2.85) .

Because x’,P’ and q are flux labels, Eqs. (2.84) and (2.85) imply

3 3\
S iq =0,
(G T 1 35¢) |

which is equivalent to 1v3~0VJ'L"1 = 0 and therefore requires 3% to be a fluk
label. Equation (2.84) then shows that 3¢ is also a flux label. Since

N

J' = 0, we obtain, from Eq. (R.72),

3 = IP(V)VexVY 4 J8(V)VuxVy  (2.86)

a flux representation for J which is closely analogous to Eq. (R.9).

R 2 nt 1 118 1l R | E e ——————
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Two alternative versions of Eq. (2.86) are derived by eliminating
either V¢xVV or VVxV9 in favor of B, and then using Eq. (2.84). The
parallel cohponents of the resulting expressions give useful

expressions for the covariant components of B:

(x'/B)3, = 1% - (QP’/BB)BC (2.87a)

(ax'/B)3, = 3¢ + (cP’/B%)By . (2.87b)

We next return to Eq. (2.68) to consider the magnitude of the

perpendicular current density, Jl = Iill )
il =J - §J"/B . _ (2.88)
Evidently,

J, = cP’ |VV|/B

or

AV
3, - (c/B)AP

where AV:is the volume of the narrow annulus between two surfaces whose
pressures differ by AP. Notice that this region will necessarily
contain closed field lines (since rational surfaces are dense) and
recall that its width is AV/|VV]|. Hence the total current flowing

across a closed field line in the annulus can be computed from
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AV ds
ﬁlelw—CAPf .

Since current cannot escape the annulus, this integral must be the same
for each closed field line of the same pitch, i.e., it must be a flux

label. Since AP is also a flux label, we conclude that the integral

Ig(V) = § de/B - , (2.89)

is a flux label. This argument is due to Greene and Johnson [8], who
al'so note that Eq. (2.89) implies Eq. (2.58).
The physical interpretation of IO(V) is well known. Consider a

flux tube of cross—sectional area dA surrounding the closed field line.

The contained magnetic flux is dy = BdA, while the volumebelementﬁfSﬁ

dx = dAd&; thus IO(V) is the volume per unit flux of the flux tube.
Recall that flux surfaces can be defined, in an asymmetric systemn,
without reference to plasma pfessure (Section A). 'Hence, ignoring the
axisymmetric case, it is possible to consider the quantity IO in a
vacuum system, with Jl = 0 = AP. Since the argument leading to
Eq. (R.89) breaks down for this case, the vacuum I can vary on a
rational surface. Indeed, ihree—dimensional .vacuum. flux suffaces
typically display such variation in IO' In other words, the vacuum
limit of an asymmetric +toroidal system 1is singular. As Grad [4]
originally emphasized, the singularity is potentially serious,
especially since such systems often operate at very low pressure. This

issue continues to attract considerable theoretical interest [10].
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Once the perpendicular current is known, the parallel current can

be obtained from Eq. (2.83), expressed as

which 1is a magnetic differential equation. To explore its solubility,

we consider, in Hamada coordinates, the quantity

A

Vey =0 50 4
39 L 3¢

3¢
Sl i

Recalling that

I, =cP’ B x VB

we find

B B
V‘J = cP’ (-—a— —_{ —_ a _19)
=l 3 gR 3¢ g

Simple meanipulation, using Eq. (2.87) and (2.84), " reduces this

expression to

. B
, (0 dy ¢ cP’
VoJ = ¢P —_ 4 —— :BOV — B , 2.91

4 ¢ (aa 4 ag) R (X,Bz C) : ( )

a form which manifestly satisfies Eq. (2.51).
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We conclude that the magnetic differential equation (2.90) is
soluble whenever Hamada coordinates exist. Since the existence of
Hamada. coordinates depeﬁds upon Eq. (2.89), we see that the latter is

the true solubility condition for Eq. (2.90).

3. Ampere’'s law
In Hamada coordinates, the three .(contravariant) components of

Ampere’s law,

VxB = (4ﬂ/c)£

are given by [cf. Eq. (2.79)]

oB JdB ' :
Veo=-"L__L (R.92)
3¢ 3%
JB oB
= L A | (2.93)
c ¢ av .
JB JB - .
4 ¢ 3 v ' .
2l = —= - —1 . 2.94
c av s . { )

In combination with our previous resulté (together with appropriate
boundary data and profile information), these eéuations determine the
global fluxlsurface configuration. Unfortunately, in general geometry
the equations are not analytically tractable. Useful local information
can nonetheless be obtained from the flux—surface averaged equations.

Recalling Eq. (2.59), we use an abbreviated notation,

~y
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A= <A>p = § ?2?%% A (2.95)

to write the averages of Egqs. (2.93) and (2.94) as

3% = -(c/4ﬂ)§é, 3¢ = (c/4m)By

Overbars are not needed on Jﬂ and_J(, since they are flux labels. We

substitute these results into Eq. (2.84) to obtain

By + qﬁé = —47P " /x’ . (2.96)

The right-hand side of Eq. (2.96) (which must be typically positive)

measures the local degree to which plasma thermal energy is confined: .

Hence terms on the left—hand side are contributing to‘confinement only
when they are positive. The first .term on thé left almost always
contributes in this sense (i.é., J{ > O;.recallbthat ﬁﬂ vanishes on the
magnetic axis). However, phé §é_term can have either sign, depending
ﬁpon experimental conditions. When it is positive (negative), the
plasma is said to be diamegnetic (paramagnetic) with respect to the
g%

toroidal field. The direction of the poloidal current indicates

which case pertains.

Ohmically heated- tokamaks and stellarators typically have
3¢ >> 1%, while B< >> By.  Equation (2.96) shows an  economic
disadvantage of such schemes: the large investment in toroidal
magnefic field makes a relatively small -(if not mnegative) direct
contribution to plasma  pressure containment. “"Current—free"

stellarators (in which 3¢ < Jﬂ) and high-beta tokameks (which are
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strongly diamagnetic) are examples of confinement concepts in which
this disadvantage is ameliorated.

Next we consider the radial component of Amperé’s law, Eq. (2.92).

It is easily combined with Eqs. (2.87) to obtain

(9 9 - (% 2 ¢ 9 \pR
x(w+qa¢)(BJ,,) CAwib agQ)B
or
(B:V)(3,B) = (1-V)B% , | (2.97)

showing that part of the parallel current is driven by variation of the

field magnitude on a flux surface. The point is that Voil, Eq. (R.91),

does not vanish unless B is a flux label. Thus "return currents” along

B are required to maintain quasineutrality. The return current is
_ autématically included in Eqs. (R2.86) and (2.87).

We éoint out here that B = |B] is a fluﬁ label only in very
exceptional cases, and that the variation of B on a surface importantly

)

affects both plasma plasma stability and collisional tramsport.

4. Axisymmetric geometry

The plasma current in axisymmetric geometry could be studied simply
by neglecting. (—derivatives in the formulae of thevprevious subsection,
i.e., in Hameda coordinates. However, it is ultimately more effigient
to use symmetry coordinates, because of their partial orthoéonality

(V¢g*V8g = 0 = V¢u+Vx). The O-subscript is hereafter suppressed.
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We begin with Eq. (2.68), which takes the form

@? - 3¢ = cap/ay |, (2.98)

|
] \
essentially identical to the Hamada case. However, the quasineutrality |
condition is now much simpler:

3 = B
— Vg J¥ =0 .
3 '8

Thus we have

= K(x)/Ve . ‘ (2.99)

where K is a flux label and JE = «gg is given by Eq. (2.67).

Next we write J in vector form using Eq. (2.72):

3= vVa(IPVexTy + 38TxxVs) |

This simplifies, not only because of Eq. (2.99), but also because

symmetry coordinates satisfy
Vxx¥8 = (1/q)V¢

as follows from Eqs. (2.63) and (2.66). Hence we have

I = K(x)V¢xVx + JSRRVE

or, in view of Egqs. (2.67), (2.98) and (2.99),
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J =K(x)B - ¢ gg R3V¢ ' (2.100)
J B . |

Equation (2.100) conveniently summarizes forces balance in an
axisymmetric system.

An instructive consequence of Eq. (2.89), in the axisymmetric
case, deser%es mention. - Suppose there is no rotationai transform (as

in, for example, the vacuum case), so that

§=§T = IV(

Then

I,(V) = 2nR?/1 : | (2.101)" -

is constant on surfaces of constant R: cylinders centered on the
symmetry axis. Since such non—-toroidal surfaces are inconsistent with
confinement, we see that axisymmetric equilibrium requires rotational’
transform: systems with (=0 necessarily have asymmetrizing “bumps” in
the magnetic field.

Next we consider some consequences of Ampere’s law in an

axisymmetric system. The radial component,

5B
X=0=2L X
/g o9

’

requires Bf to be a flux label. Since Eq. (2.68) implies B< I(x),

this information is not new.
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The P¥-—component of Ampere’'s law,

) Lp— a_B§=__°_ﬂ
4nv/g 9X 4nvg dx

implies, in view of Eq. (2.99),
K(x) = - — — .

We substitute this result into Eq. (2.100),

j=-23g_ o 9P g2y,
- 47 dy ~ dx

using Eq. (2.60).

Finally,‘the {—component of Ampere’'s law,

JdB JB
3¢ = c__( N x)
4m/g X av

is analyzed by recalling Eq. (R.70):

By = VE V¢xVx+B = VE Vx-Vx/R? .

(2.102)

(2.1083)
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‘Similarly,
- 2
BX = — VgVx+V3/R
Hence
3B, 4B
L (22X =v. (R

from Eq. (2.78). We introduce the differential operator [11]

A*x = RV . (R_zvx)

in order to write

3¢ = S rR0Yy . . (2.104) -

4n

Equations (2.103) and (2.104) combine to yield the Grad—Shafranov

equation,

Ay = -1 R & N (2.105)
dx dy )

[11,12] which determines the flux—surface cbnfiguration x(g), if the
functions I(x) aﬁd P(x) are known. In axisymmetric systems, the global
equilibrium problem discussed in Subsection A reduces to solving
Eq. (2.105). TUnfortunately, the Grad-Shafranov equation has no simple

non—axisymmetric counterpart.
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The return current (or Pfirsch-Schliuter current [13]) in an
axisymmetric system is easily understood from Eq. (2.102):

£ al d

-_ I —

= c i (2.108)
Il 4m dy dy B
which is the axisymmetric version of Eq. (2.87). Here all the
¥—dependence resides in B(yx,®); hence J, cen vanish uniformly on a

~given surface only if B is a flux label on that surface.

D. Large Aspect Ratio, Axisymmetric Geometry
The aspect ratio of a circular cross—section tokamak 1is Ro/a,

where RO is the major radius of the magnetic axis and a 1is the minor

radius (limiter radius) of the confining vessel. More generally,:-

aspect ratio measures the ratio of cylindrical curvature to toroidal
curvature, in any device. Thus at sufficiently large aspect ratio a
tokamak appears nearly cylindrical with respect to curvature, while
remaining toroidal in the topological sense [e.g., £1(¢) = f({+2ﬂ)].
" Large aspect ratio approximations treat toroidal curvature effects

perturbatively:

e =a/Ry<< 1. ' (2.107)

They effect such enormous simplification on a variety of problems as to
‘be very helpful, despite the fact that experimental aspect ratios are

often no larger than four.
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Here we use Eq. (2.107) to solve the Grad-Shafranov equation
analytically, through first order in e, following Shafranov [5]. We
begin by recalling that tokamek rotational transform is produced by an
externally driven, toroidal plasma current. The force ("hoop force")
of this toroidal current loop on itself will push the magnetic axis
outwﬁrds in major radius. On the other hand, for large aspect ratio
and moderate plasma pressure, the flux surfaces should have, like Athe
confining vessel, nearly circular poloidal cross—section. Thus we are
led to try solving Eq. (2.105) by presuming circular, non—cqncentric
flux surfaces, which are shifted with respect to the geometric minor
axis as indicated in Figure 1. | |
| Coordinates appropriate io this geometry, called Shafranov

coordinates, are defined as follows. Let (R,¢,Z) be ordinary

cylindrical coordinates, with R the major radius, ¢ the symmetry angle,

and Z the vertical distance along the symmetry axis. Also let Rc(r) be

.a smooth function satisfying RC(O) = Ry, the major radius of the

magnetic axis. Then Shafranov coordinates, (r_,?¥.,¢.), are defined by
s’’s’®s

R = Rc(rs) + rg cosdg
p=-¢g ' (2.108)
Z=r simdg

Notice that Rc(rs) is the major radius of the center of that circle
whose radius is ry; its explicit functional form is considered below.

In most of the following discussion, the S—subscript is suppressed.
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In terms of the unit vectors R = VR, 7 = VZ and & = RVyp, we can

compute
Vr = Z sinV+Rcosd _ r ’ (2.109)
X X _
2(Ré+cosﬂ)—ﬁsinﬂ e '
rv¢ = ' - (2.110)
X .
and 2 = —%,Hwhere
X =1+ R, cos?
and R} = dRc/dr. Notice that
rV8.¥r = Ré sim&/X
is not zero: Shafranov coordinates are not orthogonal. The Jacobian
.is
VE_ = rRX .. , , (2.111)

S

.We mentioned previously that Shafranov coordinates are not flux

coordinates. However, the variable r is an approximate flux label.

Specifically, for ¢ << 1, the funmction RC can be chosen such that

x = x(r) +0(s%) , (2.112)

and

e I T
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R = 0(c) . | (2.113)

In other words, the shifted circle equilibrium, with a rather small
shift, is indeed consistent with the Grad—Shafranov equation. Before
verifying this statement, we consider some of its consequences.

Since ¢_ coincides with ¢,, the symmetry coordinate, we know that
s . 0

B = IV¢ + VexVy = I3/R + %f VexVr + 0(ef) .

Recalling Eq. (2.10), we write

B=5 + B | (2.114)

with Bp = dx/drV¢xVr and Bp = 1¢/R. Neglecting 0(52) terms, we have:

r

Bp = Bpg(r)(1 + - A cos®) : : (2.115)
(6]
r

By = Bpg(r)(1 - " cos®) . _ (2.118)
C

Here (r) = r! dx/dr, Bna(r) = R—ll, and A(r) is given by
0 c TO'", 0
c

R
Ar) = —(1 + 7? R.) . (2.117)

Notice, from Eq. (2.113), that A(r) = 0(1).
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To represent the flux surface average in Shafranov coordinates, we
use the general definition, Eq. (2.35), and Eq. (2.111). ©Neglecting

0(52) as usual, we find that

<> =2 (1 - I A coss)A(r,s) . (2.118)
21 RC }

The safety  factor is also computed from its definition,

Eq. (2.19). Because ¥ is not a flux coordinate, q # B:V¢/B-V8. | In

fact, BeV{/BsV8 = rBT/(RBP) depends on ¢ in first g—order and is

therefore not a flux label. However, it is a simple matter to compute,

from Eq. (2.12),

dy
—I_ ) %g IrX

whence

Q
|

= (ayq/dr)/(ax/dr)

rI/(Rodx/dr)b+ 0(s?) ' v(2.119)

rBro/(RgBpg) + 0(&%)

Now we consider the Grad—Shafranov equation. To emphasize the

¥—dependence arising through R(r,¥), we write Eq. (2.105) as

RPVe (R7®Vx) = oy (x) + R%ep(x) (2.120)
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where ¢y = -1dI/dy, Co = —4ndP/dy . We compute the divergence {rom
Eq. (2.78),

Vo (R2Vy) = —— {53? Vag R % Vr«Vr .

Es

a — —2 .
+ — Vg_ R VreVe}
3 Vs B X )

which can be further explicated by means of Egs. (2.109)—(2.111). A
straightforward e—expansion, exploiting Eq. (2.113), then yields, in
zeroth order,

9X _

3 2
ot r or = ¢y + R002 .

=

We multiply this result by dy/dr to obtain

g dP (2.121)

4 2,52 2\ _ 2
ar r__(,B_PG._+_BT0_)_—_ZnBTG — 8nr ar

The first—order, O(e), terms in Eq. (2.120) are all proportional

to cos?¥; omitting the cosd—factor, we have

_le )@ (r 8 _Ted jr (r .y 3y
(1 RC) or (Rc ar] r dr [Rc (Rc * RC] ar]
Re 3
_C 99X _
- or 2r Rc Co = o,

which reduces to

i
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él [(1+A)r®BE] = rBE, - 8nrPap/dr . (2.122)
r

In higher order, the J—dependence of X corresponding to
non—circularity of the flux—surfaces, would enter. Since the main
purpose of Shafranov geoﬁgtry is to obtain simple, albeit approximate,
formulae, the higher order terms are generally ignored.

Our results, Eqs. (2.121) and (2.122), are simply the two dominant
Fourier components of the Grad—Shafranov equation for large aspect
ratio. Recalling that the Grad-Shafranov equations prescribes x(g) for 
given P(yx) and I(x), we see that Eqs. (2.121) and (2.122) are to be
solved for Bpo(f)’ and A(r)f for given P(r) and BTO(r). The point‘is
that for ¢ << 1, x(r,®) can be parametrized in terms of two functions
which depend .only .on r; ihe first function, BPo(r), prescribes - thef
magnitude of xy on each surface, while the second, A(r), gives the
disposition of the surfaces.

For unspecified pressure and toroidal field profiles, the
solutions to Eqs. (2.121) and (2.122) can be expressed in terms. of a

- radial (volume) average. We introduce, for any f(r),

g T
f z2r jO dr'r’f(r’) .

It can be seen that f is the normalized volume average, over all radii

less than r, of f. Consider first Eq. (2.121). A radial average yields

B2, (r) + B3,(r) = BE (r) - 8n[P(r)-P(r)] . ‘ (2.123)

In particular, since

100 BOOE | B E
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we have
Big(a)-B7y(a)
Bp =1 + : (2.124)
Bgo(a)
PO
where
Bp = 87P(a)/BSy(a) (2.125)
is called the poloidal beta. It conveniently parametrizes tokamak

equilibria in terms of the field component, BP, which is primarily -

responsible for large aspect-ratio tokamak confinement. Equation
(2.125) shows that fgp exceeds unity when and only when BTO(r)
increases, on the average, with increasing minor radius. In Subsection
C, we no£ed that this case, diaﬁagnetic with respect to the toroidal
fiela, has ﬁegative poloidal current. Thus.the sense of. the poloidal
current is determined by the sign of 6P - 1.

We can similarly integrate Eq. (2.122) to obtain

R 1r° o 5 PP
Rg Rg Bpg

Here the first term inside the brackets represents the hoop force,

resulting from toroidal current. The second term, related to ﬁP, is a
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correction resulting from piasma pressure. It can be seen that
Eq. (2.124) is consistent with the initial assumption, Eq. (2.113),
only if this second term is O(l) or smaller: the shifted—circle
geometry becomes invalid when ﬁP mﬁch excgeds unity.

The consistent ordering,

Bp ~ 1 | (2.127)

implies that the toroidal beta

Bp = szégl _ (2.128)
By
is small,
By ~ &7 (2.129)

since, for q ~ 1, Eq. (2.119) yields

Bp/Bp ~ & . ' - (2.130)

Thus Shafranov geometry corresponds to a low—beta equilibrium;
Eq. (R.129) is often called the lowbeta tokamak ordering. Low—beta

equilibria are characterized, in particular, by a weak radial variation

of Bpo(r),

— -1 = 0(sf) | (2.131)
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in view of Eq. (2.123). Thus the main spatial dependence of Bp resides
in the R ! factor,
By = const/R , ‘ . (R.132)
as in Eq. (2.118).
While the Shafranov shift, RC—RO, is rather small, it is
experimentally measurable and has diagnostic value. It also can have
surprisingly important implications with regard to low—-beta tokamak

stability. More recent investigations [14] concern solution to the

Grad—-Shafranov equation for a high—-beta tokamak ordering,

Bp~c . Bp~ce L, . (2.133)

which is of course .-economically advantageous. Unfortunately the
high-beta analysis is much more complicated, because the flux surfaces

need no longer be approximately circular.
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III. Shear—-Alfvén Law

A. Significance

The shear—Alfvén law is an exact consequence of Maxwell's

equétions and plasma momentum. conservation. It displays, in
model—independent form, the essential physics of low—frequency
stability and nonlinear evolution: rational-surface singularity,
interchange forces, current gradients, plasma vorticity and magnetic
nonlinearity. It also helpfully motivates the introduction of
fundamental sﬁatial and temporal scale—separation arguments.

Section B of the present chapter derives the exgct, nonlinear
" shear—Alfvén law. ~ Its salient properties are discussed in Sec. C. A

formal ordering based on scale—separation is wused to develop, in

Sec. D, a simplified version of the shear—Alfvén law. Finally, Secu: E

introduces the physical issues associated with rational-surface
singularity of the shear—Alfvén law: boundary layers and magnetic
islands.

It must be pointed out that the shear—Alfvén law does not by
itself provide a closed description of the linear or mnonlinear
dynamics. All but the simplest cases require additional information,
such as an Ohm’'s law, an energy cohservation law and a parallel
acceleration . law, for élosure. Closure relations are alWays
approximate; each has a limited domain of validity. A variety of

closure schemes are considered in Chapter IV.
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B. Exact shear—Alfvén Law

1. Flute—-like Perturbations
Consider an arbitrary perturbation, u(g,t), of some variable
describing a toroidally confined plasma. Periodicity permits the

Fourier decomposition

u(x,?,¢) =) up(x) exp i(md-n¢),
m,n
where (x,¥,¢) are flux coordinates and the coefficients w,., are givén
by Eq. (2.28). Any actual disturbance will necessarily involve more

than one of the Wons because toroidal curvature couples various

harmonics. [Equation (2.29), for example, is uncoupled only when S:is .

presumed given; for a linear eigenmode, S will be proportional to u and
(S/§-Vﬁ)mn will depend upon components other than umn'] However, the
coupling is not always crucial, and many perturbations of interest are

dominated by a single harmonic, or wave—vector,

k =mV® — V¢ . (3.1)

The integers m and n are called respectively'the poloidal and toroidal
mode numbers. The ratio m/n evidently characterizes the helicity of

the chosen harmonic.
Let wus denote the unperturbed magnetic field by go and introduce

the unit vector

b, = B,/B, . (3.2)
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Then the parallel wave vector is

k, = b,k = (B,+V9/B) (m-nq) . | (3.3)

[
and a perpendiculaf wave—-vector can be defined by

k=bok, +k . | (3.4)

i
Both k" and gl depend upon position. It shall become clear that the
x—dependence of k” is of particular importance.

Flute—-like perturbations, ment ioned in  Chapter II, are

characterized by k" being small,

k, < kl , k

It r

relative to both kl and the radial wavenumber scale, kr’ which is
defined by the x—component of Vu. That these modes are most likely to
be ﬁnstable can be understood (see} for example [15]) from the
stabiliziﬁé effects of field—linq bending: such bending invokes strong
restoring forces, bu£ is minimized by small k”. Other considerations,
such as the stabilizing influence of parallel sound-wave propagation,
maeke flute—like modes 'appear relatively dangerous in non-fluid
(kinetic) regimes as well, even in the purely electrostatic case.

Notice that in large aspect-ratio geometry, with Bp ~ (r/R)B, k”

is inherently rather small,

k, ~ (r/qR) k. (3.86)

(355»'
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However, flute—like behavior wusually involves much smaller k",

requiring the existence of "mode-rational” values of the safety factor,
axyy) =m/n . (3.7)

When the perturbation of interest is dominated by a single

and

helicity, k" becomes a strong function of x, vanishing at Xmn

approaching some fraction of k, as Ix—xmnl increases. (Over the same

radial range, kl

must be  localized near in order ‘to preserve their flute—like

Xmn

character.

A mode involving many helicities can be flute-like over' a much-

wider radial domain. In this case, the dominant helicity changes with

X, so as to approximately satisfy Eq. (3.7) and preserve Vy <<V, on

each surface: the mode helicity tracks the field-line pitch.
An  important consequence of the flute—-like ordering is that it
permits two time scales for electromagnetic disturbances to be

distinguished. We introduce the Alfvén speed,

1/2 | ' -
vy = Bo/(4ﬂnomi) , | (3.8)

where n_ is the plasma (equilibrium) density and m; is the ion mass.

Recall [16] that shear—Alfvén waves have the frequency

wgp = kyva o (3.9)

while compressionaln Alfvén waves are described, for small plasma

pressure, by

changes relatively little.) Thus single-helicity modes -
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w = wgy = kv, . (3.10)

Evidently, wgp << wgy in the flute~liké case. (Of course wgp shhres
with‘k” a strong radial dependence; we esfimate its size by evaluation
at some radius characterizing the half—-width of the mode.) Furthermore,
the most important toroidal instabilities have frequencies no larger

ihan Wgpt the slow time scale is of primary interest.

The significance of the two time scales is best understood from

consideration of the plasma acceleration law,

dy -1
mn—+ Venr =-VP + ¢~ J xB . (3.11)
dt = ST

Here V is the plasma fluid velocity,

4.9 vy (3.12)

d

o+

@

prd
§

and T represents mnonisotropic contributions to the. plasma . stress
ten;or. fhus n includes various viscous effects, as well as anisotropy
of the Chew—Goldberger—Low [17] form, P" # PL' For present éurposes it
suffices to assume that V‘g is no larger than the first, inertial term
in Eq. (3.11).

Hence plasma acceleration is measured by imbalance between the two
terms on the right-hand side of Eq. (3.11). Simple estimates from
Ampere’s law show that the "bare” JxB fofce would yield acceleration on

the fast scale, Wep”
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I, ~ (e/a4m)k B => (d/dt)(V/v,) ~ wg,

Evolution on slower time scales must therefore proceed through a
sequence of near—equilibrium states, in which the dominant part of the

JxB force is effectively shielded:

IxB - cP = 0(k,/k,) . (3.13)

2. Derivation
A simple way to describe such slow evolution — which critically

involves the error term in Eq. (3.13) — is obtained from the parallel

component of the curl of Eq. (3.11). [Equivalently, omne solves
Eq. (3.11) for I and combines the result with

Vel = Voil + goV(J"/B) =0.]. We céll the resulting equation the
"shear—Alfvén law"”; it is the plasma equation of motion, in which the
strong part of the JxB force has been annihilated by the operation
Q.Vx.

In other words, when w < Wgp the relevant electromagnetic driving
~force is to be extracted from B+ Vx (JxB). This quantity is

conveniently expressed in terms of the magnetic field curvature,

k= (®V)by . b=BB , (3.14)

which we briefly digress to consider. Since V(b+b) = 0,
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Hence, if the

by

§rh
|
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~-b x (Vxb)

-B™! b x (VxB) - b x (VB !xB)

4n IxB v,B

+
c BZ B

left—-hand side of Eq. (3.11) is denoted

av

=m.n — + Ver

1 dt o

then we can write

| 2o

AT (vpig) +
B® B

vV B
B

Notice that in Eqs. (3.15) and (3.17),

vV, =

1

V.- b(bsV)

for

(3.15)

convenience

(3.16)

(3.17)

(3.18)

is defined in terms of the full magnetic fieid, rather than Eo'

Now consider B « V x (JxB).

BeV x (JxB) = V-[(JxB) x B] = -V . (8% ) .

and therefore

Ampere’s law implies that
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BV x (3xB) = B°B -+ V(J,/B) - B?[B x (JxB)] . V B® |
or, in view of Eq. (3.15),

BeV x (JxB) = B°B » V(J,/B) — <= Bxx « V B®
B axB 4 I an XK 0V

Combining this result with the left-hand side of Egq. (3.11) yields the

(nonlinear) shear—Alfvén law

cB - Vxf = B%B « V(I /B) — (c/4m)Bxg v B (3.19)

A more convenient form is obtained by using Eq. (3.17) to

~eliminate VLBZ from the last term on the right-hand side. Thus

B+ (Vxf-2gxf) = ¢ 'B®BV(J,/B) + 2Bxg-VP (3.20)
where f is given by Eq. (3.16).
C. Interpret@tion

1. Neighboring Equilibria
The left—hand side of Eq. (3.20) describes plasma inertia.
The curl of the aéceleration, f, prominently involves the {luid
vofticity, ny; in fact the shear—Alfvén law is often referred to as a
vorticity equation. Other contributions to Vxf, from Vn and V‘g,

involve details of the plasma response which are sensitive to collision
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frequency, v. When v is small, these contributions should be computed
from kinetic theory (see IVC).

This left—hand side can be neglected whenever the frequency, o,
and anisotropic pressure contributions are sufficiently small (that is,
when 7 << P and when w is less than the léggL shear—Alfvén frequency,

k”(x)vA). In this case the shear—-Alfvén law reduces to the relation

J
B2(§.V)('—B|—I) + 2cBxk + VP = 0 . (3.21)
These two terms will be referred to as the Newcomb terms. Equation
(83.21) expresses quasineutrality, VeJ = 0, for 'a plasma whose

perpendicular current satisfies equilibrium force balance, Eq. (2.1)%"

Considered as a nonlinear equilibrium relation, Eq. (3.21) has already
been studied in Chapter II; it has the general solution given by
Eq. (2.86). In the context of stability theory, Eq. (3.21) is to be
linearized about some chosen equilibrium. The linearized form, a
"generalized Newcomb equation”, evidently pertains to the existence of
neighboring equilibria.

The importance of neighboring equilibria is obvious in the case of
ideal magnetohydrodynamics (MHD), in which =0 and the boﬁndary of
marginal stability must have vanishing frequency (hence, f=0). Thus
growing modes will exist whenever the lineariéed form of Eq. (3.21) has
well-behaved solutions. The original Newcomb equation [18] arose in
this context; it is Egq. (3.21), linearized in cylindrical geometry.

Outside the domain of ideal MHD, Eq. (3.21) will remain pertinent, for
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small w and m, provided that the singularities associated with rational
magnetic surfaces can be avoidéd.

The question of singularity in Eq. (3.21) is sufficiently
impogtant to deserve separate consideration, which 1is provided in
Section E. Here we point out that Eq. (3.21) is a magnetic differential
equation whose solubility condition, Eq. (2.89), is not necessarily
satisfied in the perturbed state. We noted in Sec. IIC that the same
issue arises even 1in a strict quilibrium context. Of course in the
neighborhood of the rational surface inertiél terms in the shear—Alfvén

law become important and a boundary—layer>ana1ysis is appropriate.

2. Current—driven and Pressure-driven Modes.

Roughly speaking, the left-hand side of Eq. (3.20) describes-the -

plasma response to driving forces contained in the right-hand side. Of
the two terms- on the right, the first, involvfﬁg J", is said to. be
associated with ”current—driven“ modes; the second, involving VP, is
associated with ”pressure—driven” modes. (In a more accurate
termjnology, the two typgs of  modes would be called

"

"parallel—~current—driven” and "perpendicular—current—driven," respec—

tively. Note also that, in general, disturbances will be affected by
both terms.) Here we point out salient features of the two driving

forces.

The term involving J” is approximately linearized according to

B-V(J,/B) = 6BV(J /B,) + B,+V(63,/B,) .  (3.22)

since the perturbation in field magnitude is relatively small. - (Here
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6f = f—fo is the perturbation in any field quantity f.) Current—driven
instability depends upon gradients in the equilibrium parallel current,
as given by the first, ."kink"” term on the right—hand side of
Eq. (3.22). Typical current—driven modes, such as the kink mode or
tearing mode, are not in geheral localized or even flute—like.
However, the kink mode often has small k, in the sense " of Eq. (3.5),
.and the tearing mode growth rate depends crucially‘upon processes
occurring near the mode-rational surface.

The remaining linear term in Eq. (3.22), involving GJ", is loosely
associated with bending of the magnetic field lines [15,19]. The point

is that GJ" is relatively small when 6B and B, are parallel: it

reflects perturbation of the direction of B. The most important

feature of the line-bending term is its singularity on mode-rational .

surfaces. The singularity affects virtually all electromagnetic

disturbances; it is discussed in Sec. E.

The second Newcomb term, involving « and VP, is often called the

interchange term because of its role in Rayleigh-Taylor instabilities,
which depend upon the interchange of fluid elements. Such
pressure—driven modes are conveniently understood from-the viewpoint of
the MHD energy principle; a recent, instructive discussion is given by
Freidberg [15]. Because interchanges are destabilized by components of
K, in the direction of VPO,"the» case k. VP > 0 (k,+VP < 0) is
referred to as unfavorable (favorable) curvature. Since g, +VP_  will
usually change sign at different locations in the torus, an appropriate
average of k. is ultimately most relevant. Ballooning instability is

characterized by perturbations localized in regions of unfavorable

curvature (as opposed to the radial localization of a single-helicity
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flute—like mode). Such instability clearly becomes more important at
large plasma pressure and, in fact, often limits the maximum pressure
which can be confined.
In addition to the conventional interchange and ballooning
instabilities, a number of other modes, such as the tearing mode, are
affected by the interchange term. A prominent example is studied in

Chapter V.

Finally, we remark that both current (J")—driven and pressure -

(Jl)~driven instabilities can be viewed as a mechanisms by which the
magnetic field attempts to relax to its lowest free—energy

state: VxB = 0 [1].
D. Flute-reduced Shear—Alfvén Law

1: Multiple Scale Reduction
While the structure of the exact shear—Alfvén law determines
the types of 1instability, an exact linearization of‘ this lgw is
complicated due to the large number of terms present. It 1is +thus
useful to. develop lsystematié approximation schemes: to clarify the
linear analyéis and”also to meke a nonlinear treatment feasible.

One such technique, referred to as “reduction”, uses a
multiple—scéle perturbation theory  based on the flute-—like ordering,
Eq. (3.5). Since the shear—Alfvén mode decouples from the
compressional mode in just this limit, it is clear that the reduction

will be appropriate preciseiy when the shear—Alfvén law is relevant.
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There are two ways in which kﬂ/kl can be small. In the first
case, large aspect ratio geometry ‘leads naturally to k"a << 1 for
ka ~ 1, as displayed in Eq. (3.6). A reduction scheme based on this
ordering was developed by Strauss, and will be discussed in Chapter IV.
An alternative ordering assumes k"a ~ 1 but kré,kla >> 1. The
corresponding ﬁflute reduction” scheme limits consideration to modes
with short radial scale and/or large Fourier mode numbers. An
advantage of this ordering is that arbitrary geometries may be treated.
bf course this scheme is valid only if the dominant helicity of the
mode is loéally close to that of the magnetic field.

The assumption of' large kl is exploited by separating spatial

“dependences into two parts, fast and slow, and expressing functions as

fxt) = G xxt) = f(x.x.t) (3.23)
X C XX X; X

where ¢ << 1 represents k”/ki. Derivatives must now be taken with

respect to both sets of variables

=9 1
ek PIE L A (3.24)
where Vi = 5§—, etc. The choice of the fast variables Xf(X) is limited
% XX
<f
by the flute—~like ordering to
(B,eV) x; =0 ' (3.25)

so that all variation parallel to the equilibrium field is contained in
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the dependence on x . An equivalent form of Eq. (3.25) is obtained

using the notation of Eq. (3.24)

B, + V4 =0 . - | (3.26)

Equation (3.25) is a magnetic differential equation whose

solutions were discussed in Sec. IIB.3 in terms of flux coordinates.

If the fast dependence is limited to the flux coordinate, ¥, then the

reduced equation applies to modes that vary rapidly near é particular
rational surface. If an additional fast dependence;on {—qﬂ is allowe&
then ballooning modes can be treated. In this section, however; no
explicit‘choice of fast coordinates is mnecessary and the reduced
shear—Alfvén law will be valid independent of magnetic field geometryf
or radial localization.

