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Abstract

Theoretical interpretation of ion acoustic turbulence is éhown te
require the use of renormalized turbulence thoery for calculating the
turbulent specfra and transport coefficients. In the one dimensional
problem, the fhysics of solitons, doﬁble layers and ion phase space

holes is shown to influence the dynamics.




I. JIon Acoustic Problem

Ion acoustic turbulence is driven in a collisionless plasma by a
wide reange of mechanisms including the injection of laser beams or
particle beams and through the passage of high  currents. In this
review‘ we consider principally the case where the ion acoustic waves |
given By w(k) = kcs/(lszkge)l/z with the ion sound speed
/mi)l/2 and the Debye length Ap, =,(Té}4ﬂne2)1/2 are driven
unstable by a current j = —ehzd. Thevdriff of £he thermal electrons

through the ions with velocity va produces linear instability with
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velocity distribution for vy > wk/k = cg- For Te>>Ti and V3>>Cq the
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g] (=) o exp(-T,/2T;) is neg}lglble

T,
and all k mddgs within the polar angle ¢ < ¢, with respect to y, where

(gozd—wk) from the positive slope on the electron

ion Landau demping yi(g) = —(
i

cos®, = c /vy are linearly unstable.

Examples of current driven ion acoustic turbulence occur in

2—5 6

shocksl, magnetic reconnection °, plasma return currents® arising from

the current neutralization of injected particle beams and turbulent

heating experiments.7’8A

The principal effect of ion acoustic turbulence®1! is to produce

an anomalous resistivity 7 = meueff/n ezvand the associated turbulent

heating7’8

thréugh the scattering of the electrons from the ion
acoustic fluctuationé.- Numerous experihental studies of  turbu1ent
heating show the presence of ion-acoustiec turbulence from the
measurements of the fluctuation spectra. The principal characteristics
of the system are the presence of a turbulent heating pulse with
wPiAt ~ 100 during which a strong resistivity and d.c. electric field

<E> arise with e<E>=Veffmevd" The effective <c¢collision frequnecy
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Veff S wpi typically exceeds the collisional resistivity by several
orders of magnitude. The turbulent heating pulse produces a conversion

of drift electron kinetic energy % nemevg into thermal energy neTe

through <j+E>At = nemevgueffAt. The momentum of the drifting electrons

nemevd is taken up by the ion-acoustic waves propagating in the.

~

direction of Y4 and then transferred to a small fraction of fast

1

jonsl® 14 nf/ne ~ (me/mi)l/4 with T, ~ s T,. The production of the

fast ion population arises from the turbulent trapping of the ions by
the finite amplitude ion acoustic waves .19

The detailed interpretation of a turbulent heating eiberiment
requifes that account be taken of the losses of the electron thermal
energy, of the fast ion component And of the waves from the region of
turbulent heating. The turbulent 'heating and loss processeshtaken
together then determine the long—time macfoscopic evolution of th;
systemn16 Current penetration and net Fhermal deposition or efficiency

are determined from the macroscopic balance analysis. Here we are only

concerned with the microscopic laws for the anomalous resistivity

arising from ion acoustic turbulence. The microscopic laws are the.

basjs for the macroscopic confinement and heating'studies.7’16

Ii. Coilective Intqractions Between Electrbns and lons

The ion acoustic waves .and the associated solitons and déuble
layers, are‘the mechanism for the interactions between electrons and
ions in a cleisidnless plasma. During the slow jon-acoustic motiqn
the electrons remain near équilibrium with —eneg(g,t)=v(neTe)=Tevne and

the ions are accelerated by the electric field according to
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9y v+v+Vv=(e;/m; )E(%,t). The ion density changes by 9;n;(x,t)=-Ve(n,v).

The self-consistent long range Coulomb electric field is determined by

V.E = _V2¢(§,t) = 4ﬂe(ni—ne).