Although the space of dependent variables has Beén enlarged in
Eq. (3.23) (from four to seven dimensions) anq‘thus the resulting
equations appear to have been complicéted, an expansién in the small
paremeter e will agtually yield much simplified equations. To
accomplish this expansion, equilibfiﬁm quantities, denoted by,éubscript
zero, will be -assumed 0(1) and to depeﬁd only on the slow variables.
The pefturbation will be assumed O(e¢) and to depend on both sets of

variables. EXplicitly we set

B = go(gs) + agl(gf’ﬁs’t) ;
P = Po(§s) + aPl(gf,gs,t) ;
n= no(zs) + 8n1(§f’§s’t) ; (3.27)

Vo= eV (xs.%5.1)




o= em (g t)

The anisotropic pressure has been assumed small since the equilibrium
is determined by scalar pressure. The ordering of the size of the
perturbing quantities, relative to equilibrium, has been chosen so that

nonlinear effects are as important as linear ones.-

2. Derivation

The ordering implied by Eéj;(3:27)Acan be substituted directly
into‘the shear—-Alfvén law to obtaih'the.rédﬁced-#ersion. Because the
'strongl force has been annihilated it is onl& necessary to reﬁain terms

in the shear-Alfvén law to lowest order [0(1)] to obtain the evolution

equation. For clarity we consider the effect of the ordering on each

of the terms in Eq. (3.20) separately.
A representation for the perturbed magnetic field may be obtained

from the V+B = 0. This becomes, from Egs. (3.24) and (3.27) °

0 = Vg*By + Vy*By + eVs*By = V4+By + 0(e)

and implies that B, can be represented in terms of two scalar fields:

By = V¥ x By + B = . (3.28)
BO

Here ¢(x;.%,.t) is the parallel vector potential and B, = B,*B;. The

contribution of B” to Vfo§1 is zero by virtue of Eq. (3.26).
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The parallel gradient operator is expressed as

e¢)
<1
1

1
= (§o+a§1) . (;Vf+VS)

Il

~-

B,eVg + B;+V; + 0(e) (3.29)

where Eq. (3.26) has been used to eliminate B,+V;. Use of Eq. (3.28)

allows a compact notation for this operator:

B:V =B .V, - v, ] (3.30)

where the bracket gives the nonlinear terms and is defined by

[v.0] = ByeVeyxVip . (3..31)

The current is obtained from Ampere’s law which is expressed as

c ,1
i= (; VetVs) % (By+eBy)
c
=g+ VB + 0() (3.32)

Note that even though the perturbing field is small, there is ‘an 0(1)
correction to the equilibriﬁm current. The representation of

Eq. (3.28) easily yields an expression for the parallel current:

J J+B J
a2 _ e e v?w + 0(g) . (3.33)
B B2 B, 4«
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Thus, from Eq. (3.30) and (3.33), the reduced form of the first Newcomb
term of Eq. (3.20) is obtained.

The expansion of the ‘curvature term of Eq. (3.20) exhibits in
general three separate linear terms as well as a host of nonlinear
terms. The flute-like ordering implies that only one of these terms is
impoftant. This significant reductipn foliows ffom expanding the

curvature (with b = B/B):

- — : 2
K =bVb = boeVsbo + E(El'vsho + boeVsby + ByeVsby) + O(e )

showing that there is no 0(1) correction to the equilibrium curvature,
K =;go.vsgo. An alternative expression is obtained from Eq. (3.17)

-0

. which gives

4 . '
£=5O+—§Vf(P1+B") + 0(g) . (3.34)

(o]

That the second term in Eq. (3.34) is zero follows from our above

discussion or from the 0(1) part of the éﬁuation of motion, (3.11):

0= - Vf(P1+B")

This is simply the expression of periurbed pressure balance implied by
Eq. (3.13).
Consider next the inertial terms. The perturbed velocity is

written in the general form

v

- 2
Vi =Y+ VBB | (3.35)
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where Vi = Eo X Yl X Eo, so that the convective derivative is

d 3
4 _38 Ly, +0
at ~ap T YVt 0(e)

The angular acceleration is given by

M d
g.V X (m.n E-{) =mnB_ . (Vf X a Yl) + 0(¢)

(3.36)

(3.37)

Upon manipulation this term can be expressed in terms of the parallel

vorticity, defined by

U= QO.Vf X Yl = ljo.Vf X ‘Yl s

and the divergence of the flow VieV, = vf.Yi:

dav 3 .
B-V x (myn ==) = myn, [(= + V V¢ )JU + U(T4-Y,)]

The remaining term is the Coriolis—like expression..

kxf = 5°x(Vfo£1) + 0(e)

which depends solely on the anisotropic pressure.

Substituting Egs. (3.30-3.40) into Eq. (3.20) yields the reduced

shear—Alfvén law

(3.38)

(3.39)

(3.40)
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B

d 0
ming (- BRUV Y ) = - (By+ V¥ — [y, Voy]} + 2Bxk oV (Pi+my) . (3.41)

Here, since the only component of the slow dependence which enters is

"in the go direction, we have replaced Vf by the perpendiculan gradient,
Vl’ and written QO.VS =B oV
3. Discussion

Regarding the shear;Alfvén driving tefms, the kink term does not
appear in Eq. (3.41) while the interchange term appeafs explicitly
linearized. The kink term is unimportant in the flute-like. ordering
since the gradients of the equilibrium parallel current are small.
Thus -modes wﬁich are localized-about.rational surfaces or have large
mode numbers are affected only by the interchange term.

The exact eqﬁilibrium curvature appears in the reduced
shear—Alfvén law, but perturbed curvature components are.small‘ due to
B .Vf = 0. In general the curvature can be written

0.

Ko = k YV + Kg(Vf—qVﬂ) , ‘ (3.42)

since Eq. (8.15) implies B ¢k, = 0. The two components are referred to
as normal and geodesic curvature, respectively. The geodesic component
is called such because if the field lines happen to be geodesics on
flux surfaces, Kg = 0[20]. It is clear that for modes localized near a
single rational surface the perturbed pressure gra&ient will be largest

in the y direction and the geodesic curvature will dominate. In

general, geodesic curvature has zero average on a flux surface and is




therefore not as destabilizing as it might appear. A perturbation with
high mode numbers will generally feel the effect of the normal
curvature, and in the ballooning case both components are important.
(See VIC).

The inertiai term in Eq. (3.41) contains tﬁo nonlinearities. The
convective derivative contains only the perpendicular velocity which
advects the parallel vorticity. The divergeﬁce tefm implies that when
the fluid has a perpendicular divergence, the vorticity changes tb
conserve angular momentum, just as the. ice skater’'s angular velocity
depends on the extension of his arms. Note that tﬁe parallel vélocity
appears nowhere in the reduced law.

The final nonlinéar ferm, [w,V? !, fepresents magnetic
reconnection and will be discussed in the next section.

It is of interest that when the reduced law ig linearized, and T
is neglected, only the three scalar fields (U,w,Pl) abpear. It is
these fields, and possibly one more, ﬁhich typically govern the
evolution of low frequency plasmas. Obtaining closed sets of équations

in these fields is the subject of Chapter IV.
E. Rational Surfaces and Magnetic Reconnection

1. Boundary layer
It is wuseful to rewrite the exact shear—Alfvén law,

Eq. (3.20), in the following schematic form:

B,+V(6J,/B,) = ON + 6°N + Le(6f) + 6Le(6f) . (3.43)

B —————




Here 6N represents the linearized Newcomb terms, i.e., the interchange
and kink terms; the operator L represents that on the left-hand side of
Eq. (3.20); and the two 0(62)—terms represeﬁt nonlinear contributions
to N and Lef. The main point of Eq. (3.43) is of course to isolate the
singularity at k” = 0.

Suppose first that the nonlinear terms are neglected, and that L
is relatively small (as it typically is for x # Xpn)- The resuitiﬁg

lowest order equation

B,V(6J,/B,) = 6N , (3.44)

is simp;y a linear description of mneighboring equilibrium. It, is
well-posed, provided 6N satisfies the appropriate Newcomb coﬁdition on
any mode-rational surfaces which may be pfesent. Instabilities for
which 6N does satisfy this constraint include the ideal interchange and
kink modes.

However, especially when the ideal modes are found to be stable, a
complete stability investigation requires loosening the constraint.
.Thus we admit perturbations 6N which do not satisfy Eq.»(2.51). Notice
that, for small 6 and L, Eq. (3.44) remains approximately valid in
radial regions suitably removéd from the mode-rational surfac%. Near
X = Xmn° however, it would predict divergence of the Fourier
éoefficient (dJ")mn and is therefore inadeqﬁate;

Thus the shear-Alfvén law leads to a claséicalv boundary—-layer
problem; the exterior of the boundary layer (or “current layer") is
described by Eq. (3.44) while its interior description must include one

or more additional terms from Eq. (3.43), in order to resolve the




singularity. Solution of the boundary-layer problem follows, in
general, the classical prescription: one solves the interior and
exterior equations separately, allowing enough freedom in boundary
values to asymptotically match the two solutions. Examples are treated
in Chapter V; anticipating that discussion, we remark that Eq. (3.44)
can, with suitable approximation, be reduced to an ordinarj
differential equation for the xy—dependent amplitude (6§-Vx)mn. One

then finds that the annulus y = corresponds to a regulaf singular

mn
point of this equation.

The radial width of the bbundary layer, w, depends upon w,
magnetic shear, and various dissipative effects, but it is always very

small compared to the plasma minor radius: w << a. Hence, in solving

the interior problem, one can evaluate most equilibrium parameters:at

X = Xgn* and identify wgy =k (|x—xpn! = w)vy.  In  Sec. IIA we

distinguished between local equilibrium theory and global equilibrium
theory. It is now clear that only the former enters solution of the
interior boundary layer problem, and also that solution of the exteriof
problem shares with global equilibrium theory the properties of being
analyticélly intracteble and highly device—specific.

Linear resolution of the singularity evidently depends upon th§
inertial term, L+6f, and therefore requires additional ~ physical
information, relating 6f to 6B, for closure. A generai prescription
for closure is not easily written down, even schematically; closure
schemes are sensitive to various plasma parameters, such as
collisionaiity, and often complicated. The enormous variety of

distinct boundary-layer modes reflects a corresponding variety of
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aﬁproximate closure relations. Several examples are considered in the
following chapter.

Nonlinear treatment of the singularity reliés primarily on the
term 62N, i.e., on nonlinear magnetic perturbation. The point is that
nonlinear structures often evolve slowly, so that ‘inertial effects
remein small. The most striking‘feature of the 62N term is that it is
usually associated with changes in the magnetic fiéld topology: the
original toroidal flux surfacé is deformed, near the rational surface,
into a more complicated structure involving multiplev tori. Thus a

Newcomb condition applied to the unperturbed rational surface is no

longer relevant. One can say that the 62N terms, when they change the

field topology, serve to obviate the singularity rather than to resolve

it.

2. Magnetic Islands
We wish to consider static perturbations of the equilibrium field

studied in Chapter I,

50 = V(XVX o+ qVXxV'ﬂ

As usual, we suppose that'g0 is characterized by a sequence of nested
tori. By including a perturbation, ég <L 90’ we shall find that some
of these tori suffer topological change, which is generically referred
‘to as magﬁetic reconnection. (The general problem of field-line flow
has been treated using the modern methods of Hamiltonian'dynamics by

Cary and Littlejohn [21].)
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To avoid confusion, one technical point should be mentioned first.
Recall from Chapter II that, except in the strictly axisymmetric case,
the unperturbed field will necessarily include "bad" regions, with
small magnetic islands and thin ergodic volumes. While the total
volume of such regions is presumed to be negligible, their existence
means that 6B can strictly have only a quantitative, rathér than
qualitative effect. That is, the‘perfurbed field differs from §0 in
that its bad regions, while perhaps océupying a small fraction of the
plasma volume, are nonetheless of appreciable size.

We restrict our attention here to island structure. The dynamics
of magnetic reconnectioﬁ is studied in subsequent chapters.

It is convenient to express 6B in terms of a vector

potential: 6B = deé. Magnetic reconnection requires only a single

cqmponent' of 6A; we choose the toroidal component for simplicity and

because it often dominates in linear stability
considerations: dé'= A¢V(. Supposing first that A§ contains only the

helicity (m,n), we write

Ag(xr'ﬂ’() = = 2 A(X’na) )
m .
where
a=¢-T9 | (3.45)
n : .

is a helical angle and the (-n/m) factor is inserted for convenience.

Thus

- TIHNT U TR X



6B = VA,xV¢ = 2 28 vy, 4 A gy
- ¢ m 3o

wlm
> |

Two components of the full magnetic field, go + 6B, are relevant,

BX = §B.Vy = - 24
e \/g 30(
and
1 m JA
B* =B «Va + 6BeVa = — (q — = — —
o) 4 "E (q n aX)

The trajectory of a field line in the (x,a) plane is described by

" the equation

dx _ BX _ 3A/3a - (3.46)
da  pgo g-m/n—-34/dy '

" which has the solution ¥ = y«(a), say. It is clear that when y is far

from the rational surface:
l[a(x) — m/n| >> JA/3x ;

the field 1line trajectory varies only mildly with «; in fact,

Eq. (3.46) yields

X = Xo + A/[a(xg)-m/n] . (3.47)
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However, in the mneighborhood of the rational surface, the perturbation
is much more important. For this case we can expand y and g about the

rational surface, letting

q(x+«) = m/n+ q’X . (3.48)

Using these approximations the first integral of Eq. (3.48) takes the

simple form

2

H = £ 3% - A(X(x).0) | (3.49)

where H 1is the  integration constant. ' We have written the result in :

“this. form to exhibit the analogy with the Hamiltonian mechanics of a
particle with momentum X and mass 1/q’, in a potential —A (which may be
momentum dependent) where time can be interpreted as né¢/m.

For illustrative purposes, suppose that

A(X,a) = a(X)cosna
There are two important cases. Consider first the case in which a(X)

is approximately constant; that is

q’Xg ~a>»a’X,

which implies
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g’a(X) >> (a')2 . (3.50)

Neglecting the X dependence of a reduces Eq. (3.48) to the pendulum

Hamiltonian. This Hamiltonian has stable fixed points at (X=0,
na = 2nk; k=0,1,...,n-1) which therefore corresponds to a single
helical field line with rotational transform.>m/n. Encircling this

field 1line, which is effectively a new magnetic axis, are new magnetic

surfaces, which form a helically twisted torus. From the definition of

o it follows that on a surface of constant ¥ (or ¢) these surfaces look

like a chain of n(or m) islands.
The unstable fixed points for the pendulum Hamiltonian, at [X=O,

na = (2k+1)m, k=0,1,...,n-1], are the x-points at which the

reconnection of field lines to create the islands occurs. Connecting .

the x—points is the separatrix which still encircles the originél axis,

as in Eq. (3.47). On the separatrix H=a, and Eq. (3.49) gives

X==W cos(na/z) (3T51)

where W is evidently the island haff width and is given.by

W= 2(a/q) /7 . ' | (3.52)

The new torus has its own sequence of mnested surfaces, and

therefore its own flux coordinates, (xl,ﬂl,ql). It is clear that these

variables cannot smoothly connect, at the separatrix, to (x.,%,¢). For
example, 01 changes by 2n in a region over which ¥ changes by less than

2n/m. In particular, the island safety factor is measured with respect
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to an O-point and is therefore very different from q (see, for example,

[22]). It is not hard to show that

= v, (3.53)

I

R
w8
=

on typical island surfaces; thus, for weak perturbations, q; >> q. On
the separatrix, q1 is always infinite, since x-points prevent
separatrix field lines from encircling the island magnetic'&xis.
Returning now to Eq. (3.50) we see that it may be violated when
the magnetic perturbation is odd about the rational surface, as in the
case of electromagnetic drift waves [23]. In this case we can set

a{X) = a’X with a’ constant and obtain the trajectory solution from

Eq. (3.49). . The unstable fixed points occur at (X=0, na = (2k+1)ﬂ/2J%. 

where the energy, H, is zero. Therefore, the separatrix solutidns from

Eq. (3.49) are

X(a) =0 ; X(«) = (2a’/q’)cosna .

" The odd magnetic field case 1is primarily distingﬁished by its

relatively small island half-width,

—a'/q’ (3.54)

which 1is proportional to 6B rather than (63)1/2. In this sense,
topological change is significantly less serious when éBX(xmn) = 0. The
reason for this difference can be understood by noticing the similarity

between the trajectory equation, Eq. (3.48), and the magnetié
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differential equation, Eq. (2.29). Observe that the solubility
condition for the latter, Eq. (2.31), copresponds to Amn = 0. Thus
“strong” magnetic reconnection, with W ~ (GB)I/Z, is an artifact of
failure to satisfy the Newcomb condition. It is a necessary artifact

when S, in Eq. (2.31), includes terms proportional to 6BX.

3. Islands and Linear Theory

Linear theory assumes that field perturbations such as 6B are.

arbitrarily small, and it rules 6ut the occurrence of terms involving

(6B)1/2. But we have seen that (6B)1/2 necessarily enters if

(6B VX)py #0 &t X =lgp - | (3.55)

“however ‘small the perturbation may be. Thus Eq. (3.55) is inconsistent:

with any strictly lineér analysis.

That a linear description of reconnection is nonetheless possible
can be understood as follows. Note that dependence on (63)1/2 ~occurs
only near and within the separatrix; far outside the separatrix,
Eq. (3.47) displays a simple linear ﬁerturbation of - the trajectory.
Furthermore 6B need not vafy across the separatrix width{ the topology
change depends on Eq. (3.55) but is otherwise quite insensitive to its
spatial structure. Thus it is possible for the important variation 6f
6§ to occur in that region, far outside the separatrix, where
linearization is wvalid. A linear description, ignoring the island

region entirely, is clearly adequate in that case.
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The linear regime for magnetic reconnection is therefore

characterized by

wo>>W o (3.56)

Here w, the width of the shear—Alfvén boundary layer, is identified
with the local spatial scale for variation of 6BX. Since w is
independent of amplitude, Eq. (3.56) will .always be satisfied for

sufficiently small 6B.

4. Rational Surface Spacing
In addition to w and W, there 1is a third width of basic

importance: the spacing between mode-rational surfaces.

Consider a field perturbation, A(x,%,¢) which lacks helical™

symmetry but is reasonably smooth. Then meny Fourier components, Amn’
will contribute to A and islands will form near many rational surfaces
Xmn - However, the smoothness of A requires the Amn’ and therefore the

corresponding island widths Whn, to become small for large m and n. 1If

islands smaller than a certain size (such as a charged. particle Larmor

radius, or the island size associated with go)'are acknowledged to be

irrelevant, then there is an effective bound on n,

and, for sufficiently small A, most irrational magnetic surfaces will
survive destruction. (The KAM theorem [2] yields a stronger version of

this statement, implying that the total volume of "bad” regiomns is
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small \ whenever A is sufficiently small and sufficiently
differentiable.)
Two nearest neighbor surfaces on which appreciable islands can be

found correspond to me‘and
Xm+1,N = XmN T OXpN
For a sﬁooth g-profile, we have
mtl = Nq(xm+1’N) =m + Nq Ax,n

Thus

Mgy = Na ()] - (3.57)

measures, in units of y, the rational surface spacing.
Our study of island structure considered only a :single helicity
perturbation. ‘It is nonetheless locally accurate provided that

Aan >> Wﬁn

The opposite case,

AMXpn S W
evidently . corresponds to the overlap of magnetic islands centered on
neighboring rational surfaces. Trajectory equations involving multiple

helicities are easily written down for the overlapping case. However,
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as pointed out by Chirikov [24] and others, the multiple helicity
equations are nonintegrable, and numerical solutions display a chaotic
wandering of field lines which satisfies typical criteria for
randomness. One says that the field 1lines become stochastic; the
threshhold for stochasticity has been studied in numerous cases and is
roughly approximated by the "Chirikov condition”,
AXpn = EWhnb
The significance of island ovérlap obviously extends beyond the
domain of instability theory. In particular, overlap is responsible
for the previously mentioned formation of'ergodic volumes: stochastic

regions display poor plasma confinement [25,26,27]. Thus, while the

nonlinear growth to macroscopic width of a single island chain will™

clearly degrade cbnfinement, the possibility of overlap between
numerous, relatively small island chains is at least equally serious.
In the context of linear theory, the relevant comparison is
between Aan and Wons ‘the layer width of the (m,n)-Fourier mode.
‘Notice that, even in the presence of numerous harmonics Amn’ a single
component can locally dominate if
Axpn >> W .. (3.58)
In this case it is sensible to restrict attention to a single rational
surface. Toroidal -curvature may still couple various harmonics, bﬁt
the fundamental, whose shear;Alfvén law is uniquely singular, will be
readily distinguishable. Most linear theéries of tearing instability

are based on Eq. (3.58).
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The opposite case

Mg € Yo (3.59)
corresponds to overlapping boundary layers and often characterizes
ballooning instability. The corresponding eigenmodes intrinsically

involve many helicities, even locally; they typically extend over

. numerous rational surfaces. The linear analysis of such eigenmodes

requires a distinct methodology, which is studied in Chapter VI.

The mode—number—dependence of Won is usually weak compared to that

of Aan ~ n_l. Therefore the issue of boundary-layer overlap depends
largely on n, and one can roughly associate Eqs. (3.58) and (3.59) with

the cases of "small n” and "large n" respectively (recall gq~m/n~1).

Let us summarize. The physics of magnetic island formﬁtion!~-

depends critically upon the relative magnitudes of W, Ay and w. The
first two of these widths are given by Egs. (3.52) [or Eq. (3.54)] and
Eq. (3.57); the third is a local scale length for 6B depending upon
boundary-layer dynamics which have yet to be considered concretely.
When Ay 1is the largest of the three widths, .the dynamics are
locally controlled by a single‘ helicity. This case corresponds to
conventional boundary-layer modes, in linear theory (Ax > w > W), or to
coherent evolution of a single island chain, in nonlinear theory
(Ax > W > w). |
When the largest width is W, field lines become stochastic and
inadequately approximated by go' Linear theory is rarely useful; the

relative ordering of w and Ay becomes irrelevant.
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Finally, when the largest width is w, one finds linear

perturbations without well-defined helicity (w > Ax > W) or.

evolution modified by local stochasticity (W’>.W > Ayx;

example, [28]).

nonl inear

see, for
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IV. Reduced Fluid Models
A. Introduction N

Exact linearization of the shear—Alfvén law produces a
multitude of terms, especially in toroidal geometry. Similarly,
closure of the system can become extremely complicated unlesé severe
approximations are made at the start. Such considerations have
motivated the construction of numerous, more or .1e§s systematic,
simplification schemes.

Two sorts of simplifying approximation can be distinguished.
First, the plasma dynamics may be simplified by presuming each plasma
species to be adequﬁtely: represented by a (moving) Maxwellian
distribution function. The defects of this "fluid approximation'" are
clear, but ﬁot always serious (see Sec. C).

In the second sort of approximation, one uses a scale length
ordering (as in Sec. IID) to select dominant effects. When such
geometrical simplification is applied ab initio (rather than to the
linear dispersion relation, for example), the resulting dynamical
,system.is,said to be "reduced”. Redﬁction based on large aspect ratio,
for example, yields results which usually approxiﬁate= those of more
elaborate'calculations. Moreover, the exceptiongl caées of qualitative
disagreement are fairly well understood.

Reduced fluid theory, the main subject of this chapter, combines
both types of approximation, and therefo?e may appear rather crude.
Yet even the simplest reduced fluid models have been found to be
remarkably predictive: they simulate such important tokamak phenomena
as dynamic island formation, magnetic stochasticity and plasma

disruption (see, for example, [29,30,31]). Numerical solution of such
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models has become a crucial element in the interpretation and design of
tokamak experiments. The putative reason for this success is that,
while fluid-reduction may blur certain features of the linear response,
it adequately represents the dominant nonlinear effects.

Here we consider reduced fluid theory as a pedagogical tool, and
therefore emphasize its linear predictions. The point is that key
features of less approximate linear theories wusually sﬁrvive, in
simplified form, the reduction process. On the other hand, the reduced

equations are relatively compact, transparent, and analytically

tractable. In this sense, they provide’ a “hydrogen—atom’” model for

toroidal plasma electrodynamics.
In Sec. B we derive one of the simplest reduced -fluid

models: reduced MHD. The earliest version of reduced MHD 1is due: to

Kadomtsev and Pogutse [32]. This version was studied numerically by .

Rosenbluth et al. [33] and then significantly developed by Stgaﬁss
[34,35]. The model assumes axisymmetry of the vacuum magnetic field,
and is therefore appropriate to a large aspect-ratio tokamak.‘
Modifications and elanrations_ of reduced MHD are studied imn
Sec. C. ‘ These include both geometrical and, especially, kinetic
refinements. We point out that certain non-MHD effects, wusually
compﬁted from kinetic theory, can be obtained as well from a

generalized, reduced fluid model.
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B. Reduced MHD

1. Normalized Coordinates
Reduced MHD is derived from an expansion in the inverse

aspect ratio:

[recall Eq. (2.107)]. The ordering procedure is clarified by means of
dimensionless field variables and coordinates, chosen to make the
various powers of ¢ explicit. A convenient set of dimensionless

coordinates (x,y,z) is defined in terms of cylindrical coordinates,

(R.¢,Z), by

oz o= —¢ . - (4.1)

Thus (X,y) represent coordinates in the plane perpendicular to the
vacuum toroidal field and are scaled with the minor radius, while z is
scaled with R. For this section we will hencefofth use a dimensionless

gradient operator defined by

. ~ 3 - 3
VsV = x5 4+3-2%+4 - 4.2
2 * ox Y dy 2 l+ex dz ' ( )

where the unit vectors x = ﬁ, and §=—Z are position dependent, §=i and
l+ex = R/RO. It is convenient to decompose vectors into two parts,

transverse (L) and longitudinal (z) defined by
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A = XA+ 3A ‘ (4.3)

where L designates components perpendicﬁlar to the wvacuum field, and

Ax’ etc., designate the ordinary components. of the vector.

The subsequent calculations are simplified if the curvature terms

arising from gL x = z and él Zz = —%x are made explicit. For example,
Z z

the dimensionless divergence and curl are

v e aAZ
A = V «A + — + A 4.4
- L=l 14ex (az x) (4.4)
VxA = -zxV A, + z(z.leél)
JA JA
£ ~ y A X .
- + — — A 4.5
C1+ex [ 9z Y (az Z)] ’ ( )

where the transverse operator V, is to be computed as if the

coordinates were Cartesian, e.g.

A, dA
X .
Ve, = —F4—L _ 4.8
L2l ax oy ' (4.8)

The fundamental time scale in MHD is set by the Alfvén speed,
2 _ npe
VA = Bc/47mcm1 ,

where BC and n, are constants, measuring respectively the vacuum

magnetic field and ion density at the magnetic axis. The poloidal
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dimension sets kl ~ a_l, so that the compressional Alfvén time is

measured by

Ty = 8/v, . (4.7)

Recalling from Eq. (3.6) that

k,/k ~ 0(e) o (4.8)

we see that the shear Alfvén time is TA/E. Hence the appropriate

dimensionless time is given by

T = (&/Ty)t . ' - (4.9)

The significance of reduced coordinates should be ciear. .Large
aspect ratio has been used to distinguish the transverse (a) and
longitudinal (RO) scale lengths. The character of tokamak confining
tfields (BP/BT ~ ¢) guarantees that their ratio, ¢, will be comparable
to the flute-like ordering paremeter, as in Eq. (4.8). In this case,
as noted in Chapter III, the shear—Alfvén time scalé becomes of primary
interést.

We point out that our definitions [whiéh make (x,37.2) a
right-handed triplet]_ differ slightly from those of Strauss. The

different convention affects some signs in the final equations.
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2. Normalized Fields
The dimensionless fields of reduced MHD are defined in terms of
the natural units Bc,vA, and a. In this section the orderings for
"high-beta" reduced MHD are displéyed, leading to the conclﬁsion that
only three fields (¥,p,p) are required through order 52.

The vacuum magnetic field

EBC/(1+ax)

has a controlling influence on tokamak dynamics. Reduced MHD expresses
this fact by assuming that corrections to it are of relative order e.

Using Bc to normalize we write

> B=——+ ¢V & (4.10)

where ¢ . is the dimensionless vector potential given by é/(Bcé).

Following Eq. (4.3) the perturbing field is split ‘into longitudinal and

. transverse parts. Letting

V= o, | (4.11)

we can use Eq. (4.5) to expand B as

B =3+ e(-2x + 2B, — axV ) + 0(c%) . (4.12)

R s SRR TR 1 18 1118 (1 G 81t 1 e —
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It can be seen that (—¢) is proportional to the poloidal flux.
Similarly the dimensionless current is defined byv

Am8 5, 5 = VxB , (4.13)

c B, - - -

c
where J = 0(¢) follows directly from Eq. (4.12).
Next consider the electric field, E. We introduce the

dimensionless electrostatic potential by

? = ep (4.14)

. where & is the ordinary potential. Then Faraday’s law

laA
E=-Vp - = =
- c dt

E->E=-¢(Vo + ¢ 3 H/371) (4.15)

where the dimensionless gradient and shear—Alfvén time scale are used.
Note that our normalizations have made the 1lowest order transverse
field electrostatic; this is a physical artifact of the shear-Alfvén

time scale.

| T p—
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Velocity is naturally expressed in units of Vas and we. assume it

is order ¢:

v

~

= eu . (4.16)
vy : .

Finally, we need a normalized measure of the plasma pressure, P.

. We use a high-beta ordering, as in Eq. (2.133),

P ~ EBg/Bﬂ ,
and .therefore define the dimensionless preséure, P, 'by

— P = ¢p . (4.17)

Substituting the dimensionless fields into the equation of motion,

Eq. (3.11), immediately gives

L

Be

c = - g Vp + (VxB) x B (4.18)

D-'IDJ
S Ise

where we set the anisotropic pressure to zero in MHD. The JxB term can

be simplified by means of Egs. (4.5) and (4.12):

(VxB) x B = —c¥ B, + 0(c?) . ' (4.19)

Therefore, Eq. (4.18) yields

TYTIECT 2N I
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eV, (B +p/2) = 0(c?) | (4.20)

expressing lowest order force balance as in Eq. (3.13).

Equation (4.20) will allow us to eliminate B,, the diamagnetic
correction to §T’ from the closed system. Notice that B” ~ pﬂl ~ Y is
not negligibly small, as it would be in low-beta (ﬁT~52) theory. [The
present analysis parallels, in more concrete form, the general
discussion of Chapter III. . For example, Eq. (4.20) explicitly
expresses the shielding of the "strong” ixg‘force and shows why this

force is annihilated by B+Vx.]

3. Reduced Shear—-Alfvén Law
The shear—-Alfvén law, Eq. (3.20) can be expressed in dimensionless
form using Eqs. (4.10)—(4.17). Here we again use the MHD approximation

E=O to obtain

R n du 2
e"Be(Vx — 2kx) — — =B B-V(J,/B) + £B+kxVp ,
e ! n, dr - - - :

'—=_——+ro . (4~21)

The reduced law follows from expanding Eq. (4.21) in powers of ¢ and

discarding 0(53) terms. As we will see below, the lowest order

nonvanishing contribution to each of the terms in Eq. (4.21) is 0(52);

therefore, each term needs only be calculated to lowest order. We

found a similar result in the flute reduction of Sec. 1ID.
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Consider first the "kink” term on the right-hand side. Equations

(4.12) and (4.2) imply

B.V = 5(52 — BxV eV ) +0(eF) (4.22)

That the parallel gradient is O(e) is consistent with Eq. (4.8). The

parallel current, as defined by Eq. (4.13), becomes

B:VxB = ﬁong + 0(52) ;

W=

The combination of Eqs. (4.22) and (4.23) shows the kink term is O(a?)
as expected.
The interchange term involves the curvature « which, from
Eq. (8.17), can be written
£ =2V, (8% + 0(s%) = oV (p/2 + By - x) + 0(c)
where in the first equation the corrections are due to inertial terms

and in the second we expand B2 uéing Eq. (4.12). Combining this

expression with the force balance relation, Eq. (4.20), we find

kK =-eVx . | ' ' (4.24)

Since k = O(¢) the lowest order field may be used to obtain the

interchange term:

—eV3 + 0(e®) . | (4.23)

AT RN Tl —




-109-

eBxk¥p = —£°2xV x.¥ p . . (4.25)

Treatment of the inertial terms on the left-hand side . of

Eq. (4.21) requires a closure‘relation'for the velocity. Here we use
the MHD ansatz,

V = cExB/B® + bV, |

that the perpendicular velocity is given by the ExB drift (this is

refined in Sec. C). In dimensionless variables [Egs. (4.15)—(4.16)],

we obtain
Lur= ﬁxVi¢ + unﬁ +0(e) S ' (4.27)

which shows that onlf the electrostgtic driff enters at tﬁe .required
order.of approximation.

‘A disﬁinct_ simplfffcation is 'tq_ugeplace the factbr n/nc in
_Eq.‘(4.21)' by- unity. This;'approxim;£ion, 'called the Boussinesq
approximatign 'by analogy witﬁ a' similar lbﬁe used in the theory of
convection [36], is not strictly juStified by the e-ordering; héwever,
density gradient terms do mnot appear to.bé important in the pre;ent
context, and they would yield undesirable cubic nonlinearity.

Because of Eqs. (4.24) and (4.27), the ;owest order inertial term
simplifies to |

R du 2 0 2

zeVx —= = ¢ = Vi¢ + ¢

z+Vx (u+Vu) .
: ar aT (“ “)

| _(4.26)'
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The nonlinear term can be simplified using

Vx(u+Vu) = —Vx[ux(Vxu)]

and Eq. (4.5) to show that the parallel velocity does not contribute

and therefore

du
RouVx —= = R[22 L 3 2 3 , _
£z Vx ol [87 + z.Vl¢le]Vl¢ + O(al)‘. . (4.28)

Note that no assumption that u << u, was made.
Equations (4.22), (4.23), (4.25) and (4.28) combine to yield the
nonlinear; reduced shear—Alfvén law. The final expression is made

.compact. by means . of .certain . (conventional) abbreviations. The

normalized longitudinal current is denoted by
5=y,

(noie that J = -J”) and the vorticity by
U= Vi? .

We also intypducg, for'any functions f and g, the bracket
[f,g] = Eovlfxvlg

Finally, the reduced law is written as

ly

i L

ST AN




-111-

U+ [pU] =~ z—:+ [v.3] - [=.p] . (4.29)

4. Closure Relations
A closed system for (¥,p,p) evidently requires, in addition to
Eq. (4.29), two other relations. In reduced MHD, the latter are

obtained from a parallel Ohm’s law,

B+ (E+c VxB) = n,B+J , , ' (4.30)

.and from the MHD energy conservation law,A

3P 5 g
C L VP =~ 2 pYey 4431
A at - - 3 P.. ("N ' . . ( ‘. )

In Eq. (4.30), my represents paraliel resistivity.

Reduction of Egs. (4.30) and (4.31) closely follows the scheme of
the previous subsection and need not be elaborated here. However, a
few ¢omﬁents are in order. :

In the Ohm’'s law, E is provided by Eq. (4.15) and V by Eq. (4.27).
Notice that the electrostatic contribution to E” ='§~§/B does not
dominate, as it does for E,, because of Eq. (4.2). Thus the

dimensionless parallel electric field is

dz ot

E, =222~ [y.0] + &) + 0(:d) . | (4.32)
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On the right-hand side of Eq. (4.30), m) is presumed to be very small,

so that only the lowest order J" = Jz is retained. Thus one finds that

with

n = Ty ETg - (4.33)

Here 7, is the resistive skin time given by

s

Ty = 4ma®/(c%n,) . (4.34)
TheAenergy conservation law in dimensionless form is

82 3 + agu‘Vp = 52 3 pVeu .
T - 3 -

Since Yaé, from Eq. (4.27), is clearly O(z), the compressibility term

on the right-hand side may be consistently neglected: reduced MHD

yields an effectively incompressible plasma fluid. Pressure evolution

is then determined by simple ExB convection:

op -

3

In summary, high;beta reduced MHD 1is defined by the following

system [35]:

R T I8 B 1t




au ‘
3, t [eU] =3 - [x.p] . (4.35)
gﬂ + Vo =1l , (4.36)
g
3p [0.p] = 0 , (4.37)
ot
with
U = vfgp, ] = vfw : (4.38)
V=2 - [y, ] ' (4.39)
] 3z ' :
and
Al
[t.g] = Q.Vlf x Vg = Vl-(gﬁxvlf) (4.40)

LA

Note that V, denotes the nonlinear gradient along B.
Equations (4.35)—(4.40) have been written in a form which allows
straightforward transformation of the transverse coordinates, x and y.

Cylindrical coordinates, (r,%), defined by

X = rcos®, y = rsind , T (4.41)
are frequentlf useful. We then have

8%
ﬂE

+

_19 N
r dr ar r2 3
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and

1 ,9f 3g Jdg If
o] =1 (2L dg g of 4.42
[f g] r [Sr L0 or 80) ( )

5. Discussion

Reduced MHD is a sifted version of the fullA MHD system. The
sifting process is severe, but emphatically self-consistent. Becauée
of.the "drop 53“ rule, it provides a three—field model without explicit
depeﬁdence on aspect ratio. Thus all terms in the final equaions are
formally comparable.

The reduced equations are nearly devoid of toroidicity. For
example, . the Grad-Shafranov operator, A,, is reduced to Vz, as would
pertﬁin»in a cylindrical tokamak. Toroidicity explicitly survives only

in the interchange term,
[X,P] « EXV_LR'VJ_P ’

and this remnant is rather érude: it corresponds to the curvature of a
purely toroidal (§=§T) field line.

Low-beta reduced MHD dssumes ET ~ 52 and thus omits the
interchange term, decoupling the pressure. The resulting two—field
theory evidently models a cylinder, although toroidal topology can
still be imposed through periodicity conditions.

The parallel flow speéd is absent from Eqs. (4.35)—(4.39) not
because u"(~ul) is presumed small, but because of scale-length

separation, Eq. (4.8). 1In fact, u, evolves without‘éffe¢ting Y.,p or p

TN HITINEET TETTI
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[35]. Similarly, the transverse vector potential is not presumed

small: Ldl ~ Y. Rather, .« is eliminated from the final system by

1
means of lowest order force balance (equilibration of compressional

Alfvén waves) as in Eq. (3.13) or (4.20).

It is instructive to examine the reduced MHD equilibrium.

Considering first Eq. (4.36), we set
Yo = 0

but retain, temporarily, 3/397. Then

Mo _ o2
ar - 7iYo
an equation describing resistive diffusion of the poloidal field. The

relevant time scale is evidently the skin time of Eq. (4.34), which is
very long (TS ~ 1 sec.) under experimental conditions of interest. In

studying instability, one :ignores such slow variation and neglects

3Yy/dT.

Observe next that the reduced energy conservation law becomes

empty in the equilibrium state. The reason is that equilibrium
pressure is controlled by processes faster than shear—-Alfvén dynémics
and therefore missing from the reduced system. The relevant constraint
is femiliar and obtained from, for example, Eq. (4.18): 'goono = 0.
We wuse Eq. (4.22), assuming an axisymmetric equilibrium, to infer that

[Poxwo] =0, or

Pg = P0(¢0) ' (4.43)
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a reduced version of the general equilibrium result.
Upon substituting Eq. (4.43) into the equilibrium version of

Eq. (4.35),
[%o:30] = [x.pg]l =0,
we obtain

[¥g, Jg + xpgl =0 , (4.44)

where pg = dpo/dn,//0 and we used the identity
[f,g(’WO)] = g'[f,"//o]

for any functions f(x) eand g(¥g)- Equation (4.44) implies that
Jg + 2xpj is an arbitrary function of ¢0 and thus yields the reduced

Grad-Shafranov equation

V3o = —xpg + F(¥g) - (4.45)

Since ax'= R—RO, this result 1is related to the exact version,
Eq. (2.105), in an obvious way. It also shows explicit}y why = the
normalized minor radius, r, cannot label equilibrium.flux surfaces. In
fact, a solution of the form y5(x,y) = ¥y(r) is perﬁitted only when pj|
is neglected, as in the low-beta case. Equations (4.43) and (4;45) are

the essential results of reduced equilibrium theory.
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Finally, we comment upon the integral invariants of reduced MHD.
Most of these are derived from the identities

Jaxt[g,h] = [axg[h,f] = fdxn[f,g] , (4.46)

which follow from Eq. (4.40), provided surface contributions are

neglected. Here, f,g and h are arbitrary functions and d§ = dxdydz. A

corollary is
fax[t.e] =0,

which, in view of Eq. (4.35), implies vorticity conservation:

d . E
— U=0".
= [dx 0

~

The energy invariant 1is perhaps most interesting. We multiply
Eq. (4.35) by ¢, Eq. (4.36) by J, add the results and integrate.
Because of Eq. (4.46), the result is

au

U L - 2
Jaxlo -+ 3 == + x[p.o]} = Jax ns° .

Here, [p,¢] can be eliminated by means of Eq. (4.37), while the first
two terms in brackets are simplified by partial integration. Thus we

find

9 1 2 2 _ - — 2
5 Jax{lVel® + |V I - 2xp) = —[dx 7%, (4.47)
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showing that the sum of kinetic, magnetic and interchange energy
changes at the rate prescribed by Ohmic dissipation.

A survey of reduced MHD invariants is provided elsewhere [37].
C. Generalizations of Reduced MHD

1. Introduction
We have already noted that reduced MHD accounts for tokamak
curvature rather crudely. For example, it omits cylindrical curvature
terms, reSulting from the poloidal component of B. Such weaknesses
result solély from .fhe aspect ratio expansion and can be remedied by

the inclusibﬁ of higher  order terms [38,39]' Other physical

deficiencies va the model are not related to reduction but reside’in

MHD itself. For‘example, MHD assumes the perpendicular plasma velocity
to be eapproximated by the ExB drift velocity, as in Eq. (4.26). This

assumption can be justified only if YE is quite large,

Vg ~ Vthi , (4.48)
[we use the notation Vip = (ZTS/:ms)l/2 for : the thermal speed of
s’ '

species s]. Most observed plasma motions are comsiderably slower.
Such MHD simplifications as Eq. (4.26) are sometimes justified as

describing the small gyroradius limit,

ko; << 1, (4.49)

where k is the wavenumber, and
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Pi = Vin /%

measures a typical ion.gyroradius (a4 = eB/msc). In fact, the actual
justification for MHD is more complicated, for two reasons. First,
certain critical MHD assumptions involve parallel | dynamics and
therefore are not related to gyration. Second, even for the
perpendicular dynamics, Eq. (4.49) does not imply Eq. (4.26). One must
additionally assume that the ﬁotions of interest are fast, Eoth in the

sense of Eq. (4.48) and in the sense that
@ ~ Omp ~ (kpi)ﬂ.‘ (4.50)

Here w represents a frequency of interest and WMHD Cen be estimated by,

2 o 1/2

OMHD ~ k(vthi + vy )

Both Egqs. (4.48) and (4.50) are applicable in certain circumstances
(such as tokamak disruption), but neither is appropriate for describing
a wide class of obser%ed and potentially dangerous perturbations. The

latter are roughly described by Eq. (4.49), with

V ~ (kpi)vthi (4.51)
and

w ~ (kp;)ogm - | | (4.52)

The MHD simplification of parallel dynamics mainly concerns

electron motion. It is best appreciated in terms of Eq. (4.30):
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(4.53)
Here o = l/n" is the conductivity first calculated by Spitzer and Harm
[40],

o = 2e°n/(vm.) | | (4.54)

where Vg = nTga/z is the electron collision frequency. The point is
that Eq. (4.53) is derived from a mild generalization of the
Chapman—Enskog procedure, neglecting time variation of the fields and,

most importantly, assuming that the collisional mean free path,

Amfp = vthe/Ve

is shorter than other scale lengths of interest. In other words, Oy is

a "D-C" conductivity, whose accuracy requires

© << vy | - (4.55)

k A

1 Mmfp <1 . _ SRR (4.56)

Notice that Eqs. (4.55) and (4.56) provide two distinct measures
of collisionality. Experimentally observed modes often satisfy
Eq. (4.55), while contradicting Eq. (4.56)'e§erywhere except in a small
neighborhood of some rational surface: the long mean—free-path

conductivity is typically more pertinent than Og-
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A generalized conductivity, a*(v,w,k"vthe), would satisfy

ox(v,0,0) = Oy o (4.57)
but would also describe the electron response for larger frequency and
shorter wavelengths. We shall see that o, can be calculated, at least

approximately, and that at appreciable distances from the rational

surface,

Ox << 0

In this "A-C"” sense, even a very hot plasma can be a poor conductor — a
fact which has important conSequences.

A third . weakness of reduced MHD is its effective
incompressibility. This simplification results from reduction, rather
than from MHD, buf it appears potentially more serious fhan the pﬁrely
geometrical simplificationé mentioned prévibusiy. ‘The point is that
the right-hand side of Eq. (4.31), while formally small, includes terms
having a .special qualitative importance. For example, in linear
boundary layer theory, the order of the closed differential system
changes (from fourth order to sixth) when certain compressibility terms
are retained.

In summery, the various dynamical‘simplifications of reduced MHD
are physically consistent only in certain circumstances (large V, large
v, etc.) which do not always correspond to expefiment. Generalizations
of the model, describiﬁg a wider class‘of disfurbénces, are the subject

of the present section. Specifically, we replace the reduced MHD
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closure scheme by one which is more complicated but more generally
credible.

It is‘;appropriaté to emphasize here that reduced MHD was
constructed for the purpose of studying nonlinear phenomena. Becausg
it does this well, as noted in éec. A, criticism of the model’s linear
predictions can be misleading. Physical plasmas rarely evolve
according to linear theory.

It should also be emphasized that the four—field model, a

generalization of reduced MHD summarized in Subsection 4, has its own

limitations. The four-field model is introduced for mainly pedagogical
reasons:' it displays several physical effects of current interest in
conveniently simplified form. It is also representative of a number of
recently construcfed nonlinear fiuid models which attempt to extend
reduced ‘MMD [41—44]. As éxperimentaliplasmas enter higher temperature

regimes, some such extension is likely to become as valuable as reduced

MHD.

2. Electrén‘Kinetic Theory

This subsection is concerned with a kinetic description of the
electron responée. Our main purpose is to review some of the metho&s
and apéroximations commonly used in kinetic theory. Furthermore our
result, a gene;alized linear conductivity o,, provides instructive
contrast with fluid model result obtained in‘Subsection 4. We derive
here oniy the very simplest version of o04; the kinetic equation is
solved essentially .by a Sequence 6f ever cruder approximations.
However, we attempt to }ndicate the physical effects which each

approximation omits.
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The kinetic theory is obtained from the Boltzmann equation for the

distribution function fs(g,z,t):

af q of

S s 1 S
— 4+ voVf 4+ — (E+=vxB) ¢« — = 4.58
s o (E + < ¥vxB) ay = % (4.58)

where s is the species label (i or e) and
Cg = Z, CSS,(fS,fS,)
S

‘represents Coulomb collisions, due to both like (s’=s) and unlike
(s ‘#s) species. We assume that CSS, is bilinear in its arguments. It
is best represented in Fokker—Planck form, but often, as below, moré
crudely simplified. The electron’kine{ic equation can be- simplified

using the fact that
Pe = vthe/ne ’

the thermal electron gyroradius, is typically small compared to both
the equilibrium scale length, a, and the perturbation scale length,

k—l(or w). It is convenient to indicate both small ratios by the same

symbol:

6 ~ (kog, pg/a) << 1 . (4.59)

Small ée permits a description of electron motion in which the details

of Larmor gyratron are averaged out [45,46].
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This contracted description, the “drift kinetic” equation, is
obtained by defining a gyro—averaged distribution function

fgc(g,u,K,t), where

L = vf/éB (4.60)

is the magnetic moment and

K = vo/2 . (4.61)

measures the kinetic energy. = The third velocity coordinate is the

gyrophase, Vg where

sd

Here e, and e; are unit vectors chosen such that (E,éz,gs) forms. a

right-handed triplet. The gyro—averaged distribution is
P T hes)
gc ' o g - co e e |
whefe‘fhg iﬁtegral is performed at fixed x, u and K. Thus
H(zpKoog) = f50(x.0.K) + T(x.u.K0,) — (4.64)

where T, which is relatively small,

1T/, 1 = 0(5,)

=bv, + |vl|(§2cos¢g + §3sjn¢g) . (4.62) - °

ar—
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describes Larmor gyration.
The perturbation expansion of the kinetic equation proceeds by

noting that

(e/mc)zxgoaf/ax = Qa?/8¢g ,

is the largest term in the equation for f. Equation (4.58) can be

solved perturbatively for T iﬁ terms of fgc‘ The drift kinetic

equation is then obtained by the gyrophase average of Eq. (4.58),

noting fhat ?(fgc) contributes due to the phase dependence of v.

A mildly simplified version of the drift—kinetic equation is given

by
(L +v V)s —&y .E?—f—gfi=c. (4.65)
Jt -~8c ‘'gc p =gc = jK , :
Here
ch = EVH'+ XD\
where
v, =t [2(k-uB)]Y/? | (4.66)
is the parallel speed and.
vp = B x (eVo/m + uVB+vic) /0 | | (4.67)

is the guiding center drift. We have suppressed the species subscript
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while choosing the sign of the charge, Qe = —€ to correspond to
electrons.

The form of Eq. (4.65) is easily understood. Its first two terms

i

have an obvious interpretation, while the third term simply measures

the rate of change of guiding—center kinetic energy:

dK/dt = —(e/m)zgcog

Furthermore, the analogous term for the magnetic moment has been
neglected since u is an adiabatic invariant: & ~ O.
When the small Gs epproximation is not valid, as is more typically

the case for ions, a much more complicated analysis is necessary. For

_this case the particle position X, is expanded about the position:of

the guiding center, X The resulting theory gives the gyrokinetic

ge’
equation [47]4 We consider the ions in Subsection 3, employing a fluid
theory to obtain finite di corrections. In this section we henceforth

restrict the analysis to the electrons.

Several approximations will be used in the solution of Eq. (4.65).

First notice that the function Vi given by Eq. (4.66)%can vanish on a .

trajectory when uB

nax 2 K where Bmax represents the maximum value of B

along a chosen field line. In this case the electrons are "trapped” in
regioﬁs of smaller B.

Trapping éffects complicate the electron response in a manner
which remains incompletely understood. With a few exceptions [48{49],
studies of electron trapping have been restricted to the electrostatic
case, associated with trapped-particle—destabilized drift waves, ﬁhich

have been reviewed elsewhere [50,51]. We restrict our attention to the
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far-untrapped particles (K >> u ) in a large aspect-ratio tokamak .

Bmax

gc

Since |B-Bj .| ~ ¢ in this case, untrapped particles form the bulk of
the population and i becomes an approximate spatial constant. With
this approximation the variasble K in f can be replaced by

MR ER DR |

A second'approximation relates to the drift velocity, Egq. (4.67).
The magnitudes of the VB and curvature drift relative to the ExB drift
can be obtained by using the large aspect ratio ordering. Thus with

uVB ~ vﬁg ~ vfhe(a/a) and taking QQ/Te ~ 1 we have

" Therefore, we let

e
vp = I—n ExVQ

A final simplification of the drift kinetic equation results from

replacing the full collision operator by the simple Krook model [52]: ’

C(g) = -v(g—n,fy/n) ‘ (4.68)

where

_ 3
n, = f d“vg ,

g denotes an arbitrary distribution, and fM denotes a Maxwellian

distribution with density n:
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fi = n/(w3/2v§h)exp(—mK/T) . : (4.69)

The collision frequency v = Ve is presumed to be constant. Of course,

the Maxwellian term is appended to ensure particle conservation,

| a3v c(g) =0 .

Equation (4.68) is obviously rather crude. It fails to conserve
energy, omits velopity—space difquion, and so on. Such weaknesses are
critical in certain applications, inc}uding trapped—particie effects
(which can depend upon collisional smoothing of velocityéspace boundéry
layers [48]) “and certain tempeféture—gradient—driven instabilities
[53]. More commonly, however, the simple Krook model yields stability
predictions in qualitative accord with those obtaihed from more
accurate, and much more complicated, collision operators:

The equilibrium solutions to the drift kinetic equation are

obtained by neglecting ? and time derivatives giving

v bo*Vig = C(fg) (4.70)

which is solved by the Maxwellian, Eg. (4.69), providing E'VfM = 0.

Since

mK

T )VznT] ' (4.71)

v |w

Viy = f3[Vin ng + (

we see that the equilibrium density and temperature must be flux

labels:

-
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n=n(x) , T=T() .

of coufse, since Eq. (4.70) is valid only to O(Ge), there are
corredtions_ to fM of this order. These corrections are calculated in
neoclassical transport theory [54], and can affect the stability of
certain perturbations, but are rarelyi éf critical importance. We
ignore the corrections here.

Linearization of the drift kinetic equation about this equilibrium

is accomplished by letting

B =By + B,
v =,

The perturbed distribution satisfies

af
; 0
Lt =—v Vi, + S v b+E, — 4.72
o f1 = WiVt VRotEr (4.72)
where
L= 4 vp Vo (4'?3)
_ e ,

It is customary to write
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ot
0
¥ + gy

e
f,=-=
1 m JK

Using the Maxwellian equilibrium we see that this becomes

fi =15 €2, /T, + g, . (4.75)

Here the first term can be recognized as a linearized’Maxwelf¥Boltzmann
factor, exp(e?/T); it corresponds to electron equilibrium in an
electrostatic field. In fact, if we neglect A, in Eq. (4.72), and

assume

t I~

then f, = f; e?,/T becomes an approximate solution. Equation (4.76)
allows electrons to. sample the parallel structure of the perturbed
potential ‘before the latter changes appreciably.‘ Thus the
Maxwell-Boltzmann term 1is said to descfibe "adiabatic" electrons, gnd
Eq. (4.76) is referred to as the adiabatic limit. Here:we note that,
asiae from omitting electromagnetic terms, Eq. (4.76) will clearly
breék down in the vicinity of a mode-rational surface. Substituting
the decomposition of Eq. (4.75)’ into the linearized drift kinetic

equation (4.72) gives

__& 3 M}
@ ==t 3 (01— body) ~ e Viy (4.77)

<L < v bV, | (4.76).
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where we have used b,+Vf, = 0 and C(2,f;) = 0.
Consider first the inversion of the operator '9%. For constant

v", it is permissible to write

g = exp(iwt+imd—iL¢)E(x, 1, K) (4.78)

in terms of flux coordinates (x,%,¢). [Note that such a Fourier
representation would not be valid in the trapped region, where only a
limited range of ¢ is accessible]. Then, from Eqs. (4.73) and (4.78),

we easily find that

Zogy = [-i(okv)) - cle - (4.79)

where
k” = (m—lq)/(‘/EB)

and the eikonal factor is suppressed.

" Equation (4.79) displays the competition between oscillation (or
growth), parallel streaming, and collisions which was &iscussed in
Subsection 1. Furthermore, the familiar resonance, w = k"v”, associated
with parallel Landau damping is explicit. As we will see below, the
most important aspect of ,Z% is neither the detailed form of ‘the
collision operator} nor the possibility of Landau resonance. What
matters, rather, is the radial variation of FKQ% associated with the

rational flux surfaces.

e Rt 1R 1 BE t el i — T S ——



—132— -
Inversion of the operator =Zb has become trivial. From Eq. (4.68)
and (4.79) we obtain

, {9rngtw/n) | (4.80)

=i
1. w—k"v”+iu

We integrate to eliminate n_, noting that

g
3 _
d°v f
/ M __ 2 7). (4.81)
Wk vy iy Iy lvey
Here
z = (wHiv)/(lk, lvy) 0 (4.82)

and -Z is the plasma dispersion function [55]. For

Im(z) > 0 , T ; (4.83)

we have

2
® —t
72(z) = /% Qi—t-ez— . (4.84)
- {

Recall that Z(z) is defined for Im(z) < O by analytic continuation of
Eq. (4.84). The absolute value appearing in Egs. (4.81) and (4.82) is

occasioned by Eq. (4.83). Thus we find
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d3v Q

—_— (4.85)
w—k"v”+1v

iy =
[1+ |k”|Vth Z(z)]ng if

Our immediate objective is to compute the electron parallel flow

: — 3 _ 3
nv,, = f a“v v”f = [ da% V181

whibh! from‘Eq. (4.75), resides entirely in the function gq- Equation
(4.80) allows this moment to be evaluated difectly, but a more
efficient procedure uses the velocity intégral of. Eq. (4.72): thé
particle conservation law,

—ik

) BV = iwmg + [ a%vq . (4.86)

Thus the desired flow is determined by Eq. (4.85) alone.

Turning oﬁr attention fo‘the.source term, Q, we note thaf since
'Vfo = Vy Gfo/ax{ énly the parallel component of the vector potential,
which .we write as A1 = Eo‘é1' is required. The eikonal form allows us

' to express the source term, Eq. (4.77), as

Q = i(e/N (o) [8; = (v, /e)A] . (4.87)
- where

(3f,/3x) 4B,+mB
a1 0 3 ¢
Wy = 0 (31,/9%) o= ) (4.88)

is the so—called drift frequency. The form of Eq. (4.88) depends upon
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neglecting the VB and curvature drifts. Notice that Bﬂ and B( are

covariant components of B. It is easy to see from Eq. (2.80) that
B, + gB, = Vg B°
e ¢

for any flux coordinates. Hence we find that

Wy == ———[1 - — (1 - )] , (4.89)

. 2 _ ¢
w1th.BT = B<B .

It is clear from Eq. (4.87) that the dispersion relations for a
variety of ‘perturbations will involve w, and its ion counterpart. in-a

prominent way. In fact,

Re(w) ~ wy ~ klpevthe/a : (4.90)

is appropriate for many modes of interest. The occurrence of w,' 'is

sometimes ascribed to diamagnetic rotation,

- -1
(nVp)g = (mg0y) bxVP_

where s is a species label. The point is that for

VT =0 ,

one finds
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Weg = EL‘YDS (4.91)

so that {(w—ws)—factors appear to reflect a simple Doppler shift. Here
we emphasize that Eq. (4.91) holds only in the isothermal case. In the
presence of temperature gradients, Eq. (4.71) shows that wy depends
upon particle energy. Even its Maxwellian average fails to sa£isfy

Eq. (4.91), because

mK 3
f dSV fM (?? —-E) =0 .

Thus, while w,—terms often correspond to mode—rotation, they do not in

general reflect bulk plasma motion. Because of the change in sign of

an/ax occurring.'at K = STS/ZmS,’temperature gradients can modify the

electron response in subtle but important ways [53,56—58]. We avoid

these complications by now assuming

aT/dy = 0 .

Constant w, makes evaluation of the integrals in Egs. (4.85) and
(4.86) especially straightforward. One finds, after simple

manipulation, that

ieE, (w-wy)
Vi = I 1+?Z(z) , (4.92)
€ T 2 iv
: .k 1 + ——— 7(z)
%y 1 Vihe

where
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(W _
E, = 1(c Ay k"Ql) (4.93)

is the parallel. electric field perturbation and circumflexes are

suppressed.

A noteworthy feature of Eq. (4.92) is that the parallel flow

dépends upon A1 and Ql only through E”. This circumsteance, which is
unsurprising on physical grounds, survives both the inclusion of
temperature gradients and the use of more realistic collision operators
[53,58]. However, it does depend on our neglect of non%Ma#wellian
corrections to fD‘

The most important feature of Eq. (4.91) is the strong radial
dependence of the electron response,,resulfing from the k” dependence

of z,.Eq. (4.82). Near the rational surface, that is for

K, Vipne << @,V (4.94)

we have z >> 1 and it is easily seen that

2 v
(&, Vine)
, 122 s - % ——%;i?gs— Loz >> 1. (4.95)
1+ iv 7 w iv
ey 1¥ine
Hence the parallel velocity becomes
eE" W—Wx

m, w(wt+iv)

T THH T T I I T T T



-137-
On the other hand, when k" is large so that the inequality is reversed,

one finds that

1+22 -1
‘ =1+ 0(k 1), (4.97)
1+1vZ/(|k"|vthe) I
whence
ieE, (w~wy) ( )
V., = _ 4.98
I : ‘
€ Te kﬁ

which is relatively small.

The parallel current density is given by

and therefore requires the ion as well as the electron velocity. For
sufficiently small kpi, nV"i is given by the obyious‘modification of
Eq. (4.Qé)i €% €, Vipe * Vipi- etc.. In particular&{the argument of
the z—function becomes

w—l—wi

ey 1vips

where v; is the ion collision frequency. Because

_ /2
Ui (me/m1 ) Ve )
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it is frequently omitted. In any case, we see that (for T, ~ Te),
(e o y1/2
zZ; (mi/me) zZ

and therefore z; >> 1 unless z is very small. It follows that V"i is

typically approximated by thevlarge ~2Z; limit, as in Eq. (4.96):

eE, (w—wxy) : .
=i <V, (4.100)

i
. m; w2

The inequality (4.100) simply expresses the relatively large ‘ion
inertia. It is often used to neglect V"i in Eq. (4.99), and we do so
below. Notice, however, that for sufficiently large k", the response
becomes independent of mass, as in Eq. (4.98). Therefore perturbations
with sufficient radial width, such as electrostatig drift waves [50],
as well as certain nearly collisionless tearing instabilities [59] can
‘be strongiy affected by VHi‘

Equations (4.92), (4.99) and (4.100) may be combined to form a

generalized Ohm’s law, Eq. (4.53), where

s nez (w-w*) 1+ZZ(Z) .
Ox = 71 T kﬁ" 1+iVZ(Z)/(|k"|Vthe) ' (4.'101)

While the generalized conductivity depends upon radial position

through such slowly-varying quantities as wy,, T and v, its strongest

-2

and most important radial dependence occurs through k,© and z = lk”[_l.

In fact, z varies markedly over distances shorter than the rational
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surface spacing, which is much smaller than the equilibrium scale

length. To see this, we use Egs. (2.66), (2.67) and (4.79) to estimate

k, ~ (vgB)™! ~ (qr)7! .
If we assume that w ~ w,, then Eq. (4.90) yields

__w__ ~ Q.E (k
kK Vipe 8

1Pe)
The right-hand side of this equation is typically very small

(k ~mx10™%  in conventional devices, and m—values larger than about

1Pe

102 are rarely of interest). = PFurthermore, while the collision

frequency often exceeds w, for many important modes it does so only
moderately. Thus we conclude that, typically, the variable z ranges
from infinity at the rational surface to a value z << 1 at distances
Acomparable to the surface spacing. In studying boundary-layer modes,
it is therefore appropriate to evaluate all sléwly varying quantities
at the mode-rational surface. The main result ig» to simplify

Eq. (4.89), which becomes

_ 2Te alnfo
w* = - R —
e dx
for q » m/%.

The strong radial variation is usually simplified by assuming that

k”(x) = k"(xm2+x) [cf. Eq. (3.48)] is approximately linear in x near

XmR:
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ky =k x, (4.102)

with kﬁ = const.. This assumption requires q to be locally linear, and
will break down when the rational ' surface nearly coincides with an

extremum of q,

R

a‘VaXlX

o . (4.103)
mi ’

Equation (4.103) pertains in the presence of a locally peaked current °

density ("skin current”) as usually characterizes the initial phase of

an Ohmically heated tokamak discharge. Boundary layer modes associates

with skin currents have been studied [60] but will not be reviewed

here. With Eq. (4.102) we have

z = (w+iu)/(|kﬁxlvthe) , . (4.104)

and o, is evidently an even function of X:

,U*(_X) = o4(x) .

This property significantly simplifies béundary—layer analysis.

Notice that x = X~Xm o is defined to have units of magnetic flux,
and the prime in Eq. (4.104) stands for 9/3x. However, we could just
as' well interpret the prime as an ordinary radial derivative, 3/dr, in
which c;se X has units of length; Hereafter, we consider x to be a

length, for convenience.
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The distance

Xe = lol/(Jkj1Vine) (4.105)

corresponds to parallel Landau resonance of a thermal electron (unless
v is much larger than o, Xg defines the scale length for wvariation of

0x). When |x| << X,, 2 >> 1 and Eq. (4.95) becomes valid: well inside

the electron Landau resonance,

e2n A A

Oy & = . 4.1086
* = %o m,v w(1-iw/v) , ( )

In the special case defined by

wy << |w| << v, . (4.107)

Equation (4.106) becomes

o
[av]
B

(4.108)

Q
*
me

o
3
<

‘which should be compared with Eq. (4.54). Aside from an ill—défined
numerical factor (associated with our use of a Krook model), we see
that o, reproduces the Spitzer result in this limit: we have confirmed
Eq. (4.57). Notice that it was mnecessary to assume both large
collisionality, in the sense of Egqs. (4.55)-(4.56), and high—frequency,

in the sense of Eq. (4.50).
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Equation (4.90) shows that X, is very short,

X, ~——<<a . (4.109)

The ratio, kl/kﬁ’ is often called the shear length and denoted by

- P _
L, = Iki/knl = o (4.110)
It is wusually larger than a, but by little more than an order of
magnitude, so that the ordering (4.109) is strongly Vsatisfied. The

"classical” region, |x| < X, is very narrow indeed.

For |x| > Xo, the size of "z is evidently determined by 'v-in

Eq. (4.104). The collisional term

iv - i
IkIixlvthe Ik||>‘mfpl
measures collisionality in the spatial sense of Eq. (4.56). Recalling-

that observed modes are rarely so narrow (or so collisional) as to
satisfy Eq. (4.56) over the full boundary-layer width, we ‘expect the
region in which |z| << 1 to be important. The corresponding limit of

0x is denoted by o,  and provided by Eq. (4.97),

. (w_w*) ®
o, =-—=2 "~ : (4.111)
*oo T 2
e Ky

Hence, o, becomes small, O(x_z), for large x. The ratio
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Ore/0sg = —Bo(wtiv)/(k vyp )2 | (4.112)

characterizes the gross spatial variation of Ox . Its relevance to
boundary—layer mode stability is made explicit in Chapter V.

These ‘conclusions are somewhat modified when the ion contribution
to o4 is included. We have already noted that the parallel ion flow is
negligible for small Ik"|, so that Eq. (4.106) is not changed.
Considering large lk"I, however, one finds that Eq. (4.111) dgscribes
o4 only in the range |

x, << x| << Xi

1

where
Xj = o/(Ikjlveng)
- 1/2 -
(mi/me) Xg (4.113)
corresponds to ion response. When |x| > x., the ion response is

approximated by Eq. (4.98), with the obvious change in 'subscripts.
However, for certain qpplications it is also necessary to retain finite
gyroradius corrections to VHi‘ The point can be seen. from
Eq. (4.35): V"J" contains terms involving perpendicular inertia
(acceleration), which are omitted from Eq. (4.98) because they enter
kineti§ theory, through the “polarization drift”, in highér 6—order
[61]. The small mass ratio ﬁékes inertia irrelevanf for electrons, and
relevant to the parallel ion response only when Vﬂi ~ VHe' i.e., only

when |x| > X5 .
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The ultimate effect of self-consistently including ion inertia is

to replace Eq. (4.111) by

2
A | A
U*m,_v__l__s_R_e s IXI >X (4.114)
4 m; w 1
where
2 1/2
Wpe = (4mme /m ) /
is the plasma frequency. Thus o, finally asymptotes to a constant
value,

Oxw/Oxg = O(me/mi) .

Eguation‘(4.114) is implicjt, if not always fully accountéd for, in
- lkinetic treatments which consider the |[x| > x; region (séé; for

'.e#amﬁle,‘[SG]). It is derived from fluid theory in the following
subsection..'

- That o, becomes very small at sufficiently large |x| could have
been anticipated from Eq. (4.72); the important x—dependence of g
resides in 5?61. The main point is that, for large lk"], the electron
response is predominantly adiabatic. Electrons equilibrate with the
perturbed potential, as in Eq. (4.75), with little net parallel flow.

It should be emphasized that the function o,(x) of Eq. (4.101) has
a much richer structure than 1is suggested by such ratios as
Eq. (4.112). 1In partiéular, the asymptotics omit the effects of Landau

damping, occurring in the radial neighborhood of X,., which Eq. (4.101)
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includes. The point is that Eq. (4.101), despite all its
approximations, is'a true kinetic result: it includes physics which no
analysis of fluid (moment) equations could reproduce. (Closure schemes
for moment equations require truncation, and effects of microscopic

resonance, = k,v do not survive truncation.) This property of o,

e
mekes it a useful standard for comparison with the generalized

conductivity computed in the following subsection. The latter uses

fluid equations exclusively.

3. Derivation of the four—-field model
We derive here a nonlinear fluid model which generalizes reduced

MHD, by including physics reievant to regimes of lower collisionality

and slower evolution [62]L Our objective is to partially remedy  the

weaknesses of reduced MHD which were summarized in Subsections 1 and 2.
In spirit and derivation, the new model is very similar to reduced MHD.

It differs mainly in requiring four (instead of three) field

variables: 9, ¢, Pe» and v. Here ¢>énd ¢ are the usual potentials,

defined by Eqs. (4.11) and (4.14), while p; and v are given by

_ 8m
Pe =~ (Pg~Pe.) (4.115)
&B
C
v = V”i/(avA) | (4.116)

where Pe = nTe denotes the elecfron pressure,
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is a constant and V"i is the bulk ion flow speed in the direction of B.
(The other symbols were defined in Sec. B.) Since the equations of
4motion involve only VP, the constant term in Eq. (4.115) has no direct
dynamical significance; it is introduced to allow a certain freedom
with regard to ordering, as shall become clear presently.
Besides the additional field, the four—field model involves ;wo

new, constant parameters:

BﬂPec
Be = >
B
c
and
6 = (20,7,)71 (4.117)
where
Q, = eBc/(mic) .
The notation in Eq. (4.117) requires some comment . The symbol 6 is

- intentionally reminiscent of the gyroradius parameter, § of

e ?
Subsection 2. In fact, terms involving 6 will enter the four—field
equations as finite gyroradius terms in a conventional sense. However,

6, which is independent of both temperature and magnetic fiéld, clearly

does not measure ko ~ klvthi/n' In fact, from the definition we find

0 =
o

T
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_ 2, \1/2 . .
where Wpj = (4nne/mi) is the ion plasma frequency.

Notice that, with regard to the formal e—ordering, factors of a

may be identified with k|1 or w,

aV ~ Vl ~ 1

[recall Eq. (4.2)] even when the perturbation scale—length is somewhat
shorter than that of the equilibrium. Thus, to allow for a range of

perturbation scales, we assume

6~ 1. , (4.118)

With regard to the appropriate Be—ordering, we observe from- the

definitions that (for T, ~ Te)

62ﬁe = p?/aB ~ p?Vf
where p, 1is the ion gyroradius. Hence 6263 is 0(1) for disturbances
varying over a gyroradiﬁs; the corresponding ordering, 6 ~ Be ~ 1,
yields a rather complicated four—field -model containing numerous
finite—gyroradius corrections. (Even this model requires inl to be
somewhat smaller than unity.) Here we are less ambitious,'restricting
our attention to the small gyroradius case, and therefore assuming

6266 ~ €. In view of Eq. (4.118), this requires

Be ~ & (4.119)

as in conventional reduced MHD. It is not hard to show that this
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ordering, together with Eq. (4.118), is consistent with the low
frequency case described by Eqs. (4.51) and (4.52), the importance of
which was previously emphasized.
Derivation of the generalized model begins with exact moments of
the kinetic equation, Eq. (4758). The moment equations are truncated

by an ansatz concerning the single—species pressure tensor,

1l

3

We assume that

o
1l

i 3
i Py + Qgs + 0(ev) , (4.120)

where £ is the unit tensor and Dg denotes the gyroviscosity tensor,
whose form and significance will be considered presently.