For small emplitude oscillations fhese closed fluid equations yield
wk=kcs/(1+k2k%é)1/2 and for.wavelengths longAcompared with the .Debye
length Qk=|ErCS; For large amplitudes the steeping ﬁonlinearity ﬁaxv
of the fluid equétioné  balances with the dispersion from
wk=kcs(1— %kzxge) to produce ion—acoﬁétic solitons-propagafing with
speeds c>cg. We discuss the soliton components in Sec. IV. To
describé the interacti@ns of the particles with waves requires the
Vlasév equations.

For finite amplitude potentigl fluctuations Pre exp(igo§—iwt). the
fluctuation dfkw(z) exp(igjg—iwt) of the particle distribution function
satisfies |

ILi> | e )

e

3
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where k = kw. The mean distribution <f> evolves by

o< f> = e 93

st = moay " <L ERTke(D)>

s

- In the limit ¢, »0 we write from Eq. (2)

A _ .0 —e d _
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and obtain the self-consistent linear modes eﬁ(w)¢k=0 from Eq. (1) with

b 2 2
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o with
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where ggw(z) = (w—g°z+io+)_1 is the linear particle propagator and )
gives the response of the resonant particles which we now consider in
more detail.

A nearly resonant electron w=kev is accelerated in one wave period

1/wy by

eko ekoy

AV = - =
me(wfgoze) Me @y

The electron is accelerated out of resonance when AV>w/k which requires

e, @, 2 m
AV > @ o K (X =

-_— > ] = —
k Te kve m; -

(5)

The acceleration out of resonance is mnot described by the linear
o ) ' . L o ) .
propagator gkw(z). The expansion of AV(k,v) in powers of gkw(x) fails
for emplitudes greater than the critical emplitude given.in Eq. (5).
In fact, we know for a single resonant particle the nonlinear motion

can be expressed in terms of the pendulum equation k§=—w§sinkx with
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can be expressed in terms of the pendulum equation ki=—w§sinkx with
w§=ek2¢k/me. For two waves the motion becomes stochastic at the very
low amplitude vt(k)=(e¢k/me)1/2 > {w/k) = cg. Study of the test
particle with the Hamiltonian H = % mevzwew(g,t) gives the conditions
for stochastic motion for given wave spectra.
The condition fof stochastic motion and the form of the velocity

space diffusion D(v) depénds on the dimensionality d of the system.

" The resonant domains satisfy w=Kev which is a d-1 dimensional velocity

subspace. For d=1 there is a unique resonant velocity, for d=2 the
resonant velocities occur on a line and for d=3 the resonant velocities
lie on a surface. For this reason the d=1 system evolves qualitatively

differently, forming a quasilineér plateau, whereas ther d=2

(simulations) and d=3 (laboratory experiments) do not form a plateau .

but evolve through a turbulent heating pulse as shown in Fig. 1.

ITI. Limitations of Wéak Turbulence Theory

It is the assumption of weak turbulence theory11 that the
dispersion in Ak and Ay in the linear resonahce w=k+v is sufficient to
justify the wuse of the small amplitude expansion in powers. of
gﬁ(z) = (w—g~x+io+)—1. For ion acoustic tufbulence the dispersion is
known to increase the range of validity of the expansion in gﬁ(x) well
above the single particle limit (3), but not to the amplitude lévels of
. primary. interest for ion acoustic turbulence.
'To concisely discuss the weak turbulence theory and its limits of

validity we introduce the diagrammatic notation of Refs. 17-20. The

third order perturbation expansion used in weak turbulence theory is
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T S TN ko fke  [kck-k
dfi”\‘(“) Ti - I l ] , J, 2 (6)

Kﬁki R h‘H k‘krkl
— and E (—E/m)¢k1510az=rk1 with the summation E
1 1
deleted for 1k1. Terms of order I(e/m)gﬁwkg.8v|4 are dropped. The

where gg(z) =

charge density pﬁT = ZefdfﬁTdX is third order and yields the ‘noﬂlinear
Poisson field equation

(2) (3)

1

L ’ L 3) .
£y + £ P o+ € P P P =0 (7)
k%% ) K.k Pk, %k, k1+kz+k3 kK, ko, ok, Pk Pko

determining ¢y, . Here ek is given.in Eq. (4) and 5(2) and 5(3) are
k k 1,8 1,2,3

the nonlinear dielectrics given in Eqgs. (2.21) and (2.22) of Ref. 19.