A more general truncation would .allow, in particular, for

anisotropy of the Chew—Goldberger—Low form [17],

P = bbP, + (I-bb)P
= 225 & 2205

Then trapped-particle effects, as well as parallel Landau resonance,

could enter through (PH—PL)' On the other hand, it shall be seen that

key features of the kinetic  electron response, including those
associated with long mean—free—path, survive our simple truncation.
Furthermore it can be shown that (PH—PL) does not enter the reduced

shear—Alfvén law.

IR TR ORI GEE T e ——



-149-

Equation (4.120) also requires both species to be magnetized, in
the sense of Eq. (4.49). In fact, ﬂg can be considered as the leading
term in an expansion of the pressure tensor in powers of inl. When
ions are barely magnetized with respgct to the perturbed fields, the
pressure tensor becomes much more complicated and a strictly fluid
model is rarely adequate. The gyrokinetic equation, which allows

piV, ~ 1, will not be considered here.

Thus Eq. (4.120) differs from the MHD truncation only in retaining

gyroviscous terms. Gyroviscosity is an artifact of Larmor

gyration: when the mean velocity of guiding centers varies spatially,
a momentum fluX; perpendicular to the velocity gfadient, is - induced
[68]. This nondissipative flux is independent of collision frequency

and measured by

"

s
Mgs ~ 6; v Vg

[see Eq. (4.131), below|. In the MHD case, Vg >> V), gfroviscosity can
be consisteﬁtly negleéted:‘:'For slowe; motions, including those
described by Eq. (4.51), gyroviscosity becomes comparable to convective
inertia and yielas important simplification of the equations of motion.

Our main additional simplification is to neglect temperature

gradients:

T.=T_ . (4.121)

-

This assumption could be relaxed, without fundamental change in the

reduction argument, by increasing the number of field variables and
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equations. A reduced fluid theory which emphasizes VTe (with T, = 0)
has been constructed [43]. We adopt Eq. (4.121) because the isothermal
case has éufficient interest and importance.
Now consider the exact equation of motion,

ds¥s

m_n

_1 _
S + V'Es - qsn(§+c ‘stg) = F (4.122)

i.e., the myv-moment of Eq. (4.58), in which we use the abbreviation,

— = -+ V_.V |
dt at -8

The quantity F represents the rate of change of collisional momentum-

exchange (“friction force"),

- 2
-Es = f dv mszCS

and satisfies ) F,=0or

in the standard case of a single—ion species. It is consistent with

Eqs. (4.120) and (4.121) to assume

Fo = enn J (4.123)

where Ng = 0;1 is the resistivity, which is presumed small,
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ng = o(e) .

The distinction between n, and ) is ignored for simplicity.

The species sum of Eq. (4.122) is given by

1+VP = ¢ 1yxB . (4.124)
where, in the notation of Chapter III,

4;V;
f =m.n
e 1 dt

+ Ve, + O(me/mi) . (4.125)

gi

~ €v,, contributes 0(52)

It is clear that the lowest order velocity, Vi

to f; this lowest order form is sufficient because 0(53) will be
neglected. We will find presentlyv that only the 1lowest order
expression for Dg is needed, for the same reason. However, Yi is no
longer approximéted by Eq. (4.26); to compute V,, we write

Vi =bVyy + V5

and solve Eq. (4.122) for V,i- Neglecting 0(52) terms from f;, F; and

toroidicity, we obtain the familiar result

Vi =Yg + Vp + 0(eF)

where

Vg = (¢/B,) 2xV2
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Vp = (Ti/mch)%xV fn n . (4.126)
Alternatively,
Vi = 2xV, (4.127)
where
ﬁe Ti
= gV + 66— — 2
P A(¢ : T, n n)

is a flow potential. Notice that

VeV, = 0(&%)

w owl

as in reduced MHD.

Returning to Eq. (4.125), and suppressing error terms, we may

write
4.V a.v )
i-E i-]l
f =m.n + m.n — + , ' 4.128
S T i gy T8 ( )
with
d.V
_ i'D .
£ = m;n dt + y~ Dgl

This form for f is motivated by the following important identity:
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g = ~V[(Py/20)b.1xV ;] ~ b (Ve V)Vy; + 0(%) . (4.129)

Before verifying Eq. (4.129), we comment on its significance. The
gradient term in g evidently provides a small correction to the
pressure,

E‘VxYli]

P. P.i1 +
7 1[ 20

i = 1[1 +0(8)]

i

because Vii = 0(e). It easily follows that lowest order force balance,

Eq. (4.20), is unaffected by g- Moreover, since

b = z + 0(e)

it’s clear that b.Vxg ~ 0(53), and thus that g cannot contribute,
. ) ,
directly or indirectly, to the shear—Alfvén law. ~Finally, regarding

the parallel ion dynamics, we observe that

V4
3t

- 3
bef = mn( + VeV Vi) + 0(e%)

i.e., that be¢g cancels the diamagnetic contribution to diV”i/dt.
Thus gyrovoscosity serves to simplify the nonlinear equations of
motion, by cancelling various acceleration terms. The importance of

such ‘“gyroviscous cancellation” was noted by Stringer [64], Hinton and

Horton [65], and others [66]. The cancellation survives in the
presence of temperature gradients [67], and obviously is still
important when higher—order corrections are included. However,
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although the corrections due to magnetic curvature are demonstrably of
higher order, they are not easily written down. The problem is that gg
itself has been computed only for the case of a uniform magnetic field.
It is the formal ¢-expansion which justifies application of such

slab—geometry results in the toroidal case.

To verify Eq. (4.129), we first consider

P

- 13
17 at 0,

(a‘ + Yi‘v)(%xvﬁn n)

where the right-hand side needs to be evaluated only in lowest orderf

The particle conservation law, together with Eq. (4.126), shows that

di¥p _ Py
m.n _—
T

[YlioV(%xln n) - (%xV)(YlioV)Rn n]

Recalling that V « Vl in lowest order, one easily verifies the

commutation rule

(V15-T)(ExXVE) = (2xV)(V;+70) = (V1Y) Ty, ~ Vi(VEg,)

for any function f. Thus

4% P

mn ——= = — [(V4n n.V)Vp, - (Vin 0n)V3%,] . (4.130)

i
dt h
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Regarding the gyroviscosity tensor, we use the formulae of

Braginskii [68] (cf. also [69]), which may be expressed as

P.
1 A ~
Qgi = Za: [(sz)Yli + V(ZXY11) + transpose]
P.
+ al [%(EXVV”i) + transpose] (4.131)
i
provided V" ~ g% ~ ng terms are neglected. To clarify the tensor

character of the right-hand side, we mention that

[(%xv)yl]aﬁ = (éxV)avlﬁ ,

‘[V(%xyl)]aﬁ = va(axyl)ﬁ ,

etc.. We simplify Eq. (4.131) by means of the easily verified tensor

identity

~ ‘_ rS t _ A‘ .

(zxV)V, [V(zxyl)] = 12.Vxy, | (4.132)
where the transpose is indicated by a t. Since %xYli = —Vo,,

V(zxV,;) = -VVg,

and the second term on the left-hand side of Eq. (4.132) is symmetric.
Furthermore, the right-hand side is simply £V2¢*. Combining these

results, we find that
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P.
i 2 aln - A
Qgi =20, {LV v — 2V, + B[Z(szV”i) + (szV"i)z])
i

and therefore that

R [ 7(v%,) + L (Vin 0)730, - (Vin neV)V
~gi 0 o Px = nn Px P

+ & £V, ;xVin n] + 0(c%) . (4.133)

Finally, we combine Egs. (4.130)vand (4.133) to compute g. With the
neglect of 0(58), the result confirms Eq. (4.129).

Our derivation of the gyroviscous cancellation accounts for the
full effects of density variation. However, to  avoid cubic .
nonlinearity, along with other complications, in the final equations we
must employ the Boussinesq approximation. This 1is accomplished,

formally, by noting that the density can be written as
n/nc =1+ ep./Bg

and treating f, as O(1) in this special context. Then

‘VRn n = (e/Bg)Vpg + O(ag) .

We may also note here that p, the pressure varible of Sec. B,

satisfies Vp = (1+Ti/Te)Vpe. Therefore Eq. (4.20) implies

VB (4.134)

1
By =5 (L TV

1Pe -
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With these remarks, it is a simple matter to write down reduced
equgtions for the evolution of v and ¢. First, we take the parallel
component of Eq. (4.124), using Eq. (4.129), and neglecting 0(53). The

result, in terms of normalized variebles, is

. T,
1
3v/ot + [p,v] + s (1 + Ei)v"pe =0 . (4.135)

The shear—Alfvén law for ¢ is obtained by the method of Sec. B, with
one change in notation (p*pe) and one additional term, describing
diamagnetic convection of YE' Thus Eq. (4.29) is replaced by

du

5+ [0 U]+ 2eVxupeV up] = -V 0-(1 + T,/T,) [x,p,] + 0(cF)

£y

The diamagnetic term cén be written through.Q(a

5 . 6 2
62+Vx[ (2xV pg)+¥ up] = > ([pe. V%] + [p.7%p,] + [p,.0])

Thus we obtain the shear—Alfvén law -

. -
au i
E + [th] + V”J + (1 + -.IZ) [X:pe]
T. .
=401 2 2
= -5 7 ([P, Ul + [p.V]pc] + Vilpe.0l) - | (4.136)

0
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We consider next the generalized Ohm’s law, i.e., the pa;allel
acceleration law for electrons. First recall that the parallel current
is related to J = Vf% by

acBC

- 4ma

J + 0(e

Hence, in view of Eq. (4.118), we have

Vie = eV, (vR63) + 0(c®) . | : (4.137)

‘Electron inertia is simplified by gyroviscosity in precisely the same
manner as the ion case. Thus, neglecting O(az), electron parallel

dynamics are described by [69]

3 ) .
mn (= + YE'V]VHe = —enE"—E-Vpe + enn J

e '3t [

and straightforward normalization, using Eq. (4.137), yields

) I W S 2
(aT + upe V) (v+26J) = 26 [Vo + 5~ 6V Pe—nVi¥] .

Here, because of Eq. (4.135), . the terms involving v yield only an
0(m,/m, ) correctioﬁ to VPg:
m T,

e 1
V,Pe * [1 - ;; (1 + E;)]V"pe

MTHIMITERT T NI, = -
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We neglect this correction to write the reduced Ohm's law as

Ly Ve = &V 2l (& 138
5y F Ve =0+ 6V pe + 46 n, (3, + [o.3]) . (4.138)

The O(me/mi] electron inertia terms are retained because of their
qualitative importance in the collisionless limit.

Equations (4.135), (4.136), and (4.138) provide three equations
for our four fields. The fourth eéuation is derived from particle
conservation, as in Sec. B. Of course, when e~terms are strictly
neglected, the resul£ is Eq. (4.37), describing incompressible
convection of the normalized pressure. We noted in Subsectionvl that
compressibility has a special significance in certain contexts,. and
therefore wish to include its~effects in‘the fourth equation, without
attempting to include all 0(83) terms. To this end, we apply the same
device as was used in justifying the Bouséinesq
approximation: treating B, as 0(1). Equivalently, the compressible,
reduced conservation law results from neglecting 0(53),‘but retaining
0(Be°).

The reduced equation is most simply derived from electrgn particle
conservation: |

dn

5? + V‘(nye) =0 .

Normalization according to Eq. (4.115) quickly yields
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showing that only the lowest order, O(e), contribution to Veu, is

needed. The parallel contribution is easily written down,

Be v

so we can restrict our attention'fo'V6gle. From Eq. (4.122) we find,

with sufficient accuracy,

ny . = —(C/GB)EX[VPe+en§_Ee + 0(mg/m; ) |

or, in view of Eq. (4.123)

n

ot _
e = (B/8%) x [Tore 2= - 6 — Wp ] + 1B 2 [Bx(VxB)]

Note that 7 measures N in the present cdse. The dissipative term
corresponds to resistive diffusion, as can be seen from Eqs. (4.19) and

(4.134):

B °Bx(VxB) = -

Hence we have
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2 d o,
e = (B/B%) x [(Vo + %) — 6= Vp,]

Ty 5
n(1 + ;—)lee + 0(e”)

e

0 [o

and one easily finds that

ﬁe e Ti
= Veu  =- =91+ ——]vfpe + €, + 0(e)
€ 2 Te
where
¢ =fey []*3 (v i )] (4.140)
= — o [= x — - — &V . .
L € B2 ore 3T n Pe

Evaluation of the right-hand side of Eq. .(4.140) is straightforward, if
somewhat complicated. Considering first the term involving e{(, we find

that

B A | aB“
; V o [ =\ = _ — 10 ,
Be (Bg X 32 = e 5.+ 0(e)
Be Ti aPe
=—(1+—)—+0
2 ( Te) T (e)

in view of Eq. (4.134). Here we assumed that any spatially constant

contribution to B, is also temporally constant. The other terms in C_L
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are computed using Eq. (4.12) for the magnitude of B and Eq. (4.134).

One finds
B B n 1 T.
=V . [=x (Vg - :f 6p,)] = 2Bl x] + 5 (1 + ;l)ﬁe[w,pe] + 0(¢)

€ B2 e

Noticing that Cl and Eq. (4.139) contain the same convective derivative

of P, We introduce the abbreviation

8 = - o (4.141)

Then, combining results, we can write the pressure evolution law as::

Spe 1 Ti
—e - i 1y vR
Y + [¢,pe] = ﬁ{a[x,¢—6pe] - V”(v+26J) + 5 (1 + Te)nlee} . (4.142)

The first term on the right-hand side of Eq. (4.142) méasures
perpendicular compressibility, and arises because the perpendicular
flow, YE + YD’ has a divergence whenever B varies on a magnetic
surface. We noted in Chapter II that such variation is an important
consequence of toroidal curvature; in fact the perpendicular
compressibility term is similar in form and significance to the
interchange term in Eq. (4.136).

The pédarallel compressibility term involves both v and J. The
gontribution from v is pertinent to sound wave propagation along B,

which tends to reduce pressure variation. The contribution from J is
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omitted in unreduced MHD (which has 6=0), but has crucial importance in
some applications, one of which is studied in the following Subsection.
Finally, the diffusive term in Eq. (4.142) has an obvious

interpretation.

4. Four-field Model
The four—-field model is defined by Eqs. (4.135), (4.136), (4.138)
and (4.142). We repeat the equations here, with one minor change in

notation: the quantity (R-R;)/a is denoted by

h = (R-Rj)/a

instead of x, essentially because (x,y) coordinates are less useful in
application than they were in deriving the model. Thus we have the

shear—Alfvén law,

3U/et + [p,U] + V3 + (1 + T;/T.)[n,p,]

= (6/2)(1,/1)([Up,] + [Vopg.p] + Plop,]) . (4.143)

the generalized Ohm’s law,

4m

/ot + Vo —nl = 6Vypg + ;;E 62(3J/8T + [, 3]) o (4.144)
i
the parallel.acceleration law,
1
v/d1 + [, v] + > (1 + Ti/Te)VHPe =0, (4.145)

R s 108 A1 1R [0 o
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and the energy conservation law,

/37 + [¢.pe] = {2[h,¢o—6p,] - V (v+267)

1 : 2 .
+ 2 (1 + Ti/Te)nlee} : (4.1486)

Recall also that

J;Vf¢,'U=Vf¢,

and that V" denotes the nonlinear parallel gradient,

v, i = 091/38z - [y,1] (4.147)

with
[f.g] = 2.Y,1xV &g

It is apparent that reduced MHD [Eqs. (4.35)-(4.37)] is recovered

from the four—field model in the limit

620 , g0
Finite 6 allows for finite ws/w; neglecting 6 is equivalent to assuming
the MHD orderings, Eqs. (4.48) and (4.50). Finite §, on the other
hand, restores the plasma compressibility terms which are present in

MHD but neglected by the conventional reduction process.

g
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The remainder of this Subsection concerns certain elementary
effects of finite 6 and of parallel compressibility. The significance
of perpendicular compressibility is considered in subsequent Chapters.

The four—field equilibrium is very similar to that of reduced MHD.

In particular, for ¢;=0, Egs. (4.143) and (4.145) imply

dpeO
dwo

Jg = Jg(¥g) -h(1 + T,/T,) (4.148)

which differs from Eq. (4.45) only in notation. A new feature appears

regarding the equilibrium parallel flow. Equation (4.148) requires
~26[h,py] + [¥g.vp] + 26[vg. 9] =0,

when the very small equilibrium diffusion term in neglected. We
combine this result with Eq. (4.148), assuming T,=T, for simplicity,

and find that
['WO’VO] + 26[h,p0] =0,
whence

dpeO
0

Vo = Vo(¥g) + 26h (4.149)

Thus pressure gradients demand an equilibrium parallel flow. Like the
current of Eq. (4.148), vO~VO is a return flow, induced by the

variation of B on & magnetic surface (cf. Sec. D of Chapter II). As

~
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indicated by the 6—factor, the return flow is &a finite gyroradius
effect. It plays an important role in neoclassical transport theory
[64]. The first term on the right-hand side of Eq. (4.149) is small in
most toroidal experiments. |

In linear theory, 6 has two elementary consequences: itballows
the ion diamagnetic frequency, CH tq enier the shear—Alfvén law, and
it provides appropriate “‘'kinetic” effeéts} involving wg« és well as
k"vthe, in the generalized parallel conductivity. We study these
effects 'in cylindrical geometry, neglecting toroidal curvature (h=0)
and assuming the equilibrium bressure depends only on r. Thus we use
the coordinates of Eq. (4.41).

The linearization 1is accomplished by expressing the spatial

dependence of any field variable, f, as

t = 1y(r) + F(r)expi(mo—2z) . (4.150)

The eikonal factor is usually left implicit. Hence Eq. (4.147) yields

3y daf
vt =-igf -2 Limi 4+ 22y
I r -dr r dr
in which the first two terms must correspond to k"f « (f4-m/q)f. In

fact, the reduced safe{y factor is given by

dy,
r__1.70 (4.151)
q r dr

Thus, after introducing the normalized wave vectors
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Rok, » k, = m/q-L . (4.152)

.and

m/r , (4.153)

ak, = kl

we can write

vf =ik f o+ ik rgd . ) (4.154)

where the prime denotes a radial derivative. We similarly introduce

the normalized frequency,
(TA/E)CI) 2w ’

such that 3f/d7 becomes ~iwf. Hereafter the carets are suppressed.:

The significance of w, is most simply understood from the

1*
incompressible energy conservation law: Eq. (4.146) with g=0.

Linearization provides the "hydrodynamic” perturbation

Pe = K pgo9/w (4.155)

which is substituted into Eq. (4.127) for the perturbed ion flow. One

finds that

) 2xV,9 (4.158)
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where

is the ion diamagnetic frequency in terms of reduced variables. It is

convenient to write

€
il

jr = ~(T/T)wex 2 - (4.157)

where

= - 6k (4.158)

e* tPeo

is the normalized version of the .drift—frequency appearing in
Eq. (4.89). Equation (4.156) shows that w; +—terms correspond to
perturbed diamagnetic flows. They are omitted in MHD because, as we

have noted, wgp >> wsx ~ 6.

The way in which_wi* actually enteps the closed linear system is

somewhat different: it does not depend upon incompressibility or
Eq. (4.155), but does depend upon gyroviscosity. Yet the result is the
same; denoting the right-hand side of Eq. (4.143) by G, we linearize to

compute

(2/8)(To/T;)6 = —ik ps U + ik ¢p.’ —Vo(ik ploe) -

If perturbed amplitudes vafy in radius more sharply than Pgo: We have
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G = (5/2)(Ti/Te)(_Ziklpéo)U = —iw;4U , (4.159)
which combines with the first term on the léft—hand side of Eq. (4.143)
to produce the usual shift, —i(w—wi*)U, as in Eq. (4.158). We remark
that without ﬂg the result would have been quite different and
inconsistent with ion kinetic theory.

Next we turn our attention to the electron dynamics. The

normalized, linear, parallel electric field,

&= —iwy + ik”<p , " (4.160)

'

should be related to the parallel current by an Ohmic relation,

J = c4é° (4.181)

which defines the four—field conductivity, O4- Of course o, is
dimensionless; denoting its dimensional version by 0+y. &nd recalling

the normalizations of,J"'é J' and E" > & , we find that

(4.162)

as in Eq. (4.33).
We calculate Oy for the equal temperature case, assuming w0=0 and
neglecting equilibrium current gradients; analogous simplifications

were used in Subsection 2. Then Eq. (4.145) implies

e T TIT R AR T Y TR T T T
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and substitution into Eq. (4.144) yields

2

m
& = (n-4i 59 6%w)J + i6wv . (4.164)

1

To compute v, we use Eqs. (4.154) and (4.158) to write Eq. (4.163) as

16wv = ik 6p—iwgs¥ . ' (4.165)

and combine it with the linearized energy conservation law,
—iwp, —iklp6¢ = —ik,f(v+26J) . (4.166)

Here we have neglected resistive diffusion for simplicity. (The
influence of resistive diffusion is studied in Chapter V.) One finds
that

KEE  wg 2i6°p1%

Ayt 4+ —1 ;. (4.187)

iswv(l — 5
w @ @

Notice in particular that the g—term in Eq. (4.166) has combined with
the y—term in Eq. (4.165) to form &.

Equation (4.167) is to be substituted into Eq. (4.164). It is

convenient to introduce the quantity 4, such that

_ kﬁﬁ -1

(1

= 1+A; . ' (4.168)

- —— ¢ —— -

e e T I T TIRT R AT
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Then one obtains Eq. (4.161), with

w—w_4(1+4;)
£ ! (4.169)

[s2 = .
nw-41 (mg/m; ) 6%P+21 62617 (144,

In order to compare this result with its kinetic counterpart, o,
[recall Eq. (4.101)], we first rewrite Eq. (4.169) in terms of
dimensional quantities. The relevant normalizations are given by

Eq. (4.162),

'(knvthe)z/(ij > zéeﬁekﬁ/(wﬁ) !

. 2
e (kuvthe'g , Eife
m; w wo

(ko) 2/0® =

and

Ruw/vg 4(me/mi)62w/n
We also note that

B =g, + 0(8%) ,_

from Eq. (4.141), and therefore ignore the distinction between £ and

Be- Then Eq. (4.169) becomes

1~(wg +/®) (1+4;) (4.170)

Oxg = O 2
l—Zi(w/Ve)+i(k”ve) (1+24)/(wv )




with

where x; is defined by Eq. (4.113).

Equation (4.170) differs from the result of Subsection 2 for
obvious reasons: a fluid description, without microscopic
wave—particle interaction, cannot provide the Z—functions found in
kinetic theory. Thus, for [x| ~ xé (or Xi)’ Eq. (4.170) oversimplifies
the electron response. However, the more striking feature of
Eq. (4.170) is that it reproduces, with good qualitati?e accufacy, all
the asymptotic limits of the kinetic version: Eqs. (4.106), (4.111)
and (4.114). |

We point out that the agreement between‘a4* and o, for k"vth + 0

is not surprising, since truncation is essentially exact in this limit.

It is the agreement for (k”vth)2 >> w(w+iv) which is noteworthy:

Equation (4.170), with A; = 0, was derived by Rutherford and Furth

[70], who noted that Og% becomes small for large k", i.e., at "large"”
distances from the rational surface. This circumstance was discussed
in Subsection 2; its significance 1is considered in the following

chapter.

T
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V. Radial Boundary Layer Theory
A._ Introduction
Having derived tractable models for the plasma dynamics, we
return our attention here to the main issue discussed at the end of
Chapter III: resolution of the rational flux surface singularity. This
chapter considers the case in which perturbations are dominated by a
single helicity. The well—defined boundary layer characterizing the
single-helicity case leads to a relatively simple, one—dimensional
problem. More general perturbations, involving strongly coupled
helicities and‘-often lacking distinet radial boundary layers, are
studied in Chapter VI.
7 of éoursé a one—dimenéionél anaiyéis,ié $£rictlyré§p;§§riéter éﬁiy

in the case of cylindrical symmetry. However, we have seen that#.. -

toroidal curvature enters the reduced equations primarily through the
interchange term, which is negligible for sufficiently small pressure.
Hence the low-beta case (ﬁ~52) is effectively cylindrical and
rigo;ously consistent with single-helicity theory. When 6 is neglected
it déscribes éuch current—-driven modes as the classical £eating
instability, twisting modes and the ideal kink. . Apart from such
specific applications, low-beta reduced MHD provides the simplest
possible concrete example of several topics emphasized in Chapter
ITI: mneighboring equilibria, boundary—layer analysis, and closure of
the shear Alfvén law. It is the main subject of Section B. |

At higher pressure (f~z), the intefchange term musf be included,
and toroidal curvature, coupling different helicity componehts, plays a
crucial role. Nonetheless, as long as w << Ay, a single helicity can

continue to dominate, yielding a distinct radial boundary layer. The
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corresponding linear instabilities include radially localized
interchange and pressure-modified tearing modes. The main burden in
analyzing high-beta disturbances is the derivation, from partial
" differential equations, of ordinary differential equations for
amplitudes deseribing the dominant helicity. This decoupling analysis
can be performed in.two ways. The first .way, which depends wupon
bdundary—layer orderings (e.g., klw <<.1) is reviewed in Section C of
the present chapter. The second method, which'ié more complicated but
also more general, is the subject of‘Chapter VI.

In Sec. D we consider the effects of finite 6, emphasizing the
modified electron response. When the collisional conductivity, o> is
‘fepiacedﬂﬁb&ra*;”a ﬁeW'scéie?length';nie;srthevlinéar‘profleﬁ,-ailéw{hé‘
for qualitatively different instability mechanisms.

Nonlinear resolution of the rational surface singularity is
" discussed in Section E. It was pqinted out in Chapter iII that the-
crucial nonlinearity results from field-line reconnection, Thus one
studies the evolution of a  magnetic island whose width has become

 comparable to the linear layer width (W~w).
B. Low-beta Stability

1. Linearization
In this section we study the linear eigenmodes of low-beta
reduced MHD. Thus the interchange term in Eq. (4.35) is neglected, and

the dynamical equations become

du/er + [p,U] = -V,J ' (5.1)
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/AT + Vg =mnd (5.2)

We noted previously that cylindrical coordinates are appropriate in
this case: low-beta allows one to assume that equilibrium quantities

‘depend only on r. Each field quantity is expressed as an eikonal, as

in Eq. (4.150). After suppressing carets we obtain the linearized
system,
Vo + k, V3% + k 30y = 0 . , (5.3)
—wY ¢ 1 1’0 °.
—wy + ko = —inviw . (5.4)
where
2 1 9 d 2
Vo ==~ r — - k% .
1 r3r or 1

Equation (5.3) is'a simpiified, linearized verison of the general
shear—Alfvén law discussed in Chapter III. Equation (5.4) is of coursé
the corresponding closure relation. Thus we have a simple model for
the boundary—layer theory outlined in Sec. C of Chapter III, which we
very briefly review.

With the neglecf of plasma inertia, Eqg. (5.3) becomes. an

autonomous equation for ¥, or

describing neighboring equilibria,
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2 ) =
k Vi + kg =0, (5.5)

as in Eq. (3.21). A regular singular point of Eq. (5.5) occurs at ry,

where

k”(rs) =0 ,

unless

Jé(rs) =0. : o (5.6)

When Eq. (5.6) does.not hold, the singularity -yields two +types -of

solutions: regular solutions, charactgrized'by

'W(rs) =0, : ' (5:.7)

and singular solutions, with finite w(rs). This and the following
three subsections are devoted‘ to the singular case. The regular
solutions, corresponding to ideal kink instability, are considered in
Subsection 5.

It is evident from Eq. (575) that a large parallel current forms
near the boundary layer (”currént layer”) surrounding the'fational
surface. In the layer intefior, we must include inértia to keep J
finite; thus Eq. (5.4) becomes necessary for closufe. Outside the
current layer, however, Eq. (5.5) remains approximately valid, since

'waSA ~ k"(w)vA << k"(r)vA , for Ir—rsl >> w.
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Notice that i, rather than w, tends to diverge at re. Thus the
boundary—layer equations, in order to round off the current spike, must
contain azJ/arz, and the boundary-layer equation for ¥ will be at least
fourth order. Equations (5.3) and (5.4) indeed yield uncoupled fourth
order equations for ¢ and ¢; any alternative closure of lower order
could not treat the singular case.

As in Chapter III, the radial width of the boundary layer is
denoted by w. Itv evidently ‘depends upon 7 and magnetic shear; the
specific form will be considered presently. Notice that w— is
dimensionless in reduced coordinates; hence the thinness of the

boundary layer is expressed by

w<<1. (SEB)Ef

2. Layer interior

We begin our analysis by considering the layer interior. Assuming

|r~rsi ~w < rg, we write
r = I‘_S+X , X <L I’S
ky(r) = kjx , : (5.9)

as in Eq. (3.48). (Note that the "x" used here is a radial variable,
which should not be confuséd with the Cartesian "x" of Sec. IVB.) We

also assume that

(k_lw)z << 1,
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corresponding to small or moderate values of the poloidal mode number

‘m. Then we have -

Vf = az/axz + 0(w/rg) .

Finally we neglect the kink term, involving Jj. in Eq. (5.3). The kink
term is primarily important outside the layer; its importance to layer
physics will be assessed a posteriori. Thus we obtain the interior

system,

—wp' + kli xY"' =0 . : , a (5.10)

oy + k) % g = —imyt L | (1)

Notice that Eq. (5.10) replaces the general shear—Alfvén law.'

Eq. (3.20), by an ordinary differential equation, balancing plasma
inertia against line bending, without any vestige of toroidal

curvature. In fact the same result could have been obtained from a

slab model. However, Eq. (5.10) does not correspond to a homogeneous
medium, because it contains an artifact | of"i mode—rational
surfaces: Eq. (5.9). In other words, what fiﬁally survives the
reductions and simplifications is toroidal topology, as expressed by

Eq. (2.25), and magnetic shear.

Equations (5.10) and (5.11) obviousiy can be combined to provide
uncoupled,‘fourth~order equations for ¢ and vy [71]. The following
artifice allqws one integration, and thus yields a second order

equation for
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measuring the radial electric field [72]. Noticing that
Xy = (xv') = [Fam]
we integrate Eq. (5.10) to obtain

~E + kj X°(¥/x) =C , o (5.12)

where C is constant. We next divide Eq. (5.11) by x and differentiate
-the .result. . Then . simple “manipulation-using Eq.-(5:12) provides the

. boundary-layer equation
. , 2 .2 - ‘
B[1-(kjx/0)?] - 1(x%/0) (B /58) " = /o .  (5.13)

We note that our derivation of Eq. (5.13) remains valid ﬁhen the
resistivity varies with x.

ﬁext consider the asymptotic form of E for |X!;* w (i.e., for
Ir—rSI >> w). The boundary-layer solution must become smooth in this

limit; since
n <K<1,

we can neglect the resistive term to obtain

E»—% x| e, (5.14)

(i x)®
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Since Eq. (5.14) cannot be integrated through the origin, we must allow

for different integration constants; ¢, and ¢_, on either side:

wC

—_— " x-)iw R . (5.15)
a 2
() "x

‘0#901-“

We substitute this result into the asymptotic form of Eq. (5.11),
—wy + ky x>0,

to obtain the current—free flux

1+
8

Y > Ayt AXx , X , ‘ (5.16)

where Ay = ~C/k; and A, = (kﬁ/w)¢i'
Hence the layer solution is characterized by three integration
constants. A fourth constant does not occur because of the implicit

requirement that the current density,

I =y =g’ _ . (5.17)

must be finite at x=0:

E'(x=0) = 0 . | (5.18)

The constants A+ and A_ determine the total current flowing

through the layer:
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JaxJ = A, -4A_ . - (5.19)

Here and below we use the notation

[ dx = ]°° dx . ' : (5.20)

The normalized, integrated sheet current is conventionally denoted by

A= (A-A)/Ay | (5.21)

It must chosen to match appropriate asymptotic forms of the sblutions,'
for x<0-and x>0, to the exterior problem.f'"Presuming'~the --latter - has -

been solved, we can consider A’ to be fixed, and Egs. (5.17)4and'(5u21)‘

provide a constraint on E(x),

. (73 ’ '
Agh’ = Eﬁ [ dax E'/x . ) (5.23)

Equation (5.22) allows us to express Eq. (5.13) as an

integrodifferential equation [73]

kX 2 ;o . o
o SiTey _ o %% pEYy _ 1, dxE o 5 25

which is to be solved with the simple boundary condition
E>0, |x|] » = (5.24)

as in Eq. (5.14).
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~

An alternative form of Eq.£(5.23) is more bomplicated; but

‘especially useful in certain applications. It is expressed in terms of
the parallel electric field, &, which is related to E .by [recall

Eq. (4.160)]

(@PE = i /k) " + wkjhg

~as follows from Egqs. (5.10), (5.11) and (5.16). The derivation of a
second order equation for & is similar to that of Eq. (5.23) [74].
We give only the result:

) x &

; e e g :
Elesm )’ igx T [ ax —E (5.25)
2_2 wn inky 2__ 2\R 2 .2 2 i '
kj—w (a7 + =Ly (09" (ko)
whére k" = kﬁ X as usuai. The application of Eq. (5.25) is considered
in Sec. D.

3. Eigenmode classification
An  important feature of Eq. (5.23) is the symmetry of its
integrodifferential operator under x » —x. Hence eigenmode solutions

can be chosen to have definite parity: E = E+(x) or E_(x), where

n
+
—

E (-x) = oE_(x)

We call the solutions,E+(E;) even (odd). Notice that ¥ and J must have

the same parity as E, while ¢ has the opposite parity.
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Recalling that "strong"” magnetic reconnection requires ¥(x=0) # 0,
we see that topology change is primarily associated with even
eigenmodes. We therefore call them ‘tearing” modes, wusing the
terminology of Furth, Killeen and Rosenbluth (FKR) [75], who first
analyzed recpnnection is .a confined plasma context. The odd eigenmodes
are called | “"twisting" modes [76]; they exemplify a class‘ of
instabilities which display boundary—layer behavior while still
satisfying the Newcomb condition [since v _(0) must Vanish]. Drift
waves, in particular, belong’to this class.

A distinct eigenmode classification involves the size of A, Thé

case

A1 (AW << 1) (5:26):

is called "small A’, while

AT >> 1 (A'w > 1) ' (5.27)

refers to “large A’". Since A’ measufes the slope of ¢(§); we see that
9 'is nearly constant (despite its large curvatﬁre, P") ﬁhen A'w is
small. In studying the small A’ case, FKR simplified Eq. (5.10) by
replacing 9, on the left—hand.sjde,vby AO ("constant—y approximation").
Largé A' is assoéiated either With steep slopes orFWith négligibly
small AO. In generaI; one specializes the field equations to the

large—A’ case by means of the limits

An 20 , or A" » o (5.28)
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In Subsection 5, we will find that large-A’ describes, in particular,

tearing eigenmodes with poloidal mode number m=1.

4. Dispersion Relations

We are finally prepared to compute the eigenvalues, w(kﬁ,A'»ﬁ), of
Eq. (5.23). The large-A’ case is simplest. Using Eé. (5.28) to
neglect the right-hand side of Eq. (5.23), we find that its solutions
can be written in terms of confluent hypergeometric functions, M [77],

as follows:

) 1 :
E+(n) = exp(—axz/Z)M(—n, Y axz) ,
E_(n) = exp(—axz/z)xay(—n, g, ax®)
where n=0,1,2,..., and

of = 1(x/)%/(en) .
The dispersion relations are

)2'

(ky
W = (4n-1) "
(24
for E+, and
(x)®

W° = (4n+5)
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for E_. Equation (5.24) requires that

Re(a) > 0 ,

which .importantly restricts the solutions. In fact one finds that only

one unstable mode is permitted: the n=0 tearing mode,

E = E,(g) = exp(-ax"/2) .  (5.29)
Its growth rate, y = —iw, is given by
=¥ (5.30)

and

ky(yn)™ 1/2 =.(k,]/?_7)2/8

R
i

These results are easily éhééked by direct substitution.

Equation (5.29) displays a boundary-layer loealization of the
~radial electric field which is typical of tearing instability. (Recall
that ¢ and ¢ are not localized, but instead connect to the exterior

kink structure.) The boundary-layer width is evidently given by

w=o 1/2 or
w= (. | (5.81)

Since 7 < 1078 in typical experiments, Eq. (5.8) is easily satisfied.
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Notice also that ¢(x) is an error function whose asymptotic form,

\

2
¢ =const. + 0(e X ) , |x| » =,

is consistent with Eq. (5.15), since C « A0 = 0. This justifies our
neglect of thé right-hand side of Eq. (5.23).

In the case of small A’, the integral term in Eq. (5.23) is
important and simple, exact solutions are not available. The small-A’
eigenvalues are most efficiently derived by variational methods. Thus

Eq. (5.23) is rewritten as

B+ (L) - (1) - ()t L o

(kﬁ)z X

or ZE=0, where the linear operator % can be seen to be self-adjoint:

[dxt %g = [dxg &1,

for any suitably localized functions f and g. Self-adjointness allows
one to construct a quadratic function S[f,f] which is variational, in

the sense that

68"

I
(=

at f=E. By using a trial fungtibn, I(x;al,ag,...), where the o4 are

variational parameters, one can compute S(ai), extremize with respect

to the « and thus obtain a variationally accurate dispersion

i H]

relation.
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The accuracy of the variational approach is well documented
[73,74]. It has the important virtue of remaining tractable when the
resistivity becomes a function of x, as in Eq. (4.101). Alternative
variational prescriptions, which can be more convenient in certain
circumstances, are expressed in térms of the parallel electriC'fieid
[74], or the parallel current density [78], instead of E.

Here we review mneither the variational procedure nor other

analytical methods, such as those based on the constant—y

approximation. Instead we estimate the eigenvalues of Eq. (5.23) by
means of dimensional arguments. While missing quantitative details,
such estimates have the advantage of being both brief and physically

instructive.

. Thus, returning to Eq. (5.23), we first identify three relevant%‘

scale lengths: the radial width, w, of the (localized) radial electric
field; the shear—-Alfvén width, Xpo at which y is locally equél to the

shear—Alfvén frequency,
X) = v/k) - ' | (5.32)

and the resistive skin—depth,_xR,'given by the normalized classical

formula,
Xg = n/y . ' ‘ (5.33)

Hence Eq. (5.23) is rewritten as
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[1+ (x,/%)%]E - =Bx32(E /x7)’

= —(8") " Nx,/%)?f ax E"/x . (5.34)
Consider first the resistive term,
2 2/m. 2 2,2
xpxy (E/x%)  ~ (xgx,/w°) E ,
according to the estimate,

E’ ~ E/w .

If (XRXA/wz) >> 1, this’term.c;n be . balanced only by the A“-term.onwthé_'
'right—hand side,_ in which case the common factor of xi can be
eliminated. Thus the Alfvén speed disappears from the linear problem,
leaving only slow resistive diffusion. On the other hand, when
(xRiA/wz) << 1, Eq. (5.34) can be seen to describe ideal Alfvénic
motion, with unresolved singularity at x=0.

We conclude that the boundary-—layer fWidthuébiS generally

characterized by

w o~ (xgx) /% (5.35)

i.e., it is the geometric mean of Xg and Xy - This ordering holds quite
‘generally (when 7 = constant) and reflects the compromise between
Alfvénic oscillation and resistive diffusion which characterizes

boundary—layer evolution [75,79]. In particular, Eq. (5.35) is
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consistent with our previous, exact results for the large—A’ mode,
Egs. (5.30) and (5.31).

Consider next the ratio
d 2 3
Xp/%p = K| 771/ /Y /R

For the large-A’ case, Eq. (5.30) shows that XR/xA = 1; more general

models reveal a variety of modes for which
IXR/XAI ~1 , W~zxp~x, . ' ,.(5.36)

3

Equation. (5.36), which implies y « nl/ ;- characterizes -any disturbance

for which iny (rather than only J) varies sharply within the layer:.

P~ S (5.37)

The other important case,
. ‘lgR/xAl >> 1, ' | - (5.38)

can be seen to correspond to small-A’ modes, as follows. We know that
the right-hand side of Eq. (5.34) is comparable to the left—hand side
for small A", and we have just shown that the left-hand side is

estimated by E. Hence a straightforward estimate of

(6) Nxpy/x)® [ ax®/x ~ (87) Hxy/w)PE W

yields the relation
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A'w ~ (xA/w)z ~ Xp/%p . (5.39)

Here the second form follows from Eq. (5.35) and obviously verifies
Eq. (5.38): the resistive layer is much wider than the Alfvén layer
for smali AL

An analogous argument can be applied to the coﬁpled equations,
Egqs. (5.10) and (5.11). 6ne then finds that small-A’ correspoﬁds to

the ordering

Yo~ Ay | X  (5.40)

which is to be compared to Eq. (5.37). .The constant—/ approximation:is.

evidently based upon the ordering

Yo~ DAY << YW

Here we emphasize the necessary connection between Eqs. (5.38) and
(5.40). z

To find the dispersion relation for the small-A’ case, we first

note that

—xgxi(E'/Xz) ~ nyE(kﬁ)_z Wt

including the correct sign (for tearing’parity). The point is that
proper localization requires E" = —E mnear x=0. Since, on the other

hand, the right-hand side of Eq. (5.34) has the sign of A’E, we see
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that sgn(y) = sgn(A’) eand conclude that current—driven tearing modes

are unstable only if

A" >0 . (5.41)

In fact, as Furth has shown explicitly [BO], .A° measures the free
energy which kink activity has made available in the exterior
(Ix| >> w) region.

The form of the growth rate follows from Egs. (5.35) and (5.39):
A'(XRXA)l/Z = X,/%Xp .

which implies

y =035 @W)¥/5 (a1) V5 | . (5.42)

The quantitative version of this result, the "classical”. tearing mode
growth-rate, was first obtained by FKR; it differs from Eq. (5.42) by a

factor of approximately 1.7.

5. Current gradient

Our analysis of the tearing layer interior has omitted the kink
term, k Jg¥, in Eq. (6.3). Such omission is not obviously justified,
in general, and our main purpose here is to consider current—gradient
effects on the interior more carefully. However, we begin by
considering the neighboring equilibrium equations which describe the

kinked region, exterior to the layer.
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The exterior region is primarily distinguished by its relatively

slow field variation:

Vf ~ 1, x| >>w.

This ordering implies that, in the exterior,

v = ke/o | | (5.43)

‘or E" = 0, in view of Eq. (5.4) and the fact that 7 << 1. Because
vanishing E” characterizes ideal MHD, the exterior region is sometimes
-called the "ideal” region. However, two comments are in order: First,

when long mean—-free—path effects on the electron response aré included;,

as in Chaptér IV, one finds that the parallel resistivity may not be

small enough to justify Eq. (5.483). This issue is discussed further in
Section D. Second, the pertinent exterior equation, Eq. (5.5), is
independent of the size of 7 or E,: it only requires w << k"(r)vA - a

‘rather weak constraint since k” is relatively large outside the layer.

In other words, it is the absence of a boundary layér, rather than’

the absence of dissipation, which properly characterizes the ideal-

kink. Equation.(5.5) is more robust than Eq. (5.43).

We next consider salient properties of the ideal kink. Equations
(5.6) eand (5.7) specify two distinct ways in which boundary—layer
formation can be avoided. The first way, Jé(rs).= 0, is most' easily
achieved when the singular surface lies in a vacuum region, separating
the plasma boundary from a conducting liner. The corresponding
perturbations involve helical deformation of the plasma boundary [15],

without constraint on w(rs). Called "free-boundary"” or "external” kink
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modes, their evolution 1is fairly well understood, even nonlinearly
[33]. However, external modes are rarely amenable to any local
analysis.
In the absence of a vacuum region (that is, when the plasma
boundary coincides with a conducting wall), Eq. (5.6) is unlikely to
pertain, so that the relevant, "internal” kink-modes are constrained by

Eq. (5.7). In this case it is instructive to write

¥(r) = rkuf(r) (5.44)

where ¢ « k1¢ measures the radial plasma displacement, and must
‘therefore be everywhere finite. To express Eq. (5.5) concisely in

terms of ¢, we note that

Hence, in view of Eqs. (4.151) and (4.152),

13 (138 ,.2 ‘
I m - = — . ’ 5.45
k170 r dr [r ar (r k”)] (5.45)

After some manipulation, Eqs. (5.44) and (5.45) allow us to express

Eq. (5.5) as

(v )" + kﬁr(1—m2}g =0 . ‘ (5.46)

The key feature here is' the (lﬁmz) factor, showing that internal modes

with unit poloidal mode number have special stability properties [81].
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Let us multiply Eq. (5.46) by ¢ and integrate over r. After partial

integration, we find that
1 3,2,,12 _ (! 21 24,2
[0 dr r k”(é ) = fo dr r k“(lﬁm )ES . (5.47)

Since, by Eq. (5.46), ¢ can be presumed real, the left-hand side of
Eq. (5.47) 1is necessarily positive, while the right-hand side is
negativé unless m=1: Eq. (5.46) has acceptable solutions only for m=1.
Recalling that marginal stability'vdepends ﬁpon the existence of
neighboring equilibria, we éonciude that.internal kink modes with m>1

are stable in reduced MHD.

Equation (5.46) also shows that the marginally stable m=1 internal - -
kink is characterized by a constant radial displacement, ¢’ = 0,. .on: .-

both sides of the rational surface. Since ¢(1) must vanish for

internal modes, we can construct a non-vanishing ¢ only by allowing for

discontinuity at r=rg. The structure of this discontinuity can be

“resolved, within the context of ideal theory, by including inertia in

Eq. (5.46) [81]. The resulting “inertial layer” has width x,;.

dissipation is not involved since Eq. (5.7) is satisfied.

Since the minimum g-value is only slightly less than one in a
tokamak, m=1 —>n=1 and the releva#t singular surface corresponds to
=1, near the magnetic axis. Hence one expects m=1 kink activity to be
concentrated in a small fadial dpmain, enclosing the magnetic axis,
where q<1. Indeed, such activity is almost wuniversally observed in
tokamak experiments; it significantly limits confinementbin the central

region. However, the observed oscillations seem very likely to involve
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dissipative boundary la&ers: m=1 tearing instability, rather than the
ideal kink.
The m=1 case remains distinctive in the dissipative case.
Consider the mnear—axis region where x<0 but |x| >> w. The;e, ¢ is

approximately constant and Eq. (5.44) holds, so that

(const.)x . . (5;48)

<
R

Comparing Eqs. (5.16) and (5.48), we see that A vanishes for m=1
perturbations. Thus, as. we néled previoﬁsly, ﬁ:l tearing modes must
have large-A’; | |

We next consider the role of current gradients in the analysis of
small-A”~ tearing modes. There are three regions of interest. In:the.
far exterior region, |x| >> w, the global structure of J; determines
the value of A’; we don’'t attempt to calculate A’ here, but remark that
m° terms are strongly stebilizing, as in Eq. (5.46), so that A" is
usually negative for m.larger than two or three. Proceeding to_smaller‘
values of |X|€ ﬁe next come to the "matching region”, described by the

small—|x| limit of Eq. (5.5):

kyxy” + k Jg¥ = 0 . (5.49)

Finally,v the description of  the layer interior (|x|<w) differs from

Eq. (5.49) only in that inertia must be retained:

—wp" + kyxy" + k Jqy = 0 . (5.50)
pXvo t+ ¥ Jg |
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Consider first Eq. (5.49). 1Its solution can be written as

k J]

1°0 )
VY= Ag + Ayx - _Ej“ Ag xin|x| + 0(x2) .

The logarithmic term appearing here is characteristic of current—driven
modes . | It corrects Eq. (5.16), but not very seriously, because
x4n|x|~x for any physically relevant range of x.

The modified interior equation, Eq. (5.50), is more interesting:
Of .course it corrects Eq. (5.10). To estimate the importance of the

new term, we compare it to the line-bending term:
’ 3 " V ’ ’ ’ - ’ _1 .
lio¢/(k"X¢ ) ~ lio/(k”A ) ~ (87) . (5.51)

Evidently, current gradients are not neglfgible inside the layer for
small A”.

Let wus combine Eq. (5.50) with the usual closure relation,
Eq. (5.11), and attempt to solve the coupled system. Notice that the

Jo—term breaks the reflection symmetry of Eqs. (5.10)iand (5.11): it

couples the odd and even modes. Partly for this reason, our previous

reduction to a single second order equation is no longer rigorously

applicable. However, Eq. (5.51) allows limited use of the constant—y

approximation: we replace the last term of Eq. (5.50) by liéAo. Then -

straightforward generalization of our previous treatment yields the

eigenmode equation
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(5.53)

Equation (5.52) shows that Jj drives an odd contribution, E_(x),

to E. This odd piece removes the . singularity in the integrand ' of.

Eq. (5.53),

without affecting the 'value of A°. Thus the tearing mode dispersion
relation can depend only.upon' E+, which is unaffectéd by- Jé. We
conclude that the current—gradient or kink—ferm, while not necessarily
small, is safely neglected in the interior analysis of‘a tearing layer

[56].
C. Boundary layers with pressure
1. Introduction

We have seen _that at low beta the shear—Alfvén law

describes a balance between line-bending and gradients in the

(5.52)
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equilibrium current. Rational surface singularity (gq=m/n) corresponds
to vanishing of the line-bending term and leads to boundary—layer
structures, inside of which plasma inertia becomes important. Because
q is a flux function, the boundary layer adheres to a well defined flux
surface and the radial mode structure is of dominant importance. In
other words, the strictly radial dependence of q implies a
predominantly radial dependence of all the perturbed fields.

The situation at higher beta, when thé interchange term becomes
comparable to line bending, can be quite different. The poiﬁt is that
neither é nor (in general) the perturbed pressure are flux functions;
hence the shear—Alfivén dynamics need not be dominated even

approximately by radial variation. Partly for this reason, the

analysis of pressure—-driven modes is relatively complicated, and.. the: .-

resulting dispersion relations are typically fery sensitive to magnetic
field geometry.

Another reason for the relative complexity of pressure-driven
modes is obvious: ‘they require at least‘ one additional coupled
equation, io determine the evolution of pressure pertﬁrbations.
| In this seétion we consider the‘ simplesf variety of
pressure—driven modes: the boundary—layer modes, for which the
perturbed field structure remains approximately one—dimensiénal. Thus

we consider pressure-modified tearing instability, as well as radially

localized interchange modes. It will be seen that even in the
boundary-layer case, the inherent multi—dimensionality of the
interchange term entails relatively elaborate manipulation. In fact,

~the main burden of pressure—driven mode analysis is the extraction of
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coupled ordinary differential equations from the original
partial-differential-equation system.

We note in passing that the extraction procedure can be obviated

by replacing the curvature force by an artificial, constant
gravitational force. Such ‘"“g-models” can give rapid qualitative
insight into interchange effects. However, because they involve

uncontrolled approximation, they are not reviewed here.
Pressure—driven modes which are not radially localized‘(such as
ballooning modes) must be analyzed wusing the more general

scale—separation arguments of Chapter VI.

2. Linearization

In order .to include compressibility, this section uses-. the::

four—field model, rather than reduced MHD. Our analysis is simplified
by the neglect of FLR terms (6=Q) and by equating the two species

temperatures. Then Egs. (4.143)—(4.146) become

U+ [pu] + V0 +2[hp] =0 (5-545
Y+ Ve =l | | ~ (5.55)
¥+ [p.v] + Vyp, =0 (5.56)
be + [0.pe] = 8(2[h,0] - Vv + n¥ipe) - (5.57)

When 6=0, the four—field equilibrium coincides with that of reduced
MHD. We recall from Eq. (4.148) that pressure distorts the flux
surfaces, with respect to cohcentric circular geometry. Hence flux
coordinates, (rf,wf,f), become Appropriate. Here, re is a normalized

radius which labels equilibrium surfaces:

e - ——
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Ty = rf('!l/o)
while ﬂf is chosen such that

Q(rf) = E‘VZ/E‘V%

(We have noted that the reduced coordinate 2z coincides with the
symmetry angle ¢(.) Linear theory is often simplified by replacing z by

the approximate field line label
u = z-q ¥y

‘where
q, =m/n

is the rational safety factor of the relevant mode-rational surface.
This section uses the coordinates (rf,ﬂf,u) exclusively; the
f-subscripts are hereafter suppressed.

Recall that the bracket in Eqs. (5.54)—(5.57) is defined by

[F,c] = Vz.VFxVG .

We introduce the Jacobian

VzeVrxVy = VueVrxVy = 1/Vg

in order to write
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, q :
[F,¢] = [F,G]« + ;% (Fu&,~F,G,) (5.58)
where
1
[F.c]x = V2 (F Gy=FyGy)

end the subscripts indicate partial differentiation.

In order to lineariée the bracket, We'noté' that the eduilibrium
quantities can depend  only oﬁ r and ¥, by axisymmetry. '(Evenvin
asymmetric geometry, the  same assumption. is.. conventional, as an
approximation based on scale—lenéth separation.) Thus the variable u is":

cyclic and we have

f = f(r,ﬂ)exp(—inu) . : (5.59)

The perpendicular wave vector is defined in analogy to Eq. (4.153):

=
m

m/Vg
whence

fo = -inf = -i(va/q )k f

Then, if Go(r,ﬂ) is any equilibrium quantity, we have

[Go. 1] = [Gg. 1]+ + ik Gg.f
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The linearized parallel gradient operator is slightly more complicated,
due to the contribution from the equilibrium flux, Yo- We use the

simplified notation,

Y > Yot
so that, below, ¢ refers to the linear perturbation of the total flux.
The same convention will be wused for the other field variables:

Pe * Potp, etc. The normalized parallel wave vector,

- =) Vg k, =m/g-n

generalizes Eq. (4.152) ‘and yields the linear expression

- . 1 o
V,(fg+f) = ik f > fg = [v.1p]s + ik fow . (5.60)

It is important to notice that the Jacobian is a flux function in

reduced geometry:
vg = vg (r) .
This follows from the relation
1/q = <o, /Ve _ (5.61)

and the fact that q and Y, depend only on r.
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We use Egs. (5.58)-(5.61) to write the linearized equations as

follows: -

éin+ik“J+J@/q —'[w,JO]*+ili0r¢ + 2[h,p]« + Rikh p = 0 (5.62)
—lwytik o + ¢ﬁ/q =nJ (5.63)
—iwv+ik, p+py/q - [w,po]*+iklp6¢ =0 (5.64)

—iwp+[@,pgl+—ik pge = B(2[h,p]«+Rik h o

—ik, v=v,/qtnVop) . ~ (5.65)

Note also, from Eq. (2.76), that

Y 1
} L J

J Vg 85“

with (¢1,6%) = (r,0).

3. Boundary layer ordering

Equations (5.62)—(5.66) are more complicated than their
low—beta counterparts essentially because they lack poloidal
syﬁmétry: the curvature function h (and therefore JO) varies ~with .
Thus, for each fixed helical harmonic n, the linear eigenmodes will
involve a number of coupled poloidal harmonics. In the mnotation of

Eq. (5.59), we can write

PN

f(r,9) =) fm,(r)exp(im'ﬂ) . ' (5.67)
-

For prescribed ¢,(r), one could compute h(r,ﬂ),.thus meking explicit

= == —— Vg Velov {Z) (5.66) .
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all the poloidal couplings in Eqs. (5.62)—(5.66), and then solve the
resulting‘system for each fm" Such a brute—force procedure would have
general validity, but would be extremely complicated. Fdr the
boundary—-layer modes of present interest, it would be difficult to
carry out even numerically, because of the disparate scale lengths
involved.

We therefore consider an alternative approach [82], which grossly’
simplifies Egs. (5.62)—(5.66) by exploiting the disparity in
scale—lengths. This approach applies only to modes having distinct
boundary layers and in fact concentrates its attention on the
boundary-layer interior. It is based on the assumption that the radial
scale—iength of the perturbatibn is shorter than any other length win

the system: the "boundary-layer ordering”,

w<<1l , k, ~1. : : . (5.68)

Application of the boundary-layer ordering does mnot require
a priori knowledge of 9, or h(r,¥), and does not use Eq.  (5.67) for f.

We write instead

f(r) + T(r,n) .

>
i

where

<f>

=]
I

with
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O0f course f coincides with the m’=0 term in Eq. (5.67); it describes
that component of f which depends on ¥ only through uw and which is
therefore resonant at the rational surface, §=qs, The purpose of the
boundary-layer ordering is to reduce Eqs. (5.62)—(5.66) to a closed set
of four coupled ordinary differential equations for the resonant field
components, @, 5;5 and v. Solution of this coupled .system. remains a
férmidable task, and in fact usually requires additional approximation.
But at least the problem has been reduced to one—dimensional form.
Equation (5.68) alone does not define a boundary-layer orderiné;
one must also order the various parameters and fields with respect to
w. There is more than one internall& consistent way to choose such
ancillary orderings; different choices affect intermédiate steps in the
calculation but yield equivalent resﬁlts. A relatively simple choice

[83] is defined by Eqs. (5.68), together with

w~w , 7 ~ WO : (5.69)
k” ~w , B ~1
df/dr ~ f/w : © (5.70)

o ~Y~w,;, p~v~1,; J~U-~ w

In Eq. (5.70), f represents a field perturbation; for equilibrium

quantities we have instead
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afo/ar ~ fq

Inspection  shows these assumptions to be consistent with
Eqs. (5.62)—(5.66). Notice that Egs. (5.69) imply w~n1/3 and iherefore
correspond to the large—A’ case of Eq. (5.37); this is convenient for
technical reasons and, as shall be seen, does not prevent treatment of

small-A’ modes.

14. Derivation of layer equations
We begin our derivation of simplified equations for the layer
interior by combuiing' the ®-averages (at fixed r and u) of

Eqs. (5.62)—(5.66). Using the identities

together with the boundary-layer ordering, we find that

mﬁ—kni + i[Ty,9]s + 2i[R,p]s - Rk, h.p = O(w) (5.71)
WP = kyp = ind - | : (5.72)
W¥-kpkpg¥ =0 (5.73)
wptk pgp = 6(21[R,p]s — 2k hg + k Tain¥) . (5.74)

Our objective is to eliminate thé non-resonant field perturbations, f,
from Egs. (5.71)—(5.74). Notice that these appear both explicitly and

implicitly, through Eq. (5.66). For example, from Eq. (5.70), .

7= |Vr|®y, .+ 0(1) (5.75)
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where the first term on the r}ght—hand side is O(wfl). Since Vr

depends on %,

T =1Vl ® g, + <[V B, >

rr

We mnext calculate the non-resonant fields by considering the

lowest order terms in Eqs. (5.62)—(5.66). These are easily seen to

imply
1 =~ 1 -
=Jo——hgp,. = 0(1)
e % vg T
99 = 0(w"), py = O(w)
2 ¢ 1 ~
- —= hyp, — = vy = 0(w)
ve oF g ?
whence
7= p i +o0(1) R T (5.76) .
Vg ‘ . Ce ‘

As an example of the application of these formulae, we return to

Eq. (5.75), which implies

Vpp = 3<|Vr |78 4+ <F|Vr |72

e —
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or, in view of Eq. (5.76),

- —2 -1~ 2 B - :
T o=<|Ve |77y - 24 > . . (5.79)
rr Ve |Vr|2 r

Thus, even for 6=0, the perturbed radial pressure gradient enters the
reduéed Ohm’'s law, Eq. (5.72), essentially through the perturbed return
current; compare Egs. (5.76) and (4.148).

The relation between U and ¢ 1is much simpler, because of

Eq. (5.77). One finds

U= 1r|% 5. +0(1)

’
N

The other f-contributions in Egs. (5.71)-(5.74) can be eliminated, 'in~"
favor of f, in a similar manner. We consider in detail oniy the most
complicated step, involving the two bracket terms in Eq. (5.71).

Denoting these terms by

X = <[Tg,9]«> + 2<[h,p]s>
we have, after partial integration,

Vg X =2 <h[\/—(L__ PGPps + Prg)>
g

To evaluate the average, we use the O(w) form of Eq. (5.64) to deduce

that
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’

~

Py + 2o Yo = iwg¥-igk piy + O(wz)
CENV-I 1P0O

and therefore that
Vg X = 2igq <E(wvr—klpéq"ar)> )

Here the term involving % can be found from Eq. (5.75), with the

result,

Ve

while the v —term can be coﬁputed from Eq. (5.78). Thus one finds"

_— AR . _ &R o ~1 = 2
Vg X = .if_g—[w¢rr<h2>+ k pgp(< b - <|Vr|7® T < > ]
Ve |Vr|® |Vr |2
Rik qpg £ _
2. © 2 Vr
<|Vr|7™®> |Vr]
and Eq. (5.71) becomes
WM, — k"aer - H(k”f)r+klpéa7/r) + 2k Kp = 0 (5.80)

where

. P S or _ 2l o _aa
<hy > = <|Vr| N <B|Vr| 7> Yy +2—EP[<h2IVrI 2>‘—<|\7_r| Rs <h,|VrL,__2>_2]
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=
Il

2 o
< Vr|Boc|Vrp (R (1 4+ 290 <h™>
g <|Vr|®s

H=—§—E<H|Vr|‘2>
Vg :
—2_ (8q® [ o2y -2 — "1 2= Ry =
K = <|Vr| >[g pg(<BEIVr|™> — <|Vr| 7% "<|Vr| B>) - &8.] . (5.81)

The quantity K measures the averaged curvature; its last term
represents the vacuum curvature,
s’-{V = —-Vh
while the remaining terms give diamagnetic corrections.
The other averaged equations are much easier to simplify and we

present only the results. One finds that Egs. (5.72)—(5.74) become,

for small w,

ey = ——— (9, 45, ) ‘1 (5.82)

: <[ Vr |7

WV = kB - k pgp = 0 (5.83)
— - : = = - . 2 =

wp + k pge = ﬁ(—Zkl A T in<|Vr| >prr) . | (5.84)

Equations (5.80)-(5.84) provide a closed set for the four averaged, or-

resonant, fields.
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5. Discussion

Equations (5.80)-(5.84) differ from the low-beta eigenmode
equations, Eqs. (5.83) and (5;4), because they include various effects
of pressure and toroidal curvature. The salient difference 1is the
appearance in Egq. (5.80) of the interchﬁnge term, proportional to K.
Notice that the kink term is absent, due to our use of the large—A’
ordering. The quantity H, which reflects variation of B on the
magnetic surface, changes the form of both the shear—Alfvép law and the
Ohm’'s law, Eq. (5.82). Finally compressibility affects the evolution
of pressure, requiring an additional equation for v, and various'
coefficients, such as that of the inertial term in Eq. (5.58), are
modified‘ 5y curvature. Here, before attempting to solve
.Eqs. (5.80)—(5.84), we comment on the significance of the functions:H:
and XK. -

Consider first the ideal modes without compressibility. When: 7

end § vanish, Eqs. (5,82) and (5.84) can be combined to yield

kP = -k pj v o | ' (5.85)

which 'is the linearized expression of gon = 0. The point is that both
Y and p are advecte& by the same ExB flow, so the pressure remains a
flux function in the perturbed state. Recalling that ideal stability
depends upon the existence of neighboring equilibria, we neglect
inertia (w»0) in Eq. (5.80), and eliminate p by means of Eq. (5.85)..

The result can be expressed as

Ky ¥y, + ko pgl[Hk, (1/%,) . - 2k K/k ]9 = 0
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or, after using Eq. (5.9) for k,, as
(k)% 9" + k pg(Hk +8k K)P = 0 (5.86)
- LPo By TeR Y :

where the primes indicate derivétives with respect to radius (or x) and
all equilibrium quantities are to be evaluated at ry.

Equation (5.86), describing localized, ideal interchange modes, is
the analogue of the kink-mode neighboring equilibrium relatién,
Eq. (5.5). We have simply replaced the kink driving term by the
intgrchange term. Note that the interchange version is simpler because
it is local and therefore depends on radius, through x, in a simple.gnd

explicit wéy. [Recall that Eq. (5.5) cannot be solved without global

knowledge of the equilibrium ' current 'profile‘] Of course both.

equations are subject to the Newcomb condition,

Y(rg) =0 . (5.87)
in order to avoid singularity in the perturbed current.
Because Eq. (5,86) is equidimensional, its éolution is easily

written down:

where the c,_ are constants,

R
Il
[~
1+

% VI=4E] | (5.88)

and
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1 2 rd
_ BKipg
I~ a2 1
(k)
with
ky
K =K+ ——H

2k

~When o, is complex, this solution oscillates and can be localized

by choosing it to vanish for all x beyond its fifstvzero. For real oy
however, i£ can be seen that any solution satisfying Eq. (5.87) must
. grow algebraically with x: a localized solution does not exist. The: .

stability condition is therefore Im(a,) = 0, or

<0 . | (5.89)

In this éondition,_the 1/4 can be traced back to the line-bending term
in Eq. (5.86). . It therefore is said to reflect shear—stabilization of.
the ideal interchange. This stabilizing mechanism was first noted, in
cylindrical geometry, by Suydam [84].

The unreduced version of Eq. (5.89) is dérived in Chapter VI.

Called the Mercier condition [8.85], it can be expressed as

where the quantity DI differs from AI essentially by inciuding higher
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aspect-ratio order terms in the averaged curvature. Under the
high-beta assumption, Eq. (4.119), the higher order terms yield
relatively small corrections td AI; At low beta, however, these
corrections can be of critical importance. For example, in the
Shafranov equilibrium (recall Sec. D of Chapter 1I) ﬂr(<<hr) becomes
0(52) and therefore comparable to terms, such as the contribution to K
from poloidal curvature, which Egs. (4.24) and (5.81) omit. Thus A is
not a reliable stability parameter in the low-beta case.

The quantity H. enters ideal theory only through KI‘ More
generally, Egs. (5.80)—(5;84) show that H 1is significant By itself

[82]; in fact, it severely complicates solution of the resistive,

compressible equations [83]. Fortunately, the most important effect of

H on resistive instability is easily described, at least in typicali -

parameter regimes. One finds that the measure of magnetic curvature

apprbpriate to the resistive case is not KI’ but rather

- l ’ 2
Kp = K + 2 pgH

Notice here that the H® term cancels a term in Eq. (5.81), leaving the

modified a#erage curvature,
—2_ 12d® . ~2y.-2. _ &
Kp = <|Vr|7% | . PO <h®|Vr|™*> - h.] . (5.90)

We will comment presently on the origin of the quantity KR.
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6. Subsidiary ordering

We consider next the solution to Eqs. (5.80)-(5.84). Appropriate
rescaling allows one to replace most of the coefficients in these
equations by unity. However, since the rgscaled_ equations are not
perspicuous, we simply suppress factors of M and |Vr|. We also denote
—ﬁr by Kv’ since it measures the vacuum curvature, and restrict our
attention, initially, to the H=0 case. Thus we consider the eigemmode
equations (overbars are suppressed),

2kl

iXA¢,' _ X,w“ + kl] Kp = 0 . (5.91)
ixY — xp = ixg XY (5.92)

Kk p4

. 1P0
ix,v — xp = _Eﬁ_ v . (5.93)

X pg 2Kk

s .L 0 -L . 2 "

ix,p + —Ei— p =g (E;r K, ¢»+ XV + 1X§ X,Pp ) . (5.94)

Here:XR and XA are the resistive and Alfvén lengths defined by
Eqs. (5.32) and (5.33) respectively.
Consider first Eq. (5.94). It 1is convenient to express the

left-hand side as

‘k Py k pd
: 1Po 1P0
ix + —_— —- ,——— —
AP X/ % K (¢p—p+)

where
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by = — 1kyXp
* - ’
Kk pg
Thus ps=¢ in the incompressible case. On the right-hand side of

Eq. (5.94), we use Eq. (5.93) to eliminate v, and find that the

expression in brackets is proportional to

& . X v
—";ng*‘ +i=Y%-—9
Xy Pg

where the operator

.2% = xﬁVi'— xz/xi

is characteristic of resistive modes. We noted in Sec. B that the
; . _ 1/2. L, . &
layer width scales as w = (XRXA) ; hence the two terms in R are

comparable, and
.1§ZR ~ Xp/%, : S : ! - (5.95)

With regard to the shear—Alfvén law, Eq. (5.91), it is convenient
to eliminate " by means of Eq. (5.92). Then, after straightforward

manipulation, we obtain the following system:

=)y , (5.986)
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. X2 .
Loy = -1 =y - = o, (5.97)
Xp XB
" .
ﬂ 2K
. X v 1 .
Lepr = =i Ty + —L g + = (pymyp) (5.98)
Xp Py f

where

2 .
_ 2klp0K

D = 2 (5.99)

(ky

is the relevant measure of curvature.

Equations (5.96)~(5.98) define a sixth order system. It can: be

solved numerically (even with H#0) [86], but analytical progress
requires further approximation. Thus‘one takes advantage of the fact
that the two equilibrium parameters, § and D, are both smaller than
unity under experimental conditions of interest. The remaining
important parameter, XA/XR, occurfed also in the low-beta theory of
Sec. B. It depends on the linear growth rate but is extremely small
except in the case éf large—A" modes. Since Eq. (5.97) shows that

large—A" modes are hardly affected by D, we assume here that

Xp/%g << 1 (5.100)

and thus avoid repeating the discussion of Sec. B. Then, in order to
study compefition between curvature effects and the resistive diffusion

contained in %, we allow
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D ~ x,/xp | (5.101)

Xp 2 ,
which implies (;{3] D ~ %y, in view of Eq. (5.95).
A

The remaining ordering issue concerns f, or compressibility. The

two limiting cases,
ﬁxR/xA << 1

and

fxp/x, >> 1 (5. 102)

can be seen, “from Eq. (5.98), to correspond to incompressible énd”

coﬁpressible perturbations respectively. » Because P+=¢ in the
incompressible case, neglecting g yields a fourth order, rather than
sixth order, system. In this sense, compreSsibility -is. a singular
perturbation, which can be expected to have striking.effects even when
it is Small._ We adopt the compressible ordering ‘herer; assuming g~1,
both bécause Eq. (5.102) is more consistent with modern toroidal
experiments, and because it yields moreée interesting results.

We remark that the ”méximal” f—ordering, ﬁxR/xA~1, has also been

studied [87]. It yields results more complicated than, but’

qualitatively similar to, Eq. (5.108).
Equations (5.100)—(5.102) define what has been called the

"subsidiary ordering” [83].
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7. Dispersion relation
Systematic application of the subsidiary ordering yields a
sequence of coupled equations, which must be solved order by order. A
dispersion relation is obtained by matching the ordered layer solutions
to those which describe thé exterior region. Our proceédure will be
less rigorously convincing, but much shorter and perhaps more
instructive. After commenting upon special features of the matching
problem in the interchange case, we will solve Egs. (5.96)—(5.98)>by
means of the scaling arguments introduced in Sec. B.
-The exteriof region is defined by |x| >> Xp, xXp and w, and by
Vi ~ 1, whence fgk ~ fxa/xi. Then Egs. (5.96) and (5.98) combine to

show that ¢ = —i X ¢ and p,=¢ outside the layer. Notice that we did
X, . .
A

not wuse incompressibility to 'obtain these results. The neighboring: -

equilibrium equation is obtained by first dividing Eq. (5.97) by Xﬁ,
then eliminating ¢+i(x/xA)¢ by means of the Ohm’'s law, and finally

neglecting inertia. The result is
. 2 " —
xXY" + Dy = 0 ,

analogous to Eq. (5.86). The exterior solution is therefore a linear
combination of two algebraic terms, with powers given by the two roots
of Eq. (5.88). For D=0, these solutions naturally reduce to Eq. (5.16)
vof' the low-beta case; for D#0, however, it can be seen that one of the
terms is singular, having an infinité derivative in the x»0 limit. It
is this singularity which primarily distinguishes exterior solutions in

the interchange case.
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The singularity explains why the formal large-A° ordering
represented by Eq. (5.69) --is most appropriate for high-beta boundary
layers: the interchange term forces ¢¥° to become large for small x.
Evidently, the sihgularity requires a generalized definition of A’,
since the asymptotic slopes are no longer well defined. Thus A’ is
redefined in terms of the difference between ratios of the coefficients
of the two algebraic terms, evaluated on either sidé of the boundary
layer [83]. We emphasize that the physical interpretation of A’ is not
changed: it still measures the total current flowing' through the
boundary layer, as in Eq. (5.22). Moreover, éincé the subsidiary
ordering requires D to be small, the redefinition of A’ only mildly

affects the mathematics.