The approximaté radius of convergence of .expansion (") is
determined by requiring that the third order contribution in (7) be
less than the first.order.

- To determine the contributions of eﬁz)’(3) to the dynamics the
assumption is made that due to the Ak dispersion the coupling between
the modes is weak. The. long time scale wkT>>1 eVolufioh of the
~ spectrum Ik(T)=<|¢k|2> is determined fby .calculating <p19o03>
perturbatively in terms of <p1pop3p,4> and clos{ng witﬁvthe gaussian or

quasi—normal approximation
<P192P304> = <P P <P3p>H<P 1 Pa><PoPa>+<P P ><Popa> . (8)

The evolution of Ik(T) is given by

def dI1, aelPh o) a
- >~ — ,,I “1,* “1 “1"" _ 2 (3) ]I I
%o, ar - Ckletim L [ *kyoky kT T
k ky 8k—kl(“’k“*’kl) ‘
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where aé:sé+i£g and a<2)’(3)'are evaluated at w=wg.
The integrals in Im 8(3) are too complicated to discuss here. ‘
studied extensively in Refs. 21, 22. The results are that the third

order contribution is comparabie with the linear contribution,

2
) eé??*gl,g|¢1§1| = (W/aT,) (kvg/oy)? = Im of,

-1
for
wcrit Wy 2 Mg
o e el (10)
nle Ve my '

For W > Wcrit the'thifd order contribution from resonant»electrons
dominates ‘in Eq. (7) .andf Eq. (9). We conclude thét wedk turbulence
theory is not valid for ion acoustic turbulence with W>WCrit because of
the third order truncation in Eq. (6).

Problems in addition ‘to the electron divergencé discussed above
occur when applying weak turbulence theory to ion acoustic turbulence.
The * prinicipal problems‘in using weak turbulence theory are summarized
briefly aslfollows:

1. The electron—-wave interaction series is ‘divergenf for

W/nTe>me/mi.

2. The - weak turbulence wave spectrum I(k) determined by induced

wave scattering requires a long wavelgngth cut—-off23 for

finite W/nTe=fd§(1+k2A2De)I(g). A long wavelength cut—off is
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observed in collisionless experiments

simulations.la’14

6,9,10

and

3. Weak turbulence theory predicts ho significant production of

fast ions during a turbulent heating pulse. (Once

the fast

ion component 1is established quasilinear theofy adequately

describes its evolution).

4. Weak turbulence theory fails to describe the finite lifétime

of the waves. A related problem is the absence of a three

wave resonance . contribution to the theory since

é(wg'wkl_“E—E1)=o for the linear w(k)..

ITI. Renormalized Turbulence Theory

To eliminate the divergence of the small &mplitude‘expansion for

6fk(g) it is necesary to select the dominant secular terms in the w=k+v

resonance at nth order in the expansion and sum their contribution to

»all orders. The nth order contribution is

'fﬁn}(z)z [ e fon )k

R, .

L

lk“ (11)

R PR RRr TR kR

and the highest order multiple resonance in gﬁ is given by_‘

5Vf‘1£n)(v) = lk’ J & |k
R k-R ,
+ s‘u}bsdominant terms + R k R R
' 3 3 I<f
Sers G L] g i, 215D

- kg

+ subdominant terms.

lk (12)




The selection and summation of these terms 1is given by Choi and

18,19

Horton and called the simply renormalized propagator §k(v). The

24

approximation is also studied by Misguich and Balescu™’ and called the

Weak Coupling Approximation.

Other higher.order'but less secular terms can also be inclﬁded in
the summation (11) for the renormalized propagator. In the mnext
approximation, called the doubly renormalized propagator Ek(j), the

addifional fourth order term._i i lis added to I ]r—w. Retaining the

largest class of terms that can be formally summed in the propagator

series leads to the nonlinear operator equaticnls’z5

ooy (2 .

for the fully renormalized.propagator gk(v)=(w-g~g+iuk)f1. The simply
renofmalized propagator (12)'cén be calculated exactly in terms of the
spectrum.Ikw, whereas‘tﬁe nonlinear operator equation (13) for the
_fully renormalized propagator is not solvable.

In addjtion to the propagator series selected.in Eq. (12) which
has the interaction gﬁ@koav as a terminal line, there are terms in the
series ﬁhere the contribution gﬁgkoav is not terminal. The series

formed by these terms leads to the renormalized vertex operator

3 e.\2 3 d
=24 (2 I ko = 2 k
§k(X) v + (m] % k=1 4y gk"kl v g'kl“l v
¥ 1 M M ‘ M

as shown by Balescu and Misguich.20 The vertex contribution 1is well

known fpr drift waves.z6

, o \ A
)k peily) e Kol e, (W) Fole(¥) =1 (13)

e (14)
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With these selective summations of the perturbation series the

renormalized fluctuating distribution function is
e
01 (V) = = — oy (Ve gy<t> . ‘ (15)

In addition to the coherent part.dfk(z) of> the . fluctuation given by
(15) there is an incbhefent contribution‘given by Dupree27 arising from
'non—wavg fluctuations called clumps and holes. _The role of holes in
d=1 ion acoustic turbulence is considered in Sec. iV. ’

Now we reconsider the convergence of the perturbation expansion of
Eq. (11) in powers of (e/m)gk¢kgoav using gk=(w—g°z+ivk);1 given by

Eq. (13). The new expansion operator is bounded by

<1 " (16)

(e/m)oy 3 eky)
” - Imvk(uk/k) =

€ = max “—'—.k‘
w—g°z+1uk - GX

where to obtain the inequality the smallest value of Vic allowed by
Eq. (13) is vk>(e/m)2k2¢§/ukAv§ and Avy=v;/k to give uﬁ?(e/m)k2|¢k!.

The new or renofmalized perturbation series appears at least
asymptoticélly convergent for the levels of turbulence required to
describe strong ion—acoustic turbulence. The renormalized expansion
eliminates the divergence problem (1) of Sec. III..

For electrons, the turbulent collision " operator ivy in- the
renormalization series (125‘ describes angular scattering of the
electrons by the ion acoustic fluctuations. Noting that

K'X/wkz(me/mi)l/z for thermal electrons the impulse  Ay=ekp;/m v}
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imparted to a resonant electron is essentially perpendicular to v. The

electron propagator reduces to

Ve 3
‘O‘E‘X + Veff(?)

il

(gﬁ)_; 0y

‘where (1 is the solid angle in velocity space and

¥
2 ,
LA SN € 151 W : o -
Verr = 5 J dky Ikl —2— = equpe(=) | (18)
. e ‘
e .
with the constant ¢y depending on the shape of the spectrum. For

turbulence with W’/nTe-«(m.e/:mi)l/8 the effective Lorentz collision.
frequency from the turbulence is Veff~wpi in agreeﬁent with strong
turbulence experiments.a_9 |

Analysis of the electron contribution to the renormalized

dielectric 'function28

Ek(w,W) shows that at - long wavelengths
7\=21r/k>ve/ueff the Landau resonance is disruptgd by the turbulent
scattering. In thé region kxDegyeff/wpeNW/nTe thé ion Landau damping
dominates and the wave energy is absorbed. The absorpfion leads to a
low k cut—off of the spectrum I(k) and eliminates the long wavelength
divergence problem (2) of Sec. III. The details of the Ek(w,W) and
I{k) calculations are given iﬁ Refs. 18,19,28. A typical wavenumber
spectrum is shown in Fig. 2 |

The ion interaction with the turbulence is dominated by the high
energy ions since wk/k>>vi=(Ti/mi)1/2' The renormalized ion propagator

is calculated from velocity diffusion taking D”(k)%d%d+Dl(k)(1—§d%d).