With these remarks in mind, we turn to the dimensional “solution!?.

of the interior system. After integrating Eq. (5.96) across thé-layer,

we obtain

xﬁwoA' = [ dax (v + }1{3 0) . . (5.103)
. A

Next Egs. (5.97) and (5.98) are used to determine ¢. To lowest order

in XA/XR, Eq. (5.98) is

. X
RPx = —1 T ¥ - (5.104)

since, in particular, the K, term can be seen to be O(xﬁ/xﬁ) and
negligible. We determine the scaling of ¢ by using Eq. (5.95) to

invert both Eq. (5.97) and Eq. (5.104). One finds that
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p:¢
o ~-i = (1--"p)y . (5.105)
*R XA '
Of course scaling arguments cannot fix the signs in Eq. (5.105). But

the sign of the first term on the right-hand side is known from the D=0
theory, and that of the second is fixed 'becauSe it involves two
consecutive inversions of ézh.

We substitute Eq. (5.105) into Eq. (5.103) and integrate. The

integral yields an additional factor of w = (xRxA)l/z, so we have

i

2 . . o \1/2
xpd’ = (xRxA) / (1 - x,

D)

This approximate dispersion relation agrees with the rigorous version
[83], apart from differences in numerical constants. The more

perspicuous form,

A'w=-=-D ' o S (5.108)

verifies the consistency of the small-A’ and subsidiary orderings.

Thus the final result — after use of the boundafy—la&er ordeping,
after decoupling the non-resonant field components, and after
application of the subsidiary ordering — is to reproduce the familiar
small-A’ dispersion relation, Eq. (5.42), with one additional term. Of
course the additional term summarizes interchange effects: the

coupling of magnetic curvature with plasma pressure gradients. The
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quantity D is positive when the averaged curvature is unfavorable
(destabilizing) and negative for  favorable curvature. Because
prevalent experimental devices, including tokamaks, have D<o,
Eq. (5.106) most commonly describes the stabilizing influence of
curvature on tearing modes. For those devices, such as the reversed

field pinch, in which D>0, Eq. (5.106) predicts a new instabilityg the

resistive interchange. Both cases are considered in more detail after

we comment on the form of D.

The proportionality between D and K shown in Eq. (5.99), is not
reliable, even in the context of reduced theory, because H was
neglected. As- indicated earlier a more accurate version, which

rincludes the most pertinent effects of H, would have K replaced by KR

(it would also include factors of |Vr| which we have suppressed)i::

Alfhough the detailed theory with finite H is very complicated, it is
not hard to see how KR enters the result. Consider the aVeraged Ohm’s
law, Eq. (5.82). It is evident that the right-hand side includes an
overall factor of XR/XA compared to the left. Hence the subsidiary

ordering implies, "in lowest order,
Ypp + HB, = 0

After integration this result is substituted into the shear—Alfvén law,
Eq. (5.80). Upon noting some cancellations one  sees that the
coefficient of p becomes proportionai to KR‘

We now return to Eq. (5.166), which can be written more explicitly

as




’2
9 1/4 ki~ 1/4 _
A= (L) p(——)"" . (5.107)
.2, 3 ny .
kyn

Identification of the uhstable roots of Eq. (5.107) would be trivial if

all the roots were known to be real, and it’s only mildly complicated

by the occurrence of complex roots. By means of either routine
examination, or a Nyquist procedure [83], one reaches the following
conclusions.

When D>0, Eq. (5.107) has a single unstable root, cérresponding to
the resistive interchange. 1Its simplest version occurs in the limif of

vanishing A, or very small 7. Then Eq. (5.106) becomes
xA/xR =D

which implies

y = (kﬁD)B/Snl/S . (5.108)

The resistive interchange is driven. by .unfavorable curvature. It
differs from the ideal interchange.by the replacement of K by KR and
also by the absence of the shear—stabilizing term, 1/4, which appears
in Eq. (5.89). (Note, however, that while the stability boundary of
the resistive interchange is wunaffected by shear, the growth rate

diminishes with increasing shear.) It differs from the tearing mode in

its scaling and in not requiring A'>0 for instability. In fact, as

Eq. (5.108) shows, the resistive interchange remains unstable when A’
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vanishes: while necessarily localized, it does not require the
formation of a current layer.

When D<0, Eq. (5.107) displays a striking feature: the right—hand
side is bounded away from =zero for all (positive) values of y. It
follows that v can become complex ("overstability” [88]) and, more
importantly, that no unstable roots can occur unless A’ exceeds a
certain critical value. Thus, in the presence of favorable curvature
and finite pressure, the tearing mode stability condition becomes

I : (5.109)

instead of Eq. (5.41).

An estimate of A, can be obtained from Eq. (5.107), by minimizingﬁ,

the right—hand side with respect to ¥y. One finds that

8g ~ (1x1/7)Y/3IDI%/8 . ‘ (5.110)

" Since b, turns out to be of‘éignificant size (it can be larger than
~ten) in typical tokamak‘experiments [89], tearing mode theories which
omit the physics of A,, such as the low-beta theory of Sec. B, can be
seriously misleading.

The complex, unstable roots of Eq. (5.107) are said to correspond
to the "modified” tearing mode [83]. The existence of A, was first
noticed in [87]. It is significant that the early investigations of
tearing [75,90] included curvature (at least in a gravitational model)
and pressure, yet still predicted instebility for all positive values
of A7, This circumstance can be wunderstood by noticing, from

Egs. (5.103)—(5.108), . that A, requires more than favorable
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curvature: compressibility is also an essential ingredient [83,87].
What matters is the evolution of pressure within the layer. When
pressure is incompressibily advected (as FKR, in particular, assume)
then D simply modifies the tearing mode growth rate without affecting

the stability boundary. But in compressible theory, the pressure

perturbation is determined by competition between resistive diffusive'

and parallel sound wave propagation, as in Eq. (5.104). The resulting
sixth order system ‘is more sensitive to positive D, and completely
stabilized for sufficiently small A’.

It should be remarked thét Ac is not an artifact of toroidicity;
it pertains to any compressible model with favorable curvature. On the
other hand, the precise value of D and therefore Ac depend quite
sensitively on details of the equilibrium geometry.

Finally, we point out that critical values of A’, as in
Eq. (5.109), can arise in contexts besides the fluid-interchange case
considered here [56,91]. In particular, the small radial flow
associated with equilibrium resistive diffusion has a- stabilizing
infiuenée, expressed qualitatively by Eq. (5,109{;» However the

corresponding A, is relatively small [91].

D. Current—channel boundary layers
1. Introduction
The results of the previous two sections assume the plasma
resistivity to be spatially constant. In fact the plasma response to
E" depends on k”, and therefore on radial position. In other words, as
was emphasized in Chapter IV, one shouid replace the classical

conductivity, o,, by a more uniformly accurate response function, o4.

s?
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Because o0, becomes small for appreciable k", such replacement can
significantly affect boundary-layer structure. In certain parameter
regimes it will concentrate the perturbed current in an inner layer
("current chanﬁel“) which is narrow compared to the classical layer
width w. We review the modified léyer theory in this section.

Spatial variation of’ o, matters in so far as the collisional
> 1. Thus

mean—free—path, A exceeds a parallel wavelength: k"A

mfp’ mip

we are concerned with the extension of boundary-layer theory to regimes
of longer mean—free—path, or smaller collisionality. Such extension is
complicated‘ by various effects mentionéd in Chapter 1V (trapped‘
particles, temperature gradients,.' étc.) and in fact remains
incomplete}y understood. For this feason and for reasons of brevity we
cénsider only the simplest 'aspects of long mean—-free-path boundary: -
layers. |

It should be nofed that even o  depends on position'because:it'
depends on temperature. The x—-dependence of Og arising through
temperature perturbation yields a distinct iﬁstability, the rippling

mode [75], which is not reviewed here, but which might be important in

strongly collision—dominated regions of the toroidal diééharge [92].

2. Scale lengths

The long mean—free-path case is distinguished by involving an
additional scale length, w,, which measures the width of the
generalized conductivity. An estimate of w, is provided by Eq. (4.112)

or Eq. (4.170):

W, = |w(w+iu)l1/2/|kﬁvthel. (5.111)
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We wish to compare w, with the classical layer width, w. But first the
definition of the latter must be generalized, because our previous
formula, w = (XAXR)I/B, becomes ambiguous when 7 depends on position.
A generalized definition of w, which is independent of the closure

relations, is obtained from the shear-Alfvén law. Recalling that

Eq. (5.3) must reduce to the mneighboring equilibrium equation, -

Eq. (5.5), for x >>w, we see that w measures, in general, that
distence from the rational surface at which plasma inertia becomes
comparable to 1line bending. Thus, for the case of_smaLl—A' modes,

Egqs. (5.3) and (5.40) give
V xAgo/w2 ~ ANy .

" To estimate ¢ we assume that, at least when x>w, the electrostatic and

electromagnetic contributions to E” are cbmparable:
(w/xp)e ~ v . (5.11%)

Then we.have Xi ~VA’w3 or

- =~x§/3 (a7)y~1/3 (5.113)

We can confirm this formula by mnoting that in combination with
Eq. (5.39) it reproduces the standard small-A’ dispersion relation. It

is also applicable to large—A’ modes, since Eq. (5.27) allows us to

1

replace A" by w °, and thus reproduce Eq. (5.31) in the large—-A’ case.

R
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In dimensional (unnormalized) form, Eq. (5.113) becomes

Therefore, from Eq. (5.111),

w _.ZE kjjvy 1/3 w 1/2

. (5.114)
Wy  Vp o |ela’T wtiv

When this ratio is small, -spatial wvariation of ox occurs in the
exterior region where dissipation is irrelevant; our previous results

are obviously valid in this case. But when w/w, is large, the

- boundary—-layer structure is more complicated — a current channel.of .

width w, is imbedded within the layer — and short mean—-free—path

theory is no longer reliable.

Evidehtiy an 'explicit formula for w/w, requires knowledge of the
mode frequency: itican only be evaluated a_posteriori. . However, the
.',mqst impoffént‘pdsééﬁgﬁé covereq by the following thfee examples.

" (i) In  the  classical sméll;A' césé;w w = iy “is* given by

Eq. (5.42). In dimensional form, from Egs. (4.9), (4.33) and (4.34)

lo| = (A'8)4/5(kﬁaz)2/5T;3/5TX2/5
Using also the relation,
ve/VA = (miﬁe/me)l/g

we find that

- S
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w/w, = (migo/m,) 1/

Here the last.two factors are the most important. While TS/TA ~ 108, v
usually exceeds w, néar the q=2 surface, by at least an order of
.magnitude. A fair conclusion is that the claSSiggl value of w/w, is
device—specific: while large in typical reactor designs, it can 5e

comparable to or smaller than one in some present—day experiments.
(ii) For large—A’;godes, such as.the m=1 tearing mode, we use

Eq. (5.31) to find that

W/ = (ve/vy) o/ (wriv) |1/

Again, ve/vA = 1, under typical conditions, so current channel behavior
depends mostly on w/v. Note that the m=1 mode usually resides in the
central, hottest region of the discharge, where v is relatively small.

~ '(iiij When w=w,, the small—-A’ formula yields

(5.115)

Because of the smallness of Pe: the electron gyroradius, this quantity' .
will be large under most experimental conditions of interest.

The general conclusion to be drawn from these examples is that
current channel formation will be prevalent when v<w, and not uncommon

otherwise [58].
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Two equally important comparisons involve the ion gyroradius. Of
-course - classical-theories assume the ions to be magnetized, i.e., that
p; is smaller than any scale length of interest. [Equation (4.127), in

particular, depends on magnetized ions.] In fact one finds that

py << w - : _ | (5.116)

so that ions are magnetized in the tearing layer. With regard to the

current channel, we assume w~w, in order to estimate

o3/we ~ lw/(o+iv) 1o a/p Lg) |

The second factor in this expression is roughly two or three under

typical conditions; hence ions are magnetized in the current channel

only when v >> w [58].
‘The presence of unmagnetized ions might be expected to complicate

analysis of the current channel. However, Eq. (5.112) shows that

10+i(X/XA)¢ =9 + 0(w,/w) . 3 L (5.117)

when x<w,. For small—-A’" modes, it follows that electrostatic fields
can be neglected inside the channel, making the ion dynamics

irrelevant. This simplification is made explicit in the following two

subsections, which consider respectively collisionless and collisional .

current channels, in the small=-A’ case.
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3. Collisionless current channel
With the neglect of thé electrostatic contribution to E" (for

¥<w, << w), the generalized Ohm’'s law,

Iy = oxEy
becomes

I
4 |

| = (iw/c)o*A” . (5.118)
In the case of small-A’, we can easily integrate Eq. (5.118), across
‘the layer. The integral of the right-hand side is controlled by o,,

and evidently measured by

(iw/c)A” [ o4 dx ~ (iw/c)A" O oW

where Oy is defined by Eg. (4.108). Since the integral of the

left—hand side is —A'A", we obtain the'dispersion relation

107 = 4 oy Wy w/ct . | (5.119)

Before making Eq. (5.119) more explicit, we comment on its
significance. Recall that boundary-layer theory begins by coﬁsidering
& neighboring equilibrium eéuation, such as Eq. (5.5), which pértains
for sufficiently large k”, but which is singular at x=0. The
singularity 1is resolved by including, in regions of smaller k“,
corrections to Eq. (5.5) which involve additional field wvariables and

therefore require additional equations, such as Ohm’s law, for closure.
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From this "“canonical” point of view, Eq. (5.118) appears
paradoxical: involving only A"(&w), it can hardly be a closure
relation. How are Egs. (5.118) and (5.5) related?

To answer this question we recall that the current channel case
involves two nested layers. The outer layer, which has width w and is
appropriately considered the "tearing layer”, cannot be described in
terms Aof A” alone. In fact, because of Eq. (5.116), the electrostatic
potential enters the description of the tearing layer, through ion
inertia, in pfecisely the usual manner. Of course, the tearing layer
analysis is modified by the presence of the inner layer, or current

channel. Thus, one should strictly solve a double layer problem, first

matching the exterior solution to that of the tearing layer, and then

matching the tearing layer solution to that of the current channel# -

[49,56]. Such an elaborate solution would show explicitly . how
electrostatic terms bécome first crucial (for w > [x| > w,) and then
negligible (for |x|<w,). It ﬁould also involve two distinct versions.
of A", corresponding to the two nested layers.

If the A’ appearing lih Eq. (5.119) i's identified with that of the
inner layer, then the result is clearly correct, but inc;mplete and not
directly comparable to other tearing mode dispersion relations. On thé
other hand, if A’ is given the usual interpretation, then ‘Eq. (5.119)
will remain correct if virtually all the perturbedv current is
concentrated in the chahnel, so that both measures of Af coincide.
Because Ox has a significant tail, the question of current
concentration is not trivial; it is found that Eq. (5.119), with the

usual interpretation of A, is often [49], but not always [56], valid.
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We now return to Eq. (5.118) to derive a more rigorous version of
the dispersion relation. Considering the <collisionless case, we

neglect v in Eq. (4.101), which can then be written as [55]

G* = - —
RTq kﬁ dz
or, in view of Eq. (4.82),
0. = — ine® (w—we*) v dz
* BTy |kjlo the gx
Hence we have
A = — 4n ne® (w—we*) ” a dz
S 2 |k/| | the [ &,
e Tg f 0

which yields the dispersion relation-[58,98]

2 ’
¢k v A
@=0 g i — L the” Wertirg - . (5.120)
~ 2
2V wlL

pP's

Equation (5.120) is said to describe the collisionless tearing
mode. We have seen that it is an artifact of simple “resistive”
diffusion, with o replaced by o,. Because of the concentration of
current discussed previously, the dispersion relation does not involve

the Alfvén speed. For the same reason, and also because we neglected

-
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the ion acoustic correctipns to o4, it does not involve ion dynamics
(we remark that ion cér;eé£i8;;}£;;e been shown to have a stabilizing
influence [59]).

It is sometimes suggested that collisionless tearing depends wupon
Landau damping, to provide the dissipation which ordinarily comes from
collisions. In fact Landau damping has no qualitative effect omn
Eq. (5.120). One way to confirm this statement 1is to repeat the
calculation withfc* replaced by Og*> ffom Eq. (4.170). Récall that the
latter function résults from a striet fluid model, without
wave—particle resonance. Yet it is easily seen to give the same
dispersion relation, apart from a minor difference in the numerical

coefficient. As was emphasized in Chapter IV, it is the gross spatial

structure of the conductivity which matters, not Landau resonance.

4. Collision—dominated current channel

We have already remarked that the tearing mode frequéncy and
growth rate are often small compared to the local (r=rs) collision
frequency. This by no means rules out channel formatjon, especially
since, commonly, the mode frequency is estimated by w, aﬁd. Eq. (5.115)

becomes pertinent. Thus the limiting case

We <KW, @<LV (5.121)

is of particular experimental importance [58].
We wuse Eq. (5.119) to obtain an approximate dispersion relation

for the collision-dominated current chéhnel. Since now




—=35—-

ezn(wﬂwe*)

o m_v
we find that

02 (0-wgx) w.1/2

A = , !
c? lkVipel 1v

in view of Eq. (5.111). There are two limits of

w >> wy, Eq. (5.122) implies

. 3
Im(w) = 7 = 78/3 »1/3

.(5.122)

interest. When

(5.123)

where 7y, is the collisionless growth rate of Eq. (5.120). Under

typical experimental conditions, it is somewhat hard to reconéile

Eq. (5.123) with w/w, >> 1. The more realistic case has

’w”w*

‘with 7 << @, Then Eq. (5.122) yields w = ws, + i7, with

7 = 7p(v/w)/?

The exact versions of these results were first presented by Drake and

Lee [58], who named the corresponding eigenmode ‘semi—collisional"”.

The point of this nomenclature is that while v >> w, the existence of a

current channel depends on long mean—-free—path physics. Similarly,

Eq. (5.121) is said to refer to the semi—collisional regime.
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It is noteworthy that the exact semi—collisional dispersion
relation differs from Eq. (5.122) not only with regard to the numerical
constants. The rigorous version also contains terms proportional to
VTe which we neglected (in Chapter IV) and which significantly enhance
the growth rate. A related VTe—destabilization also occﬁrs at short
mean—free—path [53].

We do not attempt to review the complicated effects of temperatﬁre
gradients here, but one feature of the VT # 0 case requires comment.
While Eq. (5.122) can be derived from Oq% and therefore from simple
fluid theory, the temperature—gradient terms require a significantly '
more careful analysis. In treating the VT—terme, one must take into
account their distinctive energy dependence [recall Eq. (4.71)], and
also, in general, the interaction of this energy dependence with thaf%.
of the Coulomb cross—section [53,94]. Recent investigations of such
effects, using either a kinetic [56] or.generalized fluid formulation
[57], have found that temperature gradients become stabilizing for

sufficiently large plasma beta.

5. LargefA' current channel

The large—A’ .case is rather different. First of all, its
dispersion relation cannot be obtained directly from Eq. (5.119), which
depends upon alconstant~w approximation. Second, the sharp variation
of ¢ in the large-A’ tearing .1ayer yields electrostatic fields
sufficiently strong to cast doubt on such eimplifications as
Eq. (5.117). For these reasons, a dimensional argument for the
large—A’ current channel dispersion relation which is both simple and

physical has not been found. Large—A° current channels are most
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coveniently studied using Eq. (5.25), the eigenmode equation written in
terms of E”. After replacing n_l by o« in that relation, and including

the ion diamagnetic correction, as in Eq. (4.159), we obtain

2 - 5
X“(B)/%)  aniex A x dxE,
2,2 ee NI T T o zezwl el (5124
XS+« cx} « (A" + ) (x +XA*) (x +XA*)
; X
A*

iwhere, in unnormalized notation,
Xi* = ““’(w—wi*)/(kﬁ.vA)z .

- In the current channel case, Eq. (5.124) is more useful than Eq. (5.23)'
because of scale-length differences between EIl and E. As can be seenv
from Eq. (5.110), B’ « xJ, o x04E,. Hence E necessarily involves the
short width, w,, while E” can be presumed nearly constant in the
.current channel. The ”constant—E”” approximation turns out to be. very
powerful, especially ‘in combination with the wvariational methods
outlined in Sec. B [74]. Unlike the constant—y approximation, it
yields dispérsion relations which are applicable to both large—A’ aﬁd
small—A’ modes.

In the absence of collisions, one.finds from Eq. (5.124) that (for
w;y = 0)

i*

Voo, c .2 Vp
w(m—we*) = - 2; (knvthe)2 ("_) v
“p the

(5.125)

This result is related to the small-A’ version in a simple and
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instructive way. Recalling Egs. (5.27) and (5.36), we replace A’ in
Eq. (5.120) by wlx le. The result 1is Eq. (5.125), giving an
indication of hOW'vA enters the current channel dynamics.
Generalizations of Eq. (5.125), which include, for example,
collisions and temperature gradients, can be found in the literature

[74,95]. A weakness of these.results is their assumption that the ions

.are magnetized. We have already noted that the ion gyroradius can

easily exceed the current channel width.

Such results as Egs. (5.120), (5.122) andv(5.125) — the simplest
examples of current—channel dispérsion relations — demonstrate that
long mean—free-path effects can dramatically alter tearing stability

issues. It should also be clear that a number of questions remain to

‘be answered. One obvious issue concerns the interaction between long:-

mean—free—path effects, such as current channels, and the effects-of
toroidicity, such as the interchange term.
Finally, we point out that the preceding discussion has neither

assumed nor needed information concerning the asymptotic behavior of E”

~for large x. [In particular, the tearing layer width of Eq. (5.113) is

not necessarily the width of E”.] The ratio IE"(X+w)/E"(x=O)|, which
is assumed to vanish in classical theory, can be estimated wusing the

generalized Ohm’'s law. It is convenient to use reduced, normalized .

fields:

E”(O) + &(0) = ~iwy(0)

from Eq. (4.160). For the large-x limit we have Eq. (4.161),
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E(=) = I1(=)/0,(=) .

Let us consider a low-m tearing mode (e.g., m=R), for which the
perturbation scale-lengths are O0(1) in the exterior region. Then we

have J(») ~ y¥(w») ~ %(0). For o4y we use Eq. (4.169), noting that

x| >> 3 ~w®. This yields the ratio,

R

= pE (142,)

| €(=)/ & (0)] ~ [(26%w+in)/v]

Of course an equivalent result cdﬁvbe obtained from the kinetic version
ox«; cf. Eq. (4.114).

Recall here that 7 = wgzv corresponds to ordinary resistive

diffusion and is always very 'small compared to the mode frequency.:.

Hence the asymptotic E” is indeed negligible when 6=0. But for finite

1 ¢
2 wpia

6[= , as noted in Chapter IV),

[ ta“(“’)/é" (0] ~ 6°

is finite end potentially important. It is thereforé;fortunate that
such current channel results as- Egqs. (5.120), (5.122), and -(5.125),
along with the exterior description, Eq. (5.5), are insensitive to the

asymptotic form of E".

E. Nonlinear boundary layer: island evolutibn
1. Introduction
It was pointed out in Chapter III that nonlinear terms in
the shear-Alfvén law, rather than inertia, can act to remove the

rational surface singularity. The important mnonlinearity involves




¥
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magnetic perturbation, which acts by changing the local flux surface
topology: closed field lines "inflate” +to form helically twisted
magnetic islands. We mnoted that while such island structures are
present even in the linear, small—amplitude regime, they can affect
boundary-layer dynamics only aftgr the island width, w
[cf. Eq. (3.55)], has grown large enough to occupy a significant

fraction of the linear boundary layer:

Wo~w | o (5.126)

Similarly current—channel behavior will be determined by island
evolution when W~w, .

Since wal/z groﬁs exponentially in the linear phase, it can .. be ..
expected to reach the nonlinear threshold promptly. Hence strictly
linear behavior is typically . unobservable. Furthermore, even
equilibrium rational surfaces will frequently support islands, due, for
exﬁmple, to small misalignments in external coils; Because w is very

small, such equilibrium islands can often satisfy Eq. (5.126) and

‘thereby invalidate linear theory [96]. Thus the issue of nonlinear

‘island evolution has particular realism and importance.

Present understanding of nonlinear tearing dynamics in the
coherent (non—turbulent) case is based mainly on a famous paper by
Rutherford [97]. This section is primarily a review of the Rutherford

theory.
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2. Shear—Alfvén law
We begin by considering the nonl inear shear—Alfvén law,
Eq. (4.35). For simplicity we assume 6152, in order to neglect the
interchange term. More importantly, we assume the nonlinear dynamics
to be so slow that inertia is also negligible — an assumption which

will be verified a_posteriori. Thus island evolution is constrained by

the relation,

v,J (5.127)

It
o

This of course is the nonlinear version of Eq. (5.5), the neighboring
equilibrium equation. But Eq. (5.127) has an entirely different
significance. Ip particular, rather than describing some ”exterion?:'
region, it is presﬁmcd to ﬁold arbitrarily close to the equilibrium
rational surface. It is not singular at the rational surface because

it involves the nonlinear parallel gradient. Schematically,

Vydy=BgeViy +ByeVy (5.128)

For a perturbat;on with helicity m/n, the first term on the Tight—hand
side of Eq. (5.128) vanishes at g=q,=m/n. In linear theory, this term
alone acts on the perturbation, giving the linear singularity. Its
nonlinear resolution evidently results from the second term, which
therefore plays a role similar to that of inertia in the linear case.
Of course the width W measures that region — the “reconnection
region” — in which the secopd.term in Eq. (5.128) is comparablé to the

first.
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We may recall from Chapter Il that Eq. (5.127) is solved by any
function J which is constant on flux surfaces — in this case, on the
perturbed (island) flux surfaces. In other words, when island
evolutiqn is sufficiently slow, the current—density distribution

relaxes to become a flux label of the reconnected field.

3. Helical symmetry

In order to make further analytical progress we assume the
nonlinear field configuration to be helically symmetric, depending'on 3
and z only through the helical angle u=z—qsﬁ. Within the low—beta
model, which omits curvature effects from the start, this is mnot a
strong assumption. However, it localizes reconnection to the vicinity
of a single rational surface, where g=qg- "Also, since symmetry rules:
out magnetic stochasticity, we now restrict our attention to coherent
island evolution.

A general flux label can be defined by [recall Eq. (2.5)]
Vi¥s =0

Spatialvsymmetry allows exact integration of this magnetic differential
equation. . For axial symmetry (9/9z=0), a solution is given by v,=vy,

the poloidal flux.. The corresponding solution for the case of helical

symmetry (9/8z = — ;18/80) is given by the "helical flux”
Pa(r,u) = ¥(r,u) + r/2q  , (5.129)
as can be verified using Eq. (4.39). Of course r and ¥ are the

cylindrical variables introduced at the end of Chapter IV.
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Knowing the flux function for the perturbed magnetic field, we can

express the solution to Eq. (5.127) as

J(r,u) = J(¥s) . (5.130)

4. Ohm’s law
The . significance. of ‘Eq. (5.130) can be seen from Ohm’'s law,
Eq. (4.36). Notice that a flux surface average (with respect to the

perturbed surfaces) will ‘eliminate the electrostatic term,
<V"¢2w* =0 ,

in view of Eq. (2.36). But, because the average is performed at fixed

Yx, it will not affect the current: <J>¢ = J. Hence we have
* .

N,
<8t>¢* nd

a diffusion equation fér Y, Withouf electrostatip'cpupliﬁg;

Equation (5.131) resembles the current channel relation,
Eq. (5.118), in which electrostatic effects also decoupied, and it is
amenable to the same sort of dimensional solution. (Of- coursé, the
physics undgrlying the two diffusion equations is very different.) Let
us therefore integréte Eq. (5.131) over a radial domain which much
exceeds w or W, but within which ¥ is nearly constant; such a domain

exists when

(5.131).
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AW, ANw< 1

(Here it may be helpful to recall, from Chapter III, that radial
variation of ¥ is not necessary for island formation.) The integral of
the right-hand side is clearly approximated by nyA’; for the left—hand

"side, we shall show that

¥, W | |
[ ax GV 3y W . | . (5.132)

Hence, since W « w1/2’ nonlinear island evolution is governed by the
simple equation,

L (5.133)"

dt

The time scale in Eq.'(5.135) is easily seen to be consistent With oﬁr
neglect of inertia in the shear Alfvén ‘laﬁ, at least when ¢ is
estimated by Eq. (5.112).

The main point of Eq. (5.133) is that‘the exponential growth of
the linear phase is nonlinearly replaced by a much slower evolution, on
the resistive time scale, of the island width: W ~ A'nt. (The latier
Vcan eventually saturate when distortion of the global current profile
chaﬁges A”.) 1Island growth consistent with Eq. (5.133) is routinely
observed in tokamak simulations; the "Rutherford regime” seems
consistent with experimental observation as well. Most theories of

tokemak disruption make crucial use of Eq. (5.133) [98].
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There remains the verification of Eq. (5.132). Consider first the
general, helically symmetric flux perturbation: for qg = m/n, toroidal

periodicity requires

Y(r,u,t) =) ¥,(r,t)cos(dnutuy) , (5.134)
*

where Wz is the amplitude of the - £—th harmonic and the u, can be chosen

to vanish. Since each harmonic corresponds to a distinet A’,

Yoo, = [ dx I, () : ~ (5.135)

and since the island geometry necessarily couples many harmonics,

Eq. (5.133) appears grossly oversimplified.

What saves the problem from becoming hopelessly complicated is the
fact that, wunder realistic conditioné; the Ai are negative for
£>1: only the fundameqtal is linearly'unstable. It is then consistent
to assume that the £>1 contributions to Eq. (5.134) are relatively
small. The dominant weight of. 2 yields. a tractable island
structure — in fact, the very structure which was studied at the end
of :Chapter III.

We next combine Eqs. (5.130) and (5.134) with the 2=1 version of

Eq. (5.135) in order to write, after appropriate change of integration

variable,

cosnu <3%§
ldy,/dx| 9t Vs

Py(rg, t)a] = ;17; |, W § dau

where
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Y = wo(r) + ¢1(r,t)cosnu .

We next use Eq. (2.38) to express the flux—surface average as

§ dua|Vy, |
<A>¢ = ’
* ﬁ duIVW*I—l

where V¢, = dy,/dx. Thus we have

My o ,
S Sl 2 -1 -
ViA] = o Gy [, We<cosnwyy  § duldy,/dx|T . (5.136)

Since Eq. (3.50) implies that

(2rsq')1/8

|y, /dx| = [Vaa(rg,u)] /2,

s

the right-hand side of Eq. (5.1368) can be express;d in terms of
eiliptic integrals [22] and evaluated [97]. The result coﬁfirms
Eq. (5.132).

The crucial feature of Eq. (5.136) is the <cosnu>2 factor. Note
that when x much exceeds W, the flux surfaces of ¢, nearly coiﬁcide
with those of ¥, as in Eq. (3.47),A Hence the average of cosnu nearly.'
vanishes for x >> W. For smaller x, thét is, within or <close to the
island separatrix, averaging at fixed_w* involves a iimited range of u,
in which cosnu 1is predominantly positive. Thus, because of both

Eq. (5.130) and the reconnected topology, the relevant Fourier
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component of the current 1is 1localized to the island region, as

expressed by the W in Eq. (5.132).

5. Generalizations

The importance of the Rﬁtherford theory has encouraged numerous
generalizations, only a few of which can be mentioned here.

At longer mean—free—path, island growth within a current channel
becomes relevant. In the absence of collisions, one finds that island
growth terminates, dW/3t = 0, near the obvious threshold, W=w,. :More
realistically, the evoiution becomes semi—co]lisional as saturation is
approached, and thé ultimate behavior is not unlike Eq. (5.133) [99].
The relation between collisionless and collisional (as well as linear
and nonlinear) regimes has also been investigated [22].

Nonlinear evolution of large-A’ téaring modes has been studied.
The most striking difference is observed numerically: one finds that
exponential growth of the pérturbation continues, at close to the
lineaf growth rate, far into the nonlinear regime [100].

Corrections to the nonlinear shear—Alfvén law have been
considered, for example in [101]. The correction terms allow J to vary
somewhat over a flux surface; surprisingly, the ultimate effect on
island growth is mild. Inclusion of the interchange term, at finite
beta, leads to an analysis very similar to the linear one outlined in
Sec. C. The nonlinear manifestation of favorable curvature is similar
to Eq. (5.109); however, for island widths exceeding a certain siée
curvature becomes unimportant and Eq. (5.133) approximately pertains

[102].
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VI. Pressure Driven Modes: The Eikonal Theory
A. Introduction

In this chapter we consider perturbations driven by the
interaction of field curvature with fluid pressure gradients, that 'is,
by the interchange term in the shear—Alfvén law. Such modes cén be
destabilized by the Rayleigh-Taylor mechanism [103], since an effective
gravitational force results from the non—inertial motion of the fluid
along curved field lines (g = —5Vt§). If the pressure gradient‘is such
that a denser fluid is supported by a lighter fluid (g:Vp < D); then
fluted motion (k" = 0) develoés, ultimately relaxing the pressure
gradient. As in the fluid case, larger perpendicular'wavenumbers are

typically the most rapidly growing.

This simple picture must be qualified in several - important ‘ways::

In a system with magnetic shear, a mode with definite helicity,
9 ~ ¢un(V) exp[i(n¢-ms)]

can have k”=0 only at a rational surface. Off sﬁch surfaces, finite—k"
_implies that tﬁe field lineé are bent, giving rise to' a stabiiizing
force from field-line tension. [The line-bending force is explicit in,
for example, Eq. (3.22).] Such restoring forces are evidently minimized
by peturbations which rotate in the shearea field, keeping k” small,

and thus maeking the helicity a function of V:
9 ~ ¢, (V) exp[in(¢=q(V)®)] . (6.1)

The resulting stability criterion is the same as the shear—free case

(g+Vp > 0), although the growth rate is reduced by rotational kinetic
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energy requirements. Because the growth is largest when kl ~ n/R is
large, the fluid moves vertically in narrow slices, and because these
slices twist with the field as the fluid rises in the effective
gravity, these modes have been called “twisted slicing modes" [104].

It must be noted, however, that Eq. (6.1) is not generally

consistent with ®U-periodicity (i.e., single valuedness) of the

peturbations. A technique for constructing periodic twisted slices in
the presence of magnetic shear, based on ideas of Taylor [105], was
discovered almost simultaneously by several authors [106,107,108].
This technique, which  has become known as the . "ballooning
representation,” is reviewéd in the following.section.

The basic idea is that the "slices" correspond to a coupled set of

modes with various helicities, each centered on its own rational’ -

surface. In the large kl limit the distance bétween rational surfaces,
Eq. (3.57), becomes small, and the various modes strongly overlap.
Furthermore, in this limit, conditions are nearly the same on each of

the closely spaced rational surfaces, and growth rates and mode

amplitudes will be slowly varying functions of radius. - Thus to lowest

order (the local approximation), the perturbation is a guperposition of
identical singlé helicity modes. The 1local theory reduces to the
éolution of the so—called "ballooning equation” which describes the
Fourier transform of the radial envelope of each mode,

Another important modification of the simple _Rayleigh;Taylor
picture is that in a toroidal device the curvature is not constant 'on
magnetic surfaces. In fact Q‘VP typically changes sign with the local

poloidal current. Therefore unstable modes tend to localize in regions
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of unfavorable curvature. The up-welling of lower density fluid in
such regions has led to the term "ballooning”.