VR , . SR - (17)
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The explicit formulas for Eiw(x,x') are given in Sec.6 of Ref. 19. The
turbulent propagator gkw(z,z') and the Fourier transform gk(z,z’,T)

form & Markov semi—group with
fdx'gk(z,z’,Tl)gk(v'}z”,12)=gk(x,z”,T1+Tz)

for T1+T2>0 and zero for Ti or 72<0. From the analysis of the two

=7 shows

point phase space correlation function f(glzl;gzzz,T) Dupree
that neighboring trajectorigs in phase space diverge exponehtially With
the separation increasing as k|6x|+|6v/vt|~exp[(k2Dk)1/3t]. The result
is an'exponential sgnsitivity to the initial data which gives rise to
the statistical Markovianvbehavior for timés greéter than the Lyapunov
time t>’rc=(k2Dk)_l/3 despribing £he maximum lifetime of wave—like
correlations.

The renormalized propagator gk(x,z},T) describes a dissipative
dynamics which opens new regions of Kk, 'X, w space to wave—particle
interéctions. Although the net dissipation is constrained by frequency

29

sum rules™, the interactions now extend well outside the region Q=§~X.

The evolution of the background ion distribution is given by

<> _ 9,
ot SX

-

with the nonlocality of D(v,v’') being strong for W/nT>10_2.
. s N7 -

19 4t the ion acceleration from Eq. (19) show that the

Calculations
renormalization eliminates problem (3) of Sec. III.

The charge density pﬁn)=2ef6fﬁn)dz computed from the renormalized

perturbation expansion yields the mode coupling equation (7) where the

[ 4y’ DT,y ) o <y, t)> (19)




formulas for aén) k. contain gk(v,W). Iterating the equation and
1 -kp M
neglecting the fourth cumulant (8) also leads to Eq. (9). For long

w&vélengths, however, the procedure fails due to the divergence from

(2)
€ P _
ko kel Yy Pk

wﬁz) = - as k,k; > 0 (20)

5>

and the higher order iterations of this fluctuation éropagator.

The correlations from the néar three wave resonance (20) ét long‘
wavelengths leads to the formation of intrinsic high order correlation
as contained in solitons.. 'The. soliton éomponents of the field are
discussed in Sec. IV.

Assuming the fields remain sufficiently random that a statistical

(=)

description remains valid we may sum the divergence from ek1k2¢k1¢k2/sﬁ
to all orders to obtain a renormalized fluctuation propagator sﬁz. The

renormalized dispersion function satisfies the equation

(2) (R)
. dox ke ky 5k Lk (3)
5ﬁ = & — 5 [ - Re) k]Ik (21)
k 8n£ : 1 1’ 1
_& k—ky
=191 :
and the spectral equation becdmes
22 2 2
lef™ 17Ty = 4 ) 'aﬁl?k~k1| T Tk (22)
k .

1

Equations (21) and (R22) are the equivalent of the Direct Interaction
Approximation (DIA) of fluid turbulence with respect to the mode

coupling 8é?)k2' The equations in this form were first analyzed for

-
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ion acoustic turbulence by Tsytovich.30 OQur mode simulation studies
indicate that the effects of the three wave coupling terms are less
important, because of the small k spéce volume for divergence (20),
than the induced wave scattering ﬁrocess,in determining the shape of
the wavenumber spectrum i(g);f+wdw/2ﬂ I(k,w) which is a cone in " the
direction of V4 |

The near three wave resonance 1is important in determining the.
frequency line width through Egs. (R1) and (22). The line width Awy is
given approxiﬁately by Aw = Im aﬁl/aanﬁ/éwk ahd the spectral

-~

distribution is approximately

2Awka
Ik(w) = — . ~ (23)

RY: 2

The complete solution of Egs. (21) end (22) for the spectrum I, and
nonlinear dielectric’ sﬂi(m) remainé a difficult problem. The
approximate solution (23) with Awp~w (W/nT,) eliminates the fiﬁite
lifetime problem (4) of Sec. III.

The renormalized turbulence theory given hefe is the direct
renormalization of weak turbulence theory. An advantage of the theory
is its ability to predict the qu&ntities of interest to experiments and
simulations. A number éf comparisons have been made such as with
Steniels, Kawai et a1.9, and Slusher et al.lo, and the simulations of
Biskamp et a1.13’14.The scaling.of the anomalous resistivity predicted
by. the theory is shown~in Fig. 3. |

There are other statistical theories of Vlasov turbulence

principally those developed by applying the direct interaction
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approximation to the Vlasov-Poisson equations. The first attempt with
the DIA was given by Orzsag and Kraichnan‘31 Subsequently, a systematic
Viasov turbulence theory based on the DIA is given by DuBois and
Espedal32 and developed further by DuBois.33 The 'theory' contains
additional nonlocal velocity space correlations arising from the

shielding clouds of particles contained in the response -function

R12=6fk1/6¢k2 and the. fluctuation  propagator l/aﬁl. The new
contributions can be interpreted in terms of quasiparticles as in
many—body field theories. An - example _of these qﬁasiparticle
contributions and their relation to the test particle propagator gk(x)
analy%ed 'here is shown diagrammatically_in Figs. 1 and 2 of DuBois.33
Itvreméins av difiicﬁlt probleﬁ to evaluate tﬁé effects of these

nonlocal shielding or polarization contributions contained the DIA

theory of ion acoustic turbulence.

IV. Non—-Wave Constituents

Renormalized turbulence theory retains the basic description of
weak tufbﬁlence theory of a gas of interacting waves ;nd particles. By
‘renormalization of the particle propagator gkw(z,W) and the fluctuation
bropagator aﬁl(w;W) the secularities from the bare resonant
interactions are eliminated.” The renormalization sums to all ofder the
divergent ‘contributionsv to the perturbation series. The renormal ized
theorf,is capable of calculating the quantities of intérest in plasma
turbulénce when high.order correlations are not required. The closure

of the heirarchy of correlation functions in renormalized turbulence
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theory loses the high order correlations contained in solitons, double
layers and phase space ion holes.

A one—dimensional, long wavelength ion acoustic wave steepens due
to  vayv until wave dispersion at the Debye scale balances the
steepening. The balance of dispersion and the steepening leads to the

spectrum

ke 1/2

¢S(k,w) = 7k (w—kc)esch|nk( .
w—kcS

of correlated fluctuation components describing a sech® (K(x—;t))
soliton. A similar situation applies to the double layer where the
Vlocalized‘potential now contains a net jump A¢ across the structure.

The 1ion acoustic solitons preserve their identity for many
soliton—soliton and soliton-wave collisions. This coherence property
hés been used to construct an ideal gas model34 for plasmé-fluctuatidns
composed of randomly distributed solitons. The soliton component of
the fluctuation spectruﬁ for such a gas is given by
I(k,w) = szs(w/k)cschz[ﬂk(kcs/(w—kcs))1/2].wﬁere fS(v)dv is the number
~of solitons with the speed v;es in the range dv. The Gibbs ensemble
with E = H(p,349¢) ﬁay be used to estimate fs(v).'

Recently studies35 have considered the effect of adding linear
dissipative ferms- modeling the growth and damping y(k) taken from
linear particle resonances into the soliton equation. Numerical
simulations show that a mixture of solitons and wave components ére
produced from the unstable growth Qf noise in this dissipative solitomn

system.

) / Jexp(-ikx,) | - (24)




A more realistic model for coherent structures in ion acoustic

36 equation for

turbulence is given by the Kadomtsev—Petviashivili
two—dimensional solitons. For the cone of waves propagating with the

mean angle ¥ << 1 with respect to the drift velocity Y4 the dispersion

in wave frequencies is

2
_lil_]
Zkz

= o [ 13
w(k) = cs(kz ky +

Taking into account the wave steepening leads to

4 ,
ag+ag+lvi¢+§_@+.3_(¢ (25)

dzadt 322 2 974 9z

with the growth rate y¢ for the unstable dissipative system and F(z,t)
for the forced conservative system.