Modes which only weakly balloon have well-defined helicity and
therefore tend to be localized to the neighborhood of a rational
surface, where the right-hand side of Eq. (6.1) is nearly periodic.
Thé radially localized limit is said fo describe interchange modes; it
is analyzed by methods very similar to the tearing layer theory of
‘Chapter V. The reduced interchange stability criterion, or Mercier
. condition, was discussed in Chapter V [recall Eq. (5.89)]. ‘Its exact
version is derived in Subsection C.2.

Perturbations which are slightly less localized in radiué are

amenable to a multiple spatial-scale analysis, in which the parallel

mode . width is assumed to exceed the scale for variation ofixkfu

ConSidering this case in Subsection C.4, we find unstable modes, even
when the Mercier crjterion predicts stability.

In the strongly ballooning case, modes are poloidally locﬁiized.to
ihe region of unfavorable:'curvature, buf have considerable radial
extent. This case must; be treated using the full apparatus of the
ballooning representation. it naturally breasks into two parts, blogal
and global theories, which are considered in Secs. C and B

.respectively. Local theory consists of the solution of  ballooning
equation déécribing the structure of the mode, on a given'magnefic
surface. Once the local theory is solved on each surface, a global
eigenmode can be constructed by éombiﬁing local modes with the same
eigenfrequency. This treatment, which is WKB theory in the ballodning
representation, leads to a quantizgtion condition for the frequencies

of global modes [109—112].
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Further modifications to the Rayleigh-Taylor picture arise when
the effects of compressibility are considered. As we have seen in
Chapters IV and V, parallel compressibility couples sound waves to the
shear—Alfvén mode and thus reduces the coupling between pressure and
fluid displacement. In classical Rayleigh-Taylor theory, it is well
known that stability criteria are sensitive to whether the fluid is

assumed to evolve adiabatically or isothermally. We will see that the

ballooning stability boundary is unaffected by compressibility;.

however, the growth rates are significantly changed. For the analysis

of the compressible case in Sec. D, we “use the four—field model.
Resistive ballooning modes and the effects of diamagnetic drifts are

also treated with this model.'

B. The Ballooning Representation
1. Local Theory

The analytical +treatment of pressure driven instabilities
appears to be tracﬁable_only when the scale length of perturbations is
much smaller thaﬁ.that of the equilibrium. Since flute-like modes with
kla >> 1 are often the most ﬁhstable perturbations, thié limit is also
‘a fruitful one. The nafural techniqué for problems with disparaté
length scales is the eikonal or WKB analysis, where the functions - of

interest are represented as

*(x) = o(x) exp(T S(x)) | (6.2)

with VS(x) ~ Vp ~ O(1). In our case the eikonal, S(x), represents the

rapid perpendicular motion while the envelope, ¢, determines the




—_52—
parallel structural ; recall Eq. (3.5). The small parameter ¢
represents, as usual, the scale separation.
Since by assumption the eikonal represents only the. perpendicular

mode structure, we insist that

BeVS(x) = 0 . (6.3)

This leads to the natural definition of the perpendicular wavenumber as

k (z) = VS(x) . (6.4)

“In terms of the notation of Eq. (3.1) we have kl/e ~ m/r ~ nq/r so thét
the limit e=0 corresponds to n-»e,

In this section it is convenient to wuse tﬁé flux coordinates
(q,9,¢() where the flux label is taken to be q(V). Field line
coordinates, (q,7n,a), which will also be used are related to Hamada

coordinates through

n =1
a = ¢—q(V)v (6.5)
whence Be+V becomes X'gl. It is clear that (q,x) labels a field line
g " »

and that 7 represents the pgrallel coordinate. When no confusion can
arise functions will be referred to in both coordinate systems by the
same label: f(q,%,¢) = f(q,n,x).

As we have seen in IIID.1, the general solution to the magnetic
differential equation (6.3) is an arbitrary function S(q,«). This

function, however, may not represent a physical perturbation since it
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cannot be periodic except on rational surfaces. To demonstrate this,

define the poloidal and toroidal symmetry operators, P and T, by

il
i

f(q,9+8m, ¢)

Pf(q,¥,¢) f(q,n+2m, 0—2nq) (6.6a)

f(q,%,¢+2n) = f(q,n,a+lm) . : (6.6b)

Tf(q,ﬂ,é)

Clearly any physical function must satisfy Pf=Tf=f. Applying the

symmetry operations to ¢ in Eq. (6.2) yields

S(q,0-2mq) = S(q,a) + 2rme : o .(6.7a)

S(q,a+2m) S(q,a) — 2mme o (6;7b)

where m,n are arbitrary integers representing toroidal and poloidal:
mode numbers. Toroidal periodicity, Eq. (6.7b), implies that S can be

expanded in a Fourier series as
S(q,a) = —ane + ) 8,(a) ke
L

where the ' first +term represents the. aperiodic ' part. Applying

Eq. (6.7a) to this form yields

0 = 2ne(n-mq) + ), Sy(a) [l—e_zﬂikq] ello
2

Hence nq(V) must be integral and S, must vanish unless g is an
integer. Thus the eikonal form, Eq. (6.2), satisfies the periodicity

requirements only on rational surfaces.
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The ballooning representation is a modification of Eq. (6.2) that
yields a periodic solution. The first >step is counter—intuitive
[105,111]: we drop the poloidal periodicity requirement of the eikonal
and envelope. Instead we will look for solutions S and ¢ defined on
the range —w<n<eo, which is called the 'covering space.” As we have
seen, an S(q,a) which is toroidélly periodic necessarily oscillétes in
¥ with period 2n/q. The envelope, on the other hand, will turn out to

decay as |[7|+*w, and usually be square integrabie. The second step is

to observe that WKB problems typically have more than one branch in

their solution. If we label the branches by the index j, then the

.general solution on the covering space may be written

o(x) = J alol(x) exp(L si(x)) | (e
j € ,
where the aj are arbitrary coefficients. Finally, we will see that the
requirement that ¢(§) be periodic can be satisfied by appropriate
choice of the coeffiéients ainn the»émall ¢ limit, even thdﬁgh éach
branch solution 1is mnot poloidally periodic. Our presentation 6f fhe
"ballooning analysis follows closely the discussion of Dewar and Glasser
[112] and Lee and Van Dam [106,109],

The eikonal ansatz will be used to solve a system of equations

which can be represented schematically as

L(V .V, ,x,2) ¢ =0 - (6.9)

where L is a linear operator obtained by expanding about equilibrium

and A is the eigenvalue, which is typically a function of the frequency
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(in MHD, for example A = —wz). The field ¢ may consist of several
components in which case L is an array. We will assume that each

component of L. is at most second order in Vl. Substitution of

" Eq. (6.8) into Eq. (6.9) yields

i
Lk 4V V. . x.A)ap = 0 6.10
L, k47,9 20 ae (6.10)

for each branch of the solution. Eipansion of 'L under the assumption

that its first argument occurs at most quadratically gives

N + 0(%)

Tap = _ &
Lap = 2 Lo (k). ¥y

.fherefore the lowest order equation for the envelope is an ordinary
differential equation in the parallel direction. It is commonly
referred to as the béllooning equation, and may be written in a more

perspicuous form in field line coordinates:

Ly = S?(éi,nlq,a;Ei:%) v(x) = 0 o : (6.11)
showing the explicit dependence on 7 and parametiric dependencies on the
field line labels, (q,«), and on ki and A. Solutions of this equation
on the covering space must fall to zero as |7n]-»=; this requirement
yields a well defined eigenvalue problem.

It is interesting to note that the ballooning equation on the
covering space is identical to the equation that would be obtained by

naively using the eikonal as in Eq. (6.2). The insight is to allow
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consideration of solutions which are not poloidally periodic [105]. of
course it is still necessary to show that a periodic function ¢ can be
constructed by a linear combination of solutions of Eq..(6.11).
A particular solution of Eq. (6.11), @, depends only

parametrically on the field line labels and gl:

9(q,9,¢) = ¢(nlq,a.k ) (6.12)

o= Ma,ak) - ‘ (6.13)

The dispersion relation (6.13) describes the local eigenvalue on the

field line (q,x) and is the goal of most practical ballooning

calculations. Typically, one varies the arguments of the dispersion

relation to find .the most unstable modes [111]. While this givessan.

estimate of the growth rate of a global eigenmode ‘¢, periodicity
‘requirements restrict the allowed values of A; therefore, as we will

see in the next subsection, the actual‘growth rate is smaller.

~Inversion of Eq. (6.13) yields the solutibn'for“kl(q,a,x) which in

‘genéral has more than one brénch; It is‘cbnvenient to represent these
solutions in terms of the covariant components of Eq. (6.4):

k = k Vo + quq =k, (Vo + 9, Yq) . (6.14)

Here k, and kq are manifestly functions of g and «, givemn by the

partial derivatives of S, and Yy = kq/ka' Alternatively, ki can be

written in the coordinates (q,¥,¢) as

k) = (kg = 0k )Va + k (V¢ ~a¥8) = k,[(9 —9)Va + V¢ —q8]  (6.15)
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showing that ¥ (q,a) occurs in conjunction with ¥. That k ~explicitly
depends on ¥ in an aperiodic way is a manifestation of the fact that S
is not periodic and therefore only well defined on the covering space.
The covariant representation for gl displays a symmetry property
of the ballooning equation, which implies that there is én infinity of
" branch solutions [109,112]. It is precisely this symmetry which will
allow the construction of a periodic ¢, in Eq. (6.8), from a sum of
aperiodic functions. The symmetry follows from two observations:
first, the expansion of L to obtain"L0 naturally results in a
homogeneous function of Ei' Thus the factor ka is common to all the
~terms in L, and may be eliminated (here we have noted that Vi COﬁﬁuteS
with ka).' Second, since the explicit spatial dependence of Lb arises
from the physical séatialA'variation of thé equilibrium, the entire::
aperiodic variatioh of L0 residés in the By — ¥ factor in Eq. (6.15).

Thereforé the operator Lo is invariant when both ¥ and ﬂk are increased

by 2n. This implies that given one solution to6 Eq. (6.10), there is
another solution, a translation of the first, with the same eigenvalue;

"that is,

Aq,a, %) = A(q,a—an,ﬂk+2ﬂ) . (6.16)

We see that the parameter ﬁk has the properties of an angle, which
explains the notation.

It follows from Eq. (6.18) that each eigenvalue, A, must
correspond to an infinity of roots, differing only by tramnslation. "It

is convenient to label these with the branch index j:

e e e e e
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o (q,a,0) = B(q,0- 2ngj,A) ~ 2nj (6.17)

where &k is a particular root of Eq. (6.13). Similarly the related
branches of the envelope function are given in terms of a particular

solution as
o1(a,9.:¢) = ¢(nlq,a,v)) B (6.18)

(up to a constant which we equate to one). Using the symmetry of L0 it

is easy to see that

ol (a,9,¢) = o7 1(q,m42m,¢) . ' (6.19)

.It is only with this infinite set of branches that a periodic

solution can be comnstructed, from the aperiodic eikonal, upon

substitution into Eq. (6.8). Note that all the branches in the sum .

have the same eigenvalue; hence the solution ¢ is a true normal mode

(not the so called quasi-mode [104]). Equations (6.17) and (6.19)

imply that applying the poloidal symmetry operator is equivalent to

shifting the index j by one:

Ppl = plt1(q,9,¢)

Pof = oi*1 (q.a) + &m . (6.20)

Periodicity then requires that Paj = aj+1 and that the eikonal satisfy

Psi(q,a) = s3*1(q,a) + 2me (6.21)
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[instead of Eq. (6.7a)]. The eikonal is obtained by solving Eq. (6.4)

using the known 51' This equation is equivalent to 51 x VS = 0, or

Js s
g9 = -0 . , 6.22
aq 0k dal ( )

To show that this partial differential equation has solutions which
obey Eq. (6.21), we operate on it with P. After noting that P does not

commute with the q derivative

3 3 3
P—-=2P=2nP =
3¢ 3q . ™ Ba
we obtain
iPs—(qul—z'ﬂ)—a—Ps:o . (6.23)
dq k du

However, this is just Eq. (6.22), with @i'replaced by ﬂifl Therefore,
we have shown that if S satisfies Eq. (6.22) then Pij.satisfies the
same equation as Sj+1. The solution obeying (6.21) can be obtained by
suitable choice of a multiplicative constant.

This formalism suffices for the local theory of ballooning. We
have shown that a periodic eigenfunction of the form Eq. (6.8) can be
found. The amplitude ¢ obeys the ballooning equation, which also
determines  the local eigenvalue via Eq. (6.13). The ballooning
gquation only determines the parallel structure of the mode. A
complete global eigenfunctioﬁ is obtained by continuing the ¢ expansion

to next order.
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2. Global Theory

In this subsection and the next, we sketch the global ballooning
formalism. While this formalism has both mathematical and physical
interest, applications of it are rare in the literature and not
reviewed here. Thus the detailed developments of Subsections 2 and 3
are not crucial for understanding the remainder of Chapter VI.

The quantization conditions for the mode given by Eq. (6.8) are
obtained following the wusual prescriptions of WKB theory. First the
eQuaiiohs for the mode amplitude are derived by <c¢ontinuing the
expansion of Eq. (6.10) to 0(1/c). Assume the single branch solution

takes the form:
i
¢ = (awo + awl] exp(; S) .
The parallel structure of the envelope, 9o is determined by the 0(5—2)
terms which yield the ballooning equation (6.11). The global structure
of the envelope is contained in the amplitude a(q,ax) now ‘allowed to

depend on the field line labels. It is determined from the 0(1/¢)

equations

Liap, + Loy =0 , . (6.24)

where . Ll' is obtained by straightforward expansion of Eq. (6.10)°

Typically the operator L0 is self—adjoint with respect to an inner

product, < >:

<fLyg> = <gL,f> .
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The solubility condition for Eq. (6.24) is then given by

<poliap,> = 0 (6.25)

which constrains the radial structure of the mode. This 1is the
“"transport” equation for the wave amplitude [113].
Equation (6.25) and the whole WKB ordering are valid only away

from the turning points, where branches of ¥, coalesce, i.e.,

3
- ANMqg, o, =0 . 6.26
aﬂk (q,a k) ( )

At a turning point there is a square root: singularity in 0k and

consequently two choices for the branch.. For a given value of ) thﬁ”-“

turning point condition Eq. (6.26) describes a curve in (q,a) space.
Near the turning points a new expansion in powers of ;1/3 yields an
Airy equation which gives a connection formula for propagating through
the turning points [109,112]. This formula is identical to the usuai
one [114] in the theory of second order equations.

Far from the turning points the eikonai is obtained by solving
(6.22) b? the method of characteristiecs. Let S({q,a) = S(q,a(q)) where

ca(q) is determined by

da
dq

= = o (aq,0) (6.27)
This is essentially the equation for the trajectory of a wavepacket in
(q,a) space. Since it 1is a first order differential equation it is

easily solved in general. The equation for the eikonal is now dS/dq =
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0, so that S is constant along the ray trajectories. At turning
points, on the other hand, the connection formula implies that S/¢
jumps by the value *7/2.

The quantization condition arises from demanding that the eikonal
satisfy both the toroidal periodicity requirement, Eq. (6.7b), as well
as single—valuedness in q. Recail that when o increases by 2nm, S/¢ must
change by —27n. Single—valuedness is imposéd by requiring that when a

ray returns to the same value of q (including turning points), the

total phase change is 2nN, for some integer ("radial quantum number”)

N. The two requirements are not trivially satisfied and they lead td
consideration of the existence of periodic orbits in maps of the circle
[112]. In this review we restrict the discussion to the axisymmetric

case where the quantization is easy.

3. Ballooning in Axisymmetric Systems
For the axisymmetric case, the ballooning equation (6.11), and
hence the eigenvalue, Eq. (6.13), are independent of «. This implies

that Eq; (6;27)4for a(q) can be integrated explicitly:
a(q) = oy = davy(q,2)

where o, is a constant. The eikonal can depend on « and q only through

oy, and must satisfy Eq. (6.7b). Hence

o}

S(q,a) = —nea, = -ne(a + [ dq ﬁk) . : (6.28)

This representation is of a familiar form, with the variables (q,ﬂk)

being a canonically conjugate pair. The ballooning representation in
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the axisymmetric case resembles a Fourier transform: corresponding to
the radial variable, q, is an effective radial wavenumber, ﬂk'
We can combine Eqs. (6.8) and (6.17)—(6.19), to write the general

form for the solution

*(x) = a(q)} #(n+2njla.dy) exp[-in(a + [dgd, —&mqaj)] = = (6.29)
]

where Athe sum extends over a related set of branches. Note that a
can depend only on q in the axisymmetric case; it is determined by
Eq. (6.25). The representation Eq. (6.29) is commonly féferred td as
the ballooning fepresentation. It clearly satisfies the poloidal
periodicity requirement by virtue of the fact that shifting ¥ by 2w is
equivalent to shifting_the branch label by one. | |
| . The relationship betwéen Fourier modes, rational surfaces, and the
ballooning repfesentation ‘,can be dgtermined by computing the

(m,n)-Fourier component of Eq. (6.29). Using Eq. (2.28) and shifting

the integration variable by 2nj we obtain
1o . s
Oqn(a) =2- [ dn ¢(n) exp[i(ngm)n] a(q) exp(-infdady)

There are two Fourier.conjugate relationships displayed here. Firétly,
n is conjugate to the radial variable ng-m, providing the local mode
structure. Secondly, ¥, is conjugate to ng, providing [with a(q)] thg
bglobal structure. A shift in @k by 27 can bevéonsidered as a change in
ng-m by 1, which is equivalent tb moving to the next rational surface.
We see that the translation symmetry.(in ﬂk) of L, is related to the

fact that, on a sufficiently small scale, the plasma appears radially
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homogeneous. When ¢ is broad in 7, each Fourier mode is localized near
its rational surface and so for one n only a few m's are important.
This is the case of flute or interchange modes. When ¢ is mnarrow we
have the case of strong ballooning, where each Fourier mode exten&s
across many rational surfaces. A strongly ballooning mode has no
definite helicity at each value of q. The‘amplitude function a and ﬂk
determine the weight assigned each of the definite helicities. From
the transport equation we know that a(q) is nearly localized within the
turnipg points. |

The quangization condition for the modes ié given by demanding

that S be single valued with respect to q:

n$ dq d,.(q,2) = 2m(N + u) N=0,1,2,... (6.30).,-

where N is the radial Quantum_nﬁmber and u the Maslov index [114]._ The

Maslov index depends on the topology of the constant‘A curves. in the |
(q,ﬂk) plane. For a closed curve, u=1/2, and the integrai represents

the area enclésed., When the contour . is ‘not closed then ﬁk must.
increase byv2ﬁ in one cycle according to Eq. (6.16). Tﬁe integral then

represents the area of this cycle and the Maslov index is 0.

There is a degeneracy iﬁ the quaﬁtization condition for ballooning
modes. For example, modes with quantum numbers (n,N) and
(3n,3N+2u), (5n,5N+4u) etc. have the same eigenvalue. This degeneracy
can be expected to be important when any perturbations are added to the
system. For example a small amount of « dependence ih the equilibrium

bresks the degeneracy causing an unstable continuum to form [112].
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Similarly, a nonlinear theory of ,ballooning should treat this
degeneracy carefully.

The dispersion relation, (6.30), 1is a generalized form for the
so—called 1/n corrections to the local ballooning dispersiop relation.
When n>>N a simple expression for these corrections can be obtained.
Recall that the local theory takes the soiution to be the : maximum of
the function A in thel(q,ﬂ#) plane. Expanding near this maximum and
keeping the quadratic terms allows the integral Eq. (6.30) to be done

and yields the dispersion relation [111]

9°A 3°A 11/2 (2N+1)

(6.31)

This formula is wvalid only when the contours of A are nearly'

elliptical. More genefally the full integral, Eq. (6.30)f must be
"used. It is of interest in this context that the WKB quantization
formula often provides results.that afe accurate for quite moderate
values of the quantum numbers.

In the limit of Eq. (6.31), the fédial mode width,.which is given
- by the extent of the constant A contour in q, scales as n_l/e.
Similarly the eigenmode 1is a superposition of modes with @k ranging
over a width n_l/z. This scaling, which was the basis of early
theories of global balloon&ng [111], only holdé when the contours are

nearly elliptical.

B
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C. Local Theory of Ideal, Incompressible, MHD Ballooning
1. The Ballooning Equation
In this section we obtain the explicit ballooning equation, as
well as approximations to the lopal dispersion relation, for pressure

driven modes in general geometry. As we have seen in Sec. IIID, the

flute—iiké' § ;5'}ng with kla >> 1 leads naturally to the flute-reduced
shear—Alfvén law, Eq. (3.41). The same procedure can be applied to

closure relations to obtain a flute-reduced model. It is similar to

the four—field model of Sec. IVC except that the approximation depends.

on large n, rather than large aspect ratio. To simplify the resulting

dispersion relafionh-we restrict the analysis of this section to the

incompressible MHD case.

The needed closure relations from MHD are equations (4.30)"and.‘

(4.31) in the limits ny = 0 end Vev = 0. Applying the orderings of

Sec. I1ID, we let E = ¢E, and define the potentials

S
|

. 2 - :
=4, + “(Byy +‘égl)

whefe the perturbing botentials are assumed to be 0(52) to make the
perturbing electromagnetic fields O0(e), aﬁd the parallel vector
potential 1is written in accord with Eq. (3.28). Using these equations
we immediately obtain the O(c) velocity in terms of the elecirostatic

ExB drift,
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and consequently obtain the expressions for the parallel vorticity,

Eq. (3.38), and for the convective derivative:

U= CVf2§0

d d :

4 _3 i, 6.32
w -t e ] | | (6.32)

where the bracket is the generalized one defined in Eq. (3.31).

Finally the orderings can be used to reduce the parallel Ohm’s law and

pressure convection equation to

The set of equations (3.41) and (6.33) form a closed set describing
flute—like modes in the scale—separation limit.

Because flute-reduction has elminated the slow spgtialvscale; the
lineariied set of equatiomns, correspond to the operator Lo in
Eq. (6.11). . These are obtained simply by neglectiné the bracket terms.
After lineérizatioﬁ we eésily obtain a closed equatidn for ¢ by taking
the time derivative of the shear—-Alfvén laﬁ: |
2 v2
()7 52 TP = BotWs 5 BotTar + pE Bxeo e [BpTyPoTilo - (6.80)

)

[o}

+ [¢.Py] = B xV;pe VP, (6.33)
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Here we have normalized time, 7 = t/TA with the Alfven scale

It is easy to estimate the 1local dispersion relation for
Eq. (6.34). Let the gradients be represented by parallel and

perpendicular wavenumbers, and take x ~ 1/L_, where Lc is the curvature

c’

radiug, and VP0 ~ Po/Ln to obtain

2 _ 2,2

W =V [k -
O TAYRY

L L

The sign of the line bending term is positive, showing its stabilizing‘

effect. To obtain the negative, "unfavorable” sign of the interchange

term we assumed

kTP > 0 (6.36)

which is the Rayleigh-Taylor instability criterion for k” = 0. More
genefally Eq. (6.35) implies there is a critical value of § below which

modes are stable. With k, ~ (qR)_l, L,~a, and L ~R, this is

e
Berit ~ ;E ' (6.37)

for an inverse aspect ratio e¢=a/R. Above critical § the growth rate is

j', ' (6.35) ;
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EV 1/2
A (__g__l) /

There are two aspects of Eg. (6.34) which modify the dispersion
relation from the simple form of Eq. (6.35). The first is that, in the
presence of magnetic shear, k” is not a constant. Thus the ballooning
representation must be used. We will see that this leads to a change
in the effective connection length, k]l. The second is that in
toroidal .geometry the curvature varies along the field line, beiﬁg
ﬁnfavorable on the outside of the térus (9=0) and favorable on -the
inside (6=ﬂ). Unstable modes will tend to be localized in the regions
of bad éurvature, just the ©behavior which gives rise to the tefm
”ballooning!“

To treat these effects we use the ballooning represehtationAéf
Eq. (6.8). The form of the interchange term depends on the

representation of the curvature, Eq. (3.42), in terms of normal and

geodesic components. In particular,

2
: Bk
. . O a /
BoXkoeVy > iByxko ek = -i N [k + (30 )a Kg] - (6.38)

where the definition of k, in Eq. (6.16) has been used, and..primes
indicate derivatives with respect to V. Furthermore, noting that

VP, = PéVV, we obtain

e
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Therefore Eq. (6.34) becomes

BpR, _ 9 R 3 2 .
-w"Fp = P F P ¢ + B[xn + (n—9%)a Kg]¢ (6.39)

in field line coordinates, Eq. (6.5). The normalized pressure
gradient, E, and the normalized perpendicular wavenumber, F, are

defined as

. . 3
§=empy/y? - BL
eL
. n
k x’ . '
F=—t—=X|V+97Tq . (6.40)
kB, B, -

Equation (6.39) is the ideal, incompressible MHD ballooning equation.
The equilibrium enters Eq. (6.39) explicitly through thé functions

and «_. For a non—axisymmetric equilibrium these functions

| B Kpo g

o)
depend periodically on both ¥ and ¢. On a given field line (that is at

fixed a) they are quasi—periodic functions of 7, e.g.
1(q.9,¢) = f(q,n,a+qn) .- (6.41)

Of course when the equilibrium is axisymmetric these functions are
simply periodic. The equilibrium also influences the ballooning
equation impiicitly through the metric elements in ki.

A useful form for the perpendicular wavenumber can be obtained by

noting that Eq. (6.14) implies
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Bk + (kX)?

ki x'2|VV|2
where

kX = k «Vx = kax'[q’VV~VV(0k~ﬂ) + WeV¢ — qVVeVg] (6.42)
is a contravariant component of k., . This component of the

-l

perpendicular wavenumber is related to the local shear [19] which is

defined by

ngX v EXVX
x 2

L]

S = - 2 2
[VxI VX!

Note that S, represents the degreé to which the vector perpendicular: to
B eand AVX rotates. As we will see, S,~q’ to lowest order. After some

manipulation, S, can be expressed as

Y X . : ‘v'-
Sy = - BeV YX_Zg =~ B.V -—5——75 | (6.44)
17l Tk, 1] |

and upon integration we obtain

KX = - k x"|V|*[dy s,

Here the constant of integration has been chosen to be ¥,(q,a).

(6.43) .
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The ballooning equation can be rewritten in a form which
explicitly depends on the local shear parameter. Using the above

definitions, F becomes

vvl 2
PR = —L [y 4 (X—%gyl— fans,)?] . (6.45)

MYE o

The ballooning‘equation (6.39) is now

B2 B+ kgldnS.)e . ' (6.46)

252 3
F'¢ = — F
R an an

Here we have used Eq. (6.44) to re—express the curvature terms and

defined

== o : (6.47)

. which is proportional ~to the contravariant component in the V

direction.
We conclude this section by expressing the curvature components.in
terms of B and P. The geodesic curvature, defined in (3.42), can be

obtained from

Kk, = — %= BxVVeg . (6.48)

Using Eq. (2.1), we can express Eq. (6.48) in terms of the equilibrium

perpendicular current:
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11'5 .

_ 7’
o o= - X
g cP’

The definition of «, (3.15), and Eq. (2.90) give

7’ rd J
=Xy, = _x_ gy 6.49
g€ gepr i 2¢P’ = (B) ( A )

The importance of Eq. (6.49) is to show that the flux surface average

of the geodesic curvature is zero [recall Eq. (2.36)]:

<kg> =0 (6.50)

a relation which we will use repeatedly below. The geodesic curvature

can also be written in terms of covariant components of B:

=X (g, & _pg g2 "~ (8.51
e =g (B 3 ﬂ?ag) ' ( ._,)

.The normal curvature is defined by

kg = VxVieg . v (6.52)

In view of Eq. (2.90), this becomes
B2 B

47 A% -
=— (P +—]" + — BeVB . 6.53
n BR ( BW] 2 ( )

The normal curvature typically has a non-zero field line average.
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Finally, the contravariant component is related to the normal and

geodesic curvatures through

Ve (V¢ —
=k e Ve (V¢ —qV8) (6.54)
|vv|®

2. Asymptotic Analysis: The Mercier Criterion

The ballooning equation, Eq. (6.39), is to be solved on the
covering space, —=<zn<=, for a square integrable function ¢(n|q,a). It
has the form of a SturmrLiou#ille eigenvalue problem [115] where the
eigenvalue is wz. Thus the ballooning.operator, Lo’ is self-adjoint

and its eigenvalues are real. Therefore, as is characteristic of ideal

MHD, modes are either stable or purely growing. To elucidate the

asymptotic behavior of ¢, we mnext analyze the large |n| 1limit.

Treatment of the asymptotic behavior in the marginally stable case will
lead to a necéssary condition for stability, the Mercier criterion.
Before Aprceeding to its derivation we discusé asymptotics in the
general case.

. As m»» the perpendicular wavenumber becomes arbitrarily large

F(n) = 7 x’1¥q] 0(1) = G(n)n + 0(1)

BO

where G(n) is defined to be the oscillatory coefficient of the

‘secularity. The ballooning equation reduces to

2 g® 9, - 2R, 4 o(n7)) (6.55)
an an
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so that the secular variation drops out and the equation now has
quasi—periodic coefficients [recall Eq. (6.41)].
In the axisymmetric case G is a simply—periodic fumction of 7.
The Floquet theory of equations with periodic coefficients [115]

implies that the solutions have the form

o(n).= i p(1) () + o(n71), i=1,2 (6.56)

where p(7) is periodic and A is the characteristic exponent. Since the
coefficients in Eq. (6.55) are real we know that if A; is a
characteristic exponent then so- is its complex conjugate. If{
furthermore, thé eéuilibrium is "up—down symmetric” (G(—n) = G(n)) it
.is easy to see_that when A is a characteristic exponent then so is —Xu
Thus for this case the ekponents are either purely real or purely
imaginary (plus 2jni for any j). |

The asymptdtic'expansion for ¢ can be continued in the form
= pYeM ( 1, 6.57
p=ne" (py+mn "oy + ...) z (6.57)

where the'qpi are assumed to be peripdic functions of 7 and the exponent
v is determined by higher orderé' in the expansion (we obtain an
analagous result below in the marginal case). When the characteristic
exponents, A, are real only one of the two solutions'is<acceptable.
Requiring ¢ to asymptote to the decaying solution at both *x leads to a
well defined eigenvalue problem with discrete eigenvalues.

However when A is purely imaginary'then both solutions have an
oscillatory limit. 1In analogy with the Schrodinger equation, these

values of A lead to a continuous spectrum of wz. Since any value of w
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which leads to imaginary exponents provides an acceptable ‘“unbound
state” and A depends continuously on ®, these values of w form a
continuum.

The problem of determining the characteristic exponents is in
general very difficult. Avsimple solution is obtained in the marginal
case, w2=0, for then A=0 and p=1 solves Eq. (6.55). Thus we expecf
that marginal stability is a boundary between a stable continuum and a

discrete set of unstable modes. To show.this we can solve Eq. (6.55)

in the neighborhood of w2=0 by a multiple scale expansion (like that in.

Subsec. 4) where the slow scale represents the characteristic exponent

A. This expansion gives

>
it

1w<GR><1/G®> + 0(w3)

o)
Il

1 + iw<G®>[dn(1/6%—<1/G%>) + 0(w?) .

Here <> is a flux surface avefage; This gives the promised result to

first order in w. Note that A#iw in systems with non—uniform shear.

A more general result concerning A is obtained by transforming

Eq. (6.65) to Hill's equation by letting ¢ = ¢/G. If the potential in

this equation is always positive, e.g.

the characteristic exponents are real; thus stongly unstable modes are
discrete. It is mnot obvious, and probably not true, that all damped
modes form continua. For example, recall that the Mathieu equation has

bands of real A for arbitrarily large wz.




—R77—

For the non—-axisymmetric éase, determination of the precise
asymptotic behavior of the mode function has mnot been accomplished
[112], al though for the case of a discrete spectrum, a general theorem
implies that the eigenvalues depend analytically on the size of the
departures from axisymmetry.

When w=0, the marginal case, the asymptotic behavior is not
governed by the inertia term in the shear—-Alfvén law, and a new
expansion should be carried out. Because of the Sturm—Liouville form
of Eq. (6.46) the asymptotic behavior of the marginal case leads to a
stability criterion. This-is'dﬁe to‘the Sturm'comparison theorem which
implies the eigenvalues can be put in one-to—one correspondence with

the number of zero croésings of the eigenfunction, the smallest

. eigenvalue corresponding to none. Since the eigenvalue is wz, the "

larger the growth rate the slower the oscillations. Furthermore, one
can compare any two solutions, not necessarily eigenfunctions, and find
the same result.

It follows that a necessary and sufficient condition for sfability
is that fhe marginal ~solution have no zero crossings. A simpler
condition, which 1is only necesssary, is obtained from the asymptotic
behavior of the marginal solution: for there to be no wunstable modes
the marginal solution neceséarilyl.cannot éscillate at large 7 (see
Newcomb [18] for an alternative formulation and [88] for a discussion
of exchange of stébiliiy). The explicit form of this c¢riterion was
obtained first by Mercier [85], and later in Hamada coordinates by
Greene ~and . Johnson [8]. Of course, even if the Mercier criterion is
satisfied, stability is not assured, because oscillations éould still

occur at finite values of 7.
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We derive the Mercier criterion in general geometry b&
substituting Eq. (6.57) into the ballooning equation (6.39). To
O(nV+2) we obtain Eq. (6.55) with w=0, implying A=0. Integrating once

we obtain

dp .
—2._ A . (6.58)
an G

where A is a constant. The fact that the flux surface average

annihilates the parallel gradient 3/3n [recall Eq. (2.36)] leads to the

solubility condition

A
Ge

which is satisfied if A is zero. Therefore ®o is a constant which can
be taken to be unity without loss of generality. The order nV+1

equation is

This equation is solvable for a quasi-periodic ?q if and omnly 1if the
flux surface average of g is zero. This has been verified already as

Eq. (6.50). Define the function h by [recall Eq. (4.24)]

h | ; (6.60)

oy

<—> =0 (6.59)

SR
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The solution for 9y is

1 (s,
R - . 6.
o =V Tz FaB c) (6.61)

The constant C is determined by the -solubility - condition for

Eq. (6.61), which gives

d = . 2 2 :
% = — .@Q_[h - ﬂ&] —V[l _ _1&] . (6.62)
K G* <1/c%> <1/6%>

Note .that since we have found ¢g=1, it is the 7 dependence of @1 whiqh
represents ballooning. The two terms above show that this is due to
thevsurface dependence of the geodesic curvature and the non—uniformity
of ‘the shear.

The Mercier criterion is finally obtained fromi the n;xt order
equation, which involves the line bending operator on Ps - The

solubility condition for this equation is

(v+1) < Gz(?rﬂ + U)> + B(<k.> + q'<k.93) = 0
an n q <Kg¥q

Using Eq. (6.62) for ¢, gives the equation

v(v+l) + D; =0,

- . 2 2.2
D; = ﬁ<i>[<xn> + Bq R - <—hZ—G—Z—)

2
- _ g’ (<n> — L2, (6.63)
G G

<1 /G2> <1 /G2>
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which determines the exponent v.
When D < 1/4 we have v<0 and therefore ¢~nv falls off as 77w, A
square integrable asymptotic form is attaiﬁablevby choosing the smaller
exponent which is v<-1/2. However when D > 1/4 the exponent is complex

and
o ~ n_l/zcos[(DI—1/4)1/210gn]

which oscillates as 7>»®. The Sturm comparison theorem then implies
thét there is an unstable eigenvalue with a square integrable ¢.