There are exact two—dimensional soliton solutions of Eq. (25).
The equation is wused to prove the transverse stability36 of the
one—dimensional solitons propagatiﬁg pafallel_to vdﬁ. The. time scale

ts for the formulation of the soliton is given by

1 w ,1/2
Z = cg<k,> (—-“]

and balances the transverse dispersion of the waves for




The interaction of three obliquely propagating solitons is strong
when the m,ﬁ defined by sechg(i'i—wt) satisfy the three—wave .resonance
condition.38 When the resonance condition is satisfied two solitons

collide to produce a third soliton.

Experimental studie539’40 showing the oblique collisions_ of ion
acoustic solitons have been performed confirming the resonance
condition and other properties. With a large number of .obliquely

colliding solitons the system may evolve to a chaotic state containing
strong correlations.

Aﬁother important type of correlation that Iives for times long
compared with the life time of the»wavé constituients is the phase
space hole.41’42 The role of ion holes has been demoﬂstrated in d=1
particle simulations' of curreﬁt—driven ion aéoustic turbulence.43 The
simulations show that the production of holes starts for v below the
-threshold for unstable waves from a nonlinear instability.

Meking a hole 6fi(x,v)'< 0 in the ion phase space distribution of
size Av = (e6¢/mi)l/2 and Ax ~ IO%D leads to a long lived fluctuation

5o (x—vt) for vsv; with

(V3 - lz) 60 = — Le 60 = —4neiafiAv' : ' : (27)
A A
D D

The negative potential 6% of the hole reflects electrons.ve > -V and

in the process gains momentum BmeAve. Calculating the imbalance of the

) o~ 194 . (26)
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right and left going momentum transfer due to the drift va of the

electron distribution leads to the hole growth rate41

hole Av
= —8({—|Ax LW —_— [—
7 8(Ax) wplwpe v  dv “bi AD VivVe

fof holes with 0 < v <'vd.

The hole turbulence appears as flﬁctuation components with
w ~ kvi, a region of heavy damping for.lipéar waves.  Probably, the
most important aspect of the héle tﬁrbulen&e .phenqmena is the
possibility that it relaxes the onset conditions for the occurrence of
ion acoustic turbulence and the associated transport processes. There
are, in fact, numerous gxperiments with indications of ion acoustic
turbulenbe where ‘the conditions on Ti/Te and vd/cS for unstable waves
are not satisfied.

We conclude 'thdt although the phenomena of wave—particle
interactions in the context of renormalized turbulence fheory hés given
formulas for calculating k,v,w spectra and fransport coefficients, as
given in Figs. 1-3 for example, the role of solitons and phase space
holes, especially as they interact with the wave fluctuation specfrum,

remains to be evaluated.

9f . Jf, 2 Vv
- e i Ax d
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Figure Captions
Turbulent heating pulse computed from mode simulation with
renormalized turbulence theory using vd=ve(0), m; /m =1600
and Te(O)/Ti(D)=50.
Wavenumber spectrum from analytic solution of renormalized
mode coupling equation taking square box angular
distribution with cut-~off given by cos?d =c /vd.
Anomolous resistivity at the maximum of turbulent heatlng;.

pulse as a function of u=vy and T /T




03

02
w
nTe
0l
o.ooo 30 60 %0 120 - 150
' ' twp
P
FIGURE 1
5.0
a0} 1
3o} 1
K°1(k)
- o I
Blo |
200 g T [
|
' |
Lo} ' 1
0.0 [} y 1 ) [
00 02 04 06 08 1O
Ve kxb

FIGURE 2




.020 8
m; Te(0)
m=l600 —=—=f==50
0I5} 16
Vet Vet
Wpe Wpi
~.olofF 14
Vet _1o-3 _u_ Te(0)
Wpe - ve(0) T;(0)
.005 4.2
1 1 o)
% 5 u 1.0 15

Ve(O)

FIGURE 3