The necessary condition for stability, 1/4 — DI>0 can be written

2 2 2 2 2
Gl ' Saley

hB
2 <> + <(p—= 2~ 4 ) (h< ) >
[ Vx| [Vx| [Vx1® Vx|

The first term can be interpreted as the stabilizing effect of shear—
it is analogous to the kﬁ term iﬁ the local dispersion relation (6.35)
and reflects the fact that k” can not be identically zero in a sheared
figid. The second term, involving <Kn>, shows the stébilizing effect
of the average normal curvature, if <Kn>Pé<0; otherwise it leads to a
critical value of @ like that in Eq. (6.37). The last terms in the
Mercier criterion represent the effect of geodesic curvature ﬁhich,
though it has zero average, is important at large 7 due ta shear.
These terms can have either sign.

Recall from Eq. (6.29) that modes with large extent im 7 are

narrow in gq (at least in axisymmetric systems). Thus Mercier unstable

modes are surface localized and can be recognized as interchange modes.

>)>] >0 . (6.64) .
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These were treated in Sec. VC.4, where we obtained a reduced version of
this criterion, Eq. (5.89).

We have also seen from Eq. (6.62) that, in the interchange 1limit,
the ballooning effect (represented by ¢1) is weak. Thus i§ is not
surprising that the present analysis gives a result similar to the one
oBtained for surface localized modes. It is remarkable, however, that
the present result, which is valid only in the 1limit n»w, reproduces
the low-n Mercier criterion exactly. It is also significant that the
present analysis, which does not use an aspect ratio expansion, is
nonetheless somewhat simpler than that of Chapter V. This circumstance
shows the power of the ballooning formalism.

After some algebra, the Mercier criterion can be written in terms

of 'parallel current and other natural equilibrium quantities [8,85ﬁﬁ.

In a low § expansion [116,117] the geodesic curvature terms cancél' and

only an averaged normal curvature remains. It is proportional to .

(1—q2) (see the next subsection).
It is clear that the Mercier criterion is necessary but not

sufficient for stability. = It 1is relevant for modes which are

relatively constant for moderate 7 and only begin to oscillate at large .

7. A mode with oscillations only at finite 7 would not be determined
unstable by the Mercier criterion. The treatment of modes for which
the ballooning terms dominate and hence are not surface—localized must

go beyond the Mercier criterion.
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3. Model Ballooning Equation

Solution of the general ballooning equation is quite difficult
analytically because of its awkward dependence on the explicit form of
the equilibrium. The point is ’that no characterization of flux
surfaces in téfms of a parameter like the A’ of boundary layer modes is
available. The basic technique in the literature for attacking this
problem (aside from the most obvious one: a computer program) is to
expand about a known, simple case. In this way Greene and Chance [118]
discuss the first order effects of variations in the shear and pressure
on a given solution. A variation on this is to usev a ' near—axis
expansion of the equilbrium, taking into account that the shear and
aspect ratio are always small near +the magnetic axis of a tokamak
[119-123].

Here ~we introduce a model eéuation which has many of the features
of the more rigorous expansiohs (eicept quantitative validity) with the
advantage that analytical calcuations are mnot so bufdensome. This
widely used model [106,108,124,125] uses Shafranov geometry (Sec. IID).
Its disadvantage is that Shafranov geometry is obtained in a low g
expansion, while the modes we consider are typically unstable only in
the high g limit [e.g. Eq. (2.133) and Eq. (6.37)].

To obtain the modelvequation we will need expressions for Fz, and
for the curvature components. The local shear in an axisymmetric

system can be written using Eq. (6.44) as

d 9 VVeVy :
S, =H 4 g 22T 6.65
* T av T 9 Gevvevy ( )
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When the flux surfaces are circles, the non—orthogonality of the metric

is due to the Shafranov shift, Eq. (2.108):

dR
dg c cos?d 2
8, = + qg— —— + 0 . 6.66
r= vty (%) ( )

Equation (2.126) expresses the shift in terms of the hoop force and
plasma pressure. Assuming that the pressure is large, so that the hoop
force is negligible, the shift can be obtained from

= dp

P—-P~1r — .
dr

Corrections to and the appropriateness of this model are discussed’ in

[126]. Substitution into Eq. (2.126) gives

dR,

d

oo

(6.67)

where |VV] = rR.
The geodesic curvature can be obtained from Eq. (6.51) using

Eq. (2.116) and By = Rqx’:

kg = - é; sin® + 0(e%) . . | ' (6.68)

The normal curvature and, to the same order, «™ are obtained from
Eq. (6.53). Here we only compute the lowest order oscillatory

contribution, which is due to the term B’/B. We obtain
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n 1 n 2
= = %+ <k>+ 0 . 6.69
K R[VV] cos K (%) . ( )

Calculation of the average normal curvature is a more subtle affair.

In the zero § limit it is possible to show that [39,83,89,119,127]

@ e —F— (1 -1y ’ (6.70)

In this expression the factor 1/R°|VV| is just the covariant component
of the curvature of a circle of radius'Ro. The remaining factor is due
to poloidal curvature and the Shafranov shift. Note that when g¢>1 the

average curvature is favoreble in the sense of (6.386). Of course in

‘the high B case the average curvature could be expected to difféf

substantially from (6.70). Corrections to (6.70) can be calculated in
an expansion;aﬁout>the magnetic axis [121].

futtiﬁg these expressions into the ballooning equation,'(6.46),
results in fhe model-system

—wzfzw -2 fg 2 ¢ + p{x + cosn + (sn—psinn)siny)e (6.71)

N n

i

where p and ¥ are dimensionless measures of the pressure gradient -and

average curvature, respectively:

réﬁ
IL— |
n &

p=-rf =

vy |®@ '
x = W™ ng - | (6.72)
. r
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and f is the normalized version of F,

2 =1 + [s(n—@k) - psinn]2 (6.73)

where s is a dimensionless measure of the shear

= q x’<|VV|2> _ ding

B0 dfnr

(6.74)

Neglected in this model 'are_ higher harmonics in 7 which arise from
non—circularity of the flux surfaces. Solutions to Eq. (6.71) are
studied in the following subsections.

The Mercier criterion, (6.63), can be written using the model

expressions in the dimensionless form

u(u+1)s2 + p% =0

The geodesic curvature terms have canceled completely and instability

occurs if

p% > s5/4 y ' (6.75)

4. Weak Ballooning

When the mode extent is large compared to 2m a multiple scale
analysis can be applied to solve the ballooning equation [121—125]; In
this technique weak ballooning effects are represented by slow

modulation of the mode along the field line, and a first correction .to
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the Mercier criterion is obtained. The most important result of this
analysis is the discovery of a second region of stability at large
pressure gradient.

The primary eanalytical tool used is a subsidiary ofdering on the

length scale represented by the shear. We anticipate that the mode

width 1is 7~1/s which implies that weak shear gives a large mode width.
For a tokamak the shear is always weak near the axis where gq has a

minumum:

0

® a%q e
a9 g

Here a small parameter 6 = r/a represents the near—axis expansion.

Due to the oscillatory cﬁrvature terms the mode will have rapid
oscillatiéns on the scale 7~2n. In order that the modulation influence
stability of the mode, wz must be comparable to the slow—scale line
bending term in Eq. (6.71): w~6%. TFor pfessure terms to Be important
we expect ﬁNﬁcrit’ which implies the dimensionlessbpressure parameter

is of the order p~6.

So that the weak ballooning effects are not dominated by strong

interchange effects, we demand that the Mercier criterion be marginally‘

satisfied. Eq. (6.75) implies that the curvature ¥ is 0(63) which, by
the (6.70), implies g=1 + 0(62). Therefore marginal stability to
interchange modes near the axis of a (low f) tokamek occurs at the so
called Kruskal-Shafranov limit, q(0) = 1. Note that g is indeed élose
to one near the magnetic axis of a tokamak. We will not explicitly use

Eq. (6.70) but only insist that ¥ be of the correct order.
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To implement the ordering we allow variation in ¢ on two length

scales: 7~1 and 7~1/s. The slow variable is naturally given by

z=s (n—vy) . (6.76)

This is the scale which enters into the aperiodic terms in the

ballooning equation. To allow a dependence on both the z and 7

variables, the 7 derivatives must be expanded aé~5'

showing that the slow derivatives enter at order 52.

Expand the mode function in powers of 6,

o(n) = v,(z,m) + 9,(z,m) + ... (6.77)

where ¢; is assumed to be O(di).‘ Substitﬁting the expansions lin. the
model ballooning equation ‘(6.71) provides relations to determine thé

¢;- Integrating the order 60 equation yields

8 , - alz) | (6.78)

where A is independent of 7. We demand there be no secular terms in 7:
all the slow scale behavior is to be absorbed inte the z dependence.

This implies the solubility condition

14
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I
=]

< >

142

where the average is taken holding z fixed. Thus A=0. Integrating
(6.78) once more gives ¢, = ¢,(2z), an arbitrary function of z. 7
represents the envelope function and its z dependence will be fixed by
a solubility condition at fourth order.
The 0(t¢) equation is

3 2y 9 .

= (1l4+z - + cosn + zsin =0

n ( ) oy 1 p(cosn n)¥Pq
‘The solubility condition for this equation is satisfied since

<sinm> = <cosn> = 0. Integrating twice yields

_ cosn + zsinn v, +C(z) (6.79)
1+22

?1

where C is an undetermined function of z at this order.
The second order solubility condition is satisfied if ‘the the
Mercier criterion is marginal to 0(62), which is equivalent to ¥ =

0(62). The solution for g5 is

2 o R . .
vy = % (1-2z )0082772-;3z51n277 +p cosn +Z;lnﬂ c(z) + D(z)
' (1+z*) 1+z

where D(z) represents the averaged part of Pg - It is the harmonic
coupling of the ee1n terms with ein terms which will give an average

ballooning effect and cause modulation of the envelope.

— N — e
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The third order solubility equation is trivially satisfied. The
solubility condition at fourth order yields a non-trivial equation:
2

3d 3 d '
—w2(1+z2)¢O = 2ps 32 z<cosng,> + s 3 (1+zz) 35 Yo + pRY,

- p2<sjn27)¢2> + p<(cosmn + zsinn)go3> .

To obtain the equation for P it is evidently necessary to solve only

for the terms of ?3 behaving as cosn and sinnp (there are Sn“tqrms‘which

do not enter the soiubility condition). After considerable algebra we

obtain

2 a2
~B(1+2%)p, = % L (142P) L o 4 [ox + (B B0 /B)), (6.79)
dz dz ' ° 2,2 0
(1+2%)
which is the goal of the analysis. Versions of this averaged, or

“distilled” ballooning equation have been obtained in many papers

[121-124,126]. Though the details of Eq. (6.79) depend on the specfics

of the model, its qualitative behavior is similar to that obtained in

more realistic equilibria [118,121,129].

The average curvature term px is the fourth order term of the

" Mercier criterion and thus represents interchange effects. The last
term in Eq. (6.79) describes the ballooning effects. The destabilizing
term proportional to sp2 arises from the interaction of the line
bending with geodesic curvature. The stabilizing term results from the
average of the rapid curvature oscillations. Note that as z»e the

ballooning term vanishes and the Mercier analysis is recovered. Modes

with structure at finite z are influenced by the ballooning term.
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Equation (6.79) can be rewritten as a Schrodinger equation by

letting

0y = (142%)71/2 4(2)
whence

82
— ¢ + V(z)¢
az2

2

W™ = —82

where the potential is

1 s° + pz(SpB/B - 2s)

V(z) = [ o7 + ,
142% 14z (142°)%

(6:80)

It is <clear that if px¥ > 0 then the poiential is negative at
sufficiently large z, which leads to interchange instability. A simple
‘sufficient condition for stability is that V(z) > 0 for all =z. This

gives the stability criteria

s° 4 | p®] + p2 (§§_ -2s) >0 . (6.81)

The' first relation impiies interchange stability and the second

ballooning stability.
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Equation (6.81) shows that ballooning modes are stable for
sufficiently small pressure (p) and again for sufficiently large

pressure. Rewriting (6.81) as

(s-0%)% + |om] - 22" > 0

we obtain the two stability boundaries

4 _ .1/2 o
s = p° ¢ [ég— - |px|] / . (6.82)

Instability occurs between these curves. Equation (6.82) implies there
is a minimum p, (87/5)1/3, below which no instability is possible:for

any value of s. For larger values of the pressure parameter the two

stability curves are approximately parabolas. These curves agree well

with those obtained numerically for the model ballooning equation

[130,131] as shown in Fig. 2. As the shear gqfs ~larger the

negative—sign solution breaks towards smaller pressure, opening a

'larger window of instability.

The fact that ballooning modes are stabilized at sufficiently

large pressure gradients 1is confirmed by many calculations with

realistic equilibria [118,121,129]. This second stability regime makes
feasible the operation of tokamaks in an economically favorable regime

of high g.
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5. Str&ng Ballooning

In the strong baliooning limitlthe mode is localized to a narrow
range of 7, typically near the outside of torus where the curvature is
unfavorable. For this case the ballooning representation, Eq. (6.29),
shows that the mode is spread over a large range.in radius and hence
contains many helicities. To treat this case we expand the balloonipg
equation for small mode width. We will see that this approximation is
valid in the regime s~p >> 1.

It is convenient to use the transformation
@0 = ¢/f

to turn the ballooning equation (6.71) into a Schrodinger equation.

2
0o = - L2 4 yin)e
dn®
2 . .
S—0COS
V(n) = -— 4 - l% (x + cosn) . A - (6.83) -

This potential is shown in Fig; 3. For the case s ~ 0(1), Fig. 3b, the
mode is clearly localized near 7=0.

For simplicity we concentrate on the case 0k = 0. Usually this
leads to the smallest minimum of V, and hence the most'unstablé mode
(we‘femark on an important éxception below). Of course to obtain the
global quantization condition, it would be necessary to detefmine the

dependence of wz on @k.
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When the mode is localized near.n=0, the potential can be expanded

up to O(nz) so that Eq. (6.83) becomes Weber’'s equation:

V(n) = a + bop?

8 = —p(% +1) + (s—p)%

b% = pls—p + 2 + (s-0)R(mr1)] - 2(s=0)" |

The solutions to this eguation are

2
o = e PN°/2 Hj(VF'n)

W* =a+ (2j+1)b , j=0,1,2,...

where Hj_ is the Hermite polynomial. Since b must be positive it is
clear that the lowest mode (j=0) is most unstable. Localization of the
mode implies b is large; when s~p this requires large p. The only

‘consistent ordering is (s—p) ~ Vo which implies that the mode is_always

unstable:

W == c® 4 c(s—p) — (s—p)g

- 1/2
¢ = [p(r+1) — 2(s—p)?] &

The localization approximation is invalid if be < 0; this determines

the two curves

BiZi_l]l/z (6.84)

s=p 1t | 5
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outside of which the potential develops a local maximum at #%=0. The
upper shear boundary lies quite close to the numerically determined
“first stability” boundary as shown in Fig. 2. Stability in this case

is due to the positive shear—induced potential overwhelming the local

well due to the curvature term, %+1. The lower sign of Eq. (6.84) does

not agree well with the "second stability“ boundary in Fig. 2. This is
due to quartic terms in the potential; the local maximum at #=0 only
causes .a small,dimple.(FféQ 4). Since the minimum of V now occurs at
n#0 it is rgasonable that the most unstable modes have ﬂk#o as well
[118]. Keeping ¥, leads to én increase in the size of the unstable

region over that predicted by Eq. (6.84). This effect could be

analyzed by an expansion about the minumum of V, but the algebra’

involved is prodigious.

In general, the instability we have found at s~p is replaced by
one near points of vanishing local shear, S, [118]. Near such points
the stabilizing effect of the line bending term is minimized, and ‘if

the local curvature is unfavorable, an instability can result.

- D. Non-Ideal Effects
1. Four-Field Ballooning Equations
In this section the four—field model is used to treat the
effects of compressibility, resistivity; and kinetic effects (finite 6)
on ballooning modes. .Rather than embitiously including all of these
terms in a single dispersion relétion we treat them one by one; only

commenting occasionally on the interaction between them.
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The first step is to linearize the four—field equations and write
them in the ballooning representation. We adopt the reduced flux
coordinates discussed in Sec. VC.2., wusing the field line variables
(r,%,a0a = z—q¥). In this section the variable a replaces the variable
u = z—qsﬂ used in Chapter V, and for notational reasons ¥ is usedvfor
the field line coordinate 7. Note that the wuse of o« will,to some

extent, actually simplify the resulting expressions; however, it also

necessitates use of the ballooning representation and consequently the

covering space.
The equilibrium of the four field model 1is given in
Eqs. (4.128)—(4.129). The eikonal form, Eq. (6.2), with the

axisymmetric eikonal, Eq. (6.28), is used for perturbed quantities:
¢+ ¢(¥) exp[-in(a + fdqv,)] .

Naturally the full eigenmode is the shifted sum of the all branches
corresponding to the same eigenvalue, as in Eq. (6.29).

Linearizing the nonlinear parallel gradient, Eq. (4.147) yields

19f

vi =4
Qo

” az + [fo’w:l

_[wo’f] —[’l//,fo] i
Here the definition of q, Eq. (6.61), was used, and in the last
expression the perturbed quantities are represented by their envelope

functions. Another quantity needed for the linearization is the

bracket of a perturbed quantity with a flux function, for example:
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 (5eVoxTe & 4 s vy ., Po 10
[Vipo] = (2:VoxVr % + 2. VoxVr “F)p¢ > %(mw el

where we fol;ow the convention of indicating derivatives with respect
to the flux coordinate, r, with a prime. The last term, which
represents the parallel derivative of the envelope, cen be neglected in
the ballooning limit, n >> 1. Similarly the bracket with the curvature

scalar h(r,®) can be expanded as
. . 19 - ]
[h,p.] » === (b, - s;g (3=8,) )p, - (6.85)

The shear parameter is defined by analogy with Eq. (6.74) as

s = e
q

g8

Finally the diamagnetic terms on the right hand side of Eq. (4.143)

" reduce to

-3 |HH

[U.p,] » iné Uz —iwg;U

o
-3
o

<
[o 2EN

where derivatives of eqﬁilibrium quaﬁtities are assumed to be
relatively small, as wusual. The diamagnetic frequency is defined‘in

accord with Eq. (4.157). Using this notation and setting Ti =T we

e?

can express Eqs. (4.143)—(4.148) as
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. 2 193 .2, _ -
—i (w-ws; ke + q 39 kly 2[h,p,] =0 (6.86)
. 2.2 Me . 2 1 3
[—1w(1+4kl<s ;l;) + iwgg + 'r)kl]'w + Pl (p—6pg) = 0 (6.87)
. 13 . Py -
—-iwv + , v + = - - im =0 6.88
[o.v,] 5 30 Pe w Y (6.88)

’

P
3 2 in -2 o = _ _ 13
(—iw + Bnkl)pe + in v ¢ = g{2[h,e épe] q 39 (v + 263) +
[v.v, + 263,]) . (‘6.89)»

The kink term does not appear in Eq. (6.86) since it is negligible in
the ballooning limit.
The limit =6=n = 0 is reduced MHD. We recover the reduced

version of the ideal ballooning equation of the last section:

2 2 s X5, 2 Po by
-0y = 2 45— 2n h, - B0 . 6.90
o kip = - - 35 ¢ 2 (b, S@( 1019 (6.90)
. (o]

Théré are two differences between the reduéed ballooning equation and
Eq. (6.39). First the relatively unimportant factor of Bb is missing
from the line bending term.of Eq. (6.90). It is clear that this is an
O(e) corrrection. Possibly the more serious defect of Eq. (6.90) is
that the curvature is replaced by -Vh [e.g. Eq. (4.24)]. It is clear
that —hr represents the mnormal curvature and hﬁ/VE represents ‘the
geodesic curvature  While the exact curvature of Egs. (6.51) and

Eq. (6.53) canﬁot be written as the gradient of a scalar, the high B8,
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large aspect ratio 1limit of these expressions can. Finally we note

that the factor of qz

in Eq. (6.90) is due to a different normalization
of time as compared with Eq. (6.39) [compare Eqs. (6.34) and (3.37)].
The simplest model for h is the shifted circle equilibrium for

which Vg = r and

h, = —Ré — cos?

-

—sin® . ‘ (6.91)

NTES
R

It is clear that these expressions give a similar model to that of

Sec. VIC.3. with —Ré representing .<Kn>. Of course, this is not a

consistent solution of the reduced equilbriumvequation (4.45). We will. -

not use this approximation in this section.

2. Resistive Ballooning

Following the procedure of treating complications to ideal,
incompressible MHD ballooning one at a time, we set 6=8 = 0 in this
section and consider the effects of finite resistivity.. When =0 the
parallel velocity eQuation can be neglected and the pressure
perturbation is simply advected by the incompressible flow. Equations

(6.86), (6.87) and (6.89) can be combined to give

2 2
F 3 F d ;R s
0§s2 38 1+F2/@§ o8 ° TV '

where we have. defined
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2 _ 7 (VE\2
Vo =
2 -2 (%
ﬂf_ = (yqs) ™"
P8y = YE (VztqUs) + (3,~8)sVr| . | (6.93)
ng q

Note that the factor nq/Vg approximately represents the magnitude of kl

at ¥9=0.

The primary effect of resistivity in Eq. (6.92) isva'significant
reduction of the stabilizing line-bending term for ¥ ~ Jps. Thus the
shear, which 'is imp&rtant in the localization of the ideal mode, is

defeated by the resistivity ét large ﬁ: 7 permits unstable modes to be
i

extended in ¥ by allowing the perturbea field lines to slip relativexto .

the flow.

The resistive ballooning equation has three basic scales: that of

the curvature oscillation, ®©¥~1; the scale at which inertia becomes -

important, ﬁ~@A; and finally the resistive scale, 6R' The resistive
scale, always important at large enough ¥, forces the mode to have an
asymptotic form,

2

2

(6.94)
2w2

¢ ~ exp(-

which is unlike the ideal one, Eq. (6.57). Here the mode width is

w= (9,8)1% = [(nqq")? gy] /% (6.95)
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showing that wunstable modes are localized by resistivity. This
equation is equivalent to (5.35) for the resistive tearing mode, except
that ourvdefinitions of @R and ﬂA are inverse to those of the
corresponding tearing scales. This 1is due to the Fourier transform
relationship between ¥ andvradial variable implicit in the ballooning
represention; recall Eq. (6.29)5

There are two distinct unstaBle resistive modes [132],
distinguished by different orderings of the three scales. We take
,0A >> 1, considering modes that grdw on a time scale slower than the
ideal one. The fast mode is determined by @R < 1 K ﬁA implying that
resistive destabilization is important for all 9. For the slow mode,
0R~0A >> 1 so that the mode is ideally driven at ¥~1, the reéistivity
only acting at large ¥ to localize the mode. | |

To treat resis£ive modes analytically, it is convenient to
introduce a subsidiary ordering of the mode width. Taking w >> 1
permits a multiple scale analysis, analagous to that in Subsection C.4;
in this limit the curvature oscillates rapidly comparéd to the scale
~over which thevmode is localized. Introducing a small parameter 6, we

suppose that

wo~o 1, o (6.96)

The slow scale modulation is represented by a variable 2z = 6¢, and

following our previous analysis we let
p(8) = ¢ (8,2) + bp,(v.2) +

In order that the mode be unstable, but not overwhelmingly so, the
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geodesic driving term is assumed one order smaller than the fast—scale

line-bending term yielding

b = 692 | | (6.97)

We begin with the fast mode for which the resistive scale is

small. Teaking

3
together with Egs. (6.96)-(6.97) implies ﬂﬁ ~ 62  and p. ~ 63.
Substitution of these orderings into the resistive ballooning equation
and expansion to second order gives a solubility conditfon for ¢4 which

determines the slow-scale dependence of Po’

-

¥5p. " - 2plaf<h > ¢ - zF — M ., -0 (6.99)
2 -2
e <|Ve|7">
where we define
: 2
. B =2 :
M= <|Vr|2<|Vr|™5[1 - (2plqPs)? & B> ] (6.100)
gﬁg <|Vr|2>

The condition for instability is that the average curvature be

unfavorable:

Po<hr> <0
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This is clearly less stringent then the Mercier criterion, Eq. (5.89),
which includes the shear stabilization term. There is an infinite
sequence of unstable modes [recall Eq. (6.33) et seq.] with the j=0

mode most unstable. Its dispersion relation is

v 2 had
2. (2p/q~) 2_.2
43 =B "o (<o >? + S<22) (6.101)
8 sR<|Vr|®> g :

‘showing the characteristic behavior [133]

y3 ~ n(p))? . ) o (6.102)

This mode is essentially driven by the RMS geodesic curvature. Our
expansions are valid when
°r

— ~ 2p
(o]
L

’q'2 << 1 ;

that is, providing one is below the ideal critical f. When the mode is
very extended in 1%, and hence localized in radius, it is similar to the

resistive interchange, Eq. (5.108). 'As # increases toward § the

crit
mode becomes more localized 'in ﬂ;. and though it is still unstable
'[1é5], the multiple scale approximation breaks down. In this case the
mode exists for average favoraﬁle curvature as well.

The above treatment is easily generalized to unreduced MHD and
general geometry [132,134]; the corresponding dispersion relation is

nearly identical. A further generalization to the compressible case

also gives an unstable fast resistive mode [125,132]. It is
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perpendicular compressibility which is important in this case. It is
interesting that the -0 limit of the compressible equations does not

A

reproduce Eq. (6.99). The difference is accounted for by replacing M
by M, given in Eq. (5.80). Thus the growth rate is significantly

different, even in the small g limit.

The slow resistive mode is obtained by assuming [124,182,184]

Bp ~ By ~ w5 ’ (6.103)

In this case the pressufe can be of order of the'ideal critical value:
p6~1' As we suggested above;' the slow mode can be treated by a
boundary layer analysis very similar to that wused for tearing
instabilities. There are two distinct layers, ideal and resistive,
occurring at ¥~1 an& @~ﬂR respectively. Since ﬁR is large thér
resistive layer occurs at large ¢; thus this analysis is anA inverted
tearing theory.

-When 9~1 tﬁe resistive ballooning equation reduces to the ideal,

marginal equation in lowest order:

a 2 a 4 2 " S .
— F¥ — -2 h, — — b (3 = 0(5) . 6.104
30 3 @ Pod [ r VA 7}( k)]ﬁ” (6) ( )

This equation can be solved numerically, or by the techniqués discussed
in Sec. C. | However ﬁhen v~ ﬂR’ which implies z~1, the effects of
resistivity and inertia become important. The matching between the
ideal and resistive solutions 1is accomplished in an intermediate
region, ¥ ~ 6—1/2, say. In this region the form of the ideal solution

is obtained by the Mercier analysis:
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o+ A¥ + By V1 ' (6.105)

where the exponents v are given by Eq. (6.63) or in the reduced case by
the negative of Eq. (5.88). We‘éroceed next to solve for the mode
function with 2z~1 by multiple scale analysis. Once this éolution is
obtained, it will be matched to Eq. (6.105) in the range z ~ 61/%.

The multiple scale analysis is entirely analagous to the fast mode

case, and at second order gives:

2 R
éL ——EL——E éi vy + (DR + yzszzz) 9o +
21 4 Ag© 9%

-~

H - H° o - 2nz?H Y =
[o] o
14+AZ° (1+AzR)?

A ~

where Dp =Dy + H° — H, and H are related to quantities in Egs. (5.81)

and (5.90):

5 2pgq2

R ™ R

82
~ Pga
H=—"—H
S
and
82
A (6.108)

=0 (6.106) -
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It is easy to see that when z << 1 the solution to Eq. (6.106) obeys
Eq. (6.105). When 2z >> 1 the asymptotic 1limit takes the form of

Eq. (6.94), with

The physical solution of course.obeys we > 0. Equation (6.106) can be
solved. exactly in terms of Kummer functions. Imposing the boundary
condition at small 2z, Eq;v(6.105), gives thé eiéenvalue. Since
Eq. (6.106) 1is symmetric under reflection in z there are both even and
odd solutions. If M is positive the most unstable mode is the lowest

even one. .

An estimate for the -eigenvalue is easily obtained by methods

similar those we used in Chapter V. For simplicity we mneglect the
factors of H in Eq. (6.108). Integrating Eq. (6.106) from —= to «, and

noting the singular behavior near z=0 gives:

2 V4
[Z wo]z=0

+ Dgw — 7%q%Mw3 = 0 (6.109)
¢O

where the first term is the jump in z2¢02 across 2=0, which is

evaluated from the ideal marginal solution, Eq. (6.105). In the spirit
of our derivation, this coefficient is -B/A which we define as the

ballooning equivalent of —A".
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The resulting dispersion relation has the same form as

Eq. (5.107). In particular, when Dp is negligible

y - (n2n)3/5A,4/5 ‘ (6.110)

While this dispersion relation looks very similar to the simple
resistive tearing mode, we should emphasize that the calulation of A’
is very different in the two cases. In particular the ballooning A’
involves only the férm of the equiiibrium.on a single flux surface. In
the small shear limit one caﬁ show that A’ is -positive in the ideally
stable regions; for example, below the first stability Dboundary
A = (p))Ps [124]. |
The generalization of the slow resistive mode to "the compressive
case [132] shows that the low f limit of this mode is singular. As Wé
found for the fast mode, the équation obtained has the same form as
Eq. (6.108), but M is replaced by M. This mode has épparently not been
treated properly in the finite g case (important perpendicular
compressibili@y terms were neglected in [125]). One major difficﬁlty
in this cése is that the solution in the idéal region-. is "no longer
given by the incompressible marginal ballooning equation [96] (see, for

example Eqs. (73) and (85) of [132]).
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3. finite Larmor Radius Effects
The finite Larmor radius parameter, 6, can be 1included 1in the
analysis with no essential complication. The ballooning equation
obtained for this case is
5 _F° ) . 2

P S
~w0(0-wy; )@ F% = = ———— = ¢ — 2p’q°[h, - —= ny(v-3 )] (6.111)
: 3 1,52 52 0 ° Ve

where the collisionless scale parameter is

m. Yl 2
&) 2 (=) . (6.112)
w me 2né

There are twé distinet effects éontained in’ Eq.‘(6.111). The
first is the modification of the inertia from the diamagefic drift‘
[185]. This can be easily treated since (setting ¥, to «) the form of

'the equation is identical to the ideal case. The resuiting dispersion

relation is
2
w(w—ws i ) = —YMHD
where, following Eq. (6.35), the ideal growth rate can be estimated as

Youp ~ 2lpgl = 1/0% (6.113) -

The effect of the drift term is to increase the critical § to
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. 1
-lpgl = +

Using the definition of wy; and assuming né<l we find

- 2.2

i, 1 o
IPOI =—E (1 +n76__)

2q g

More generally it is easily seen that an unstable mode can exist only
when néz < 2g. Thus the effect of Q*i is to provide an effective
cut—-off in n beyond which ballooning mbdes are stable.

The effect of the electron inertia term, ¥4, is very similar to

the resistivity. Collisionless modes have been treated by [136],\and.

other kinetic effects on ballooning ‘ﬁbdes have " been studied in

[137-140].

4. Compressibility

To study the effect of compressibility set 6¥n=0 in

Eqs. (6.86)-(6.89). Define the field
Py — PP | (6.114)

which is proportional to the parallel velocity. In general v
represents the departure from pure convection of the pressure. The
four—field ballooning equations can be reduced to two coupled second

order equations for the fields ¢ and v:
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3 3 ,
2w FRp + ™ e ¢ 2q°[n, - j% hy (98, )| (Pl + v) = 0 (6.115)
8% 2 2 2 2 s
(655 + 0a®)v = 2607q"[n, — = By(o-ty)]o . (6.116)
3v Ve o

Equation (6.115) represents the standard ideal ballooning equation wifh
a single additional term coupling ¢ to the compressibility through the
curvature. The left—hand side of Eq. (6.116) allows for the
propagation of sound waves along the field lines With the speed
vE = B/q® [recall the definition of §, Eq. (4.141)]' The first term
arises from the parallel compressibility, V,v. The right hand side of
Eq. (6.116) arises from the perpendicular compressibility term,
‘reflecting the fact that Vovl is non-zero through the variation of B:on
a flux surface. Compressibility introduces a final scale info thé

ballooning equations:

It is commonly knowﬁ-that in MHD the marginal stability point is
unaffected by compressibility. Equations (6.115)—(6.116) indeed
exhibit this behavior, since the coupling term in Eq. (6.116) is
proportional to wg. Away from marginal stebility, a simple estimate of
the form of the dispersion relation is obtained by the local dispersion
relation. By Eq. (6.91) we can estimate the cugvature terms by unity
(choosing the unfavorable sign) and similarly F2 is of order unity for

moderate 0; thus,
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2

W®q® - k% - 2qfp] = 4pg® —H— . (6.117)

I 2

2 R
w —vsk”

When w is small compared to the sound frequency vsk“, this reduces to

"
yRa MDD _ (6.118)

1+ 4q2/kﬁ

Note that even though the parameter § cancels from the equation, the

growth rate is not equal to the incompressible limit. This is the same

phenomena on which we remarked in Subsection 2. Physically the

reduction in growth rate comes from the increased fluid inertia

contributed by the parallel flow [128]. For modes which grow'rapidly. B

relative to k"vs, the dispersion relation (6.117) becomes

72 = yﬁmD —48 _ (6.119)
again showing a decrease in the growth rate. This decrease is a true
compressible effect due to free -energy being used to compress the
fluid.

A more rigorous theory of the effects of compressibility can be
carried out by the near—axis gxpansion method of Subsectidn C.4. It is
not difficult to see [128] that the result of this expansion is
equivalent to the growth rate reduction given in Eq. (6.118) (an
averaging of the squared curvature changes the 4q2 to 2q2, e.g. the
factor M of Eq. (5.80)). Additional compressible corrections arise

only upon continuing the expansion to 0(66).
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When s~1, compressibility is more significant than the local
dispersion relation predicts [96]. It is easy to see that the parallel
compressibility’must be important near marginal stability. If it is
neglected, Eq. (6.116) can be combined with (6.115) to give a

2

significant, positive—definite contribution to ™, as estimated in

Eq. (6.119). However, we know that the compressible equations have the

same marginal point as the incompressible ones. Therefore, near

marginality parallel compressibility must cancei the stabilizing
contribution of perpendicular compressibility. To treat this, a more
careful treatment of Eq. (6.116) must be given.

Equation (6.116) can be solved with a Green function to obtain

v = yq/f {Z a8’ exp[-|9—"|/3.] [h, - j% (B %] o(37) . (6.120)

Note that v 1is proportional to the square root of ﬁ,‘confirming that
the limit p»0 is singular. For small enough fréquency, By will_ always
be la?ger than the scale of ¢. For example at the marginal point, ¢
decays on the scale 0(1), Eq. (6.57). Using use this equation for ¢

and Eq. (6.91) for the curvature gives
v ~ yqsvf .

Comparing terms in Eq. (6.115) shows that the compressibility always

'fdominates the inertia when 7 is small enough:

7 € qsvp
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that is, when the sound scale, 9 is larger than 1/sq2. This estimate

s?

yields the approximate growth rate,

Y~ 1 72
qsvB MHD

which no longer scales as the square root of the critical pressure
gradient. Further analysis can be done by computer solution of the

integral equation obtained by substituting Eq. (6.120) into (6.115).
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Figure Captions

1)

2)

3)

4)

Magnetic surfaces in Shafranov geometry.

-Stability boundaries for the model equation, (6.71); k = %=0.

Instability occurs between the solid curves which were obtained

numerically. The dashed curves, representing the weak shear case-

are given by Eq. (6.82). The dash-dot curves are the approximate
strong shear limit of Eq. (6.84).

Ballooning Potential, V(n), from Eq. (6.83) for x = ¥ = 0.
| a) The weak shear case, s=0.1, p=0.3. Note the scale
disparity leading.to Eq. (6.76). |
b) Strong shear case, s=1.0, p=0.8, near the first stabiliiy

boundary.

Ballooning potential near the second stability boundary .

Parameters are s=1.0, p=R.2, x = ¥ = 0.
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