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Abstract

Drift and tearing modes in a sheared cylindrical collisionless

plasma column are studied. A set of differential equations in the

‘radial coordinate are derived with small gyroradius and low-R

expansion. The finite-pg effects include curvature drifts, gradient-B
drifts, and the parallel magnetic. field perturbation. Algebraic

elimination reduces the resulting set of equations to a fourth-order

system. Analysis shows that bad curvature does 'not drive  ‘the *

collisionless modes unstable.




I. Introduction

Collisionless f drift and tegring modes are low frequency
perturbations that occur in inhomogeneous systems. These modes have
been extensively studied in slab geometry. However, real systems.have
curvature which may be stabilizing or destabilizing. To study the
effect of curvature, we consider collisionless drift and teafing.modes
in a sheared cylinder, which is the simplest system having intrinsic
curvature. Using small gyroradius and low—B expansions, we derive
differential equations governing these modes, and we study their
stability by amnalytic techniques. Numerical analysis of these
equations will be carried out in a companion paper.l

The development of the theory of collisionless drift Waﬁes
indicates a need to understand the effect of curvature on these modes.
Collisionless electrostatic drift modes were studied by ZXKrall and
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Rosenbluth in slab geometry. A series of papers eventually.led to
the conclusion that electromagnetic collisionless drift waves are
stable. This conclusion has since beeﬁ strengthened by more correctly
handling the finite-ion-gyroradius effect.® Whilg:more recent work9
indicateé the preséncé,of‘modes induced by toroidicity, the basic slab
branch remains stable., However, since resistive MHD indicateslo,the
presence of iocalized modes driven by bad curvature, it is important to
ask whether bad curvature can drive the slab mode unstable.

Similarly, the development of tearing mode theory indicates a need
to understand the effects of curvature on collisionless tearing modes.
Tearing modes are driven by .external free energy11 represented by the

parameter A’. An early theory of collisionless tearing modes was

presented by Laval et al.l2 This theory was later modified to include
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arbitrary collisional'ity.:[?”14 More recently it was noted!?»10 that

the stabilizing effects of ion dynamics and electron temperature

gradients yield the requirement that A’ exceed a certain critical
value, A" > A.gs for kinetic tearing modes to be unstable. Of course,

10,17 that in systems with good curvature,

it has long been known
resistive MHD 'theory predicts a threshold AcMHD‘ Thus, we are
motivated to develop a theory capable of calculating the threshold Ac
due to kinetic effects and curvature in combination.

The paper proceeds as follows. Section II contains a brief

presentation of cylindrical guiding center theory. Such theory is

needed to transform to action-angle variables, in which the motion is

simple, and the orbit integrals of linear theory are easily carried
out. The theory is simple and useful because it is Hamiltonian and
canonical; it does not wuse noncanonical coordinates 1like the more

complicated theory18

needed for more general configurations.

In Sec. III, the charge and current induced by the Ilinear
perturbations is calculated. This calculation involves gyroaveraging,
which 1is carried out. via Taylor expansion. For this reason, these
equations are strictly valid only for Te >> T;. However, recent work!?
indicates that this technique gives reasonable results for tearing
modes even for Te/Ti near unity. The charge and current responses are
used in Maxwell’s equations to obtain a variational?0 sixth-order set
of differential equations. This set reduces algebraically to a
fourth-order system which looks much like previously derived equations,
except for the presence of new terms due to the magnetic drifts and

parallel magnetic field perturbations. Boundary conditions are imposed

by requiring either that the perturbation vanish far from the resonant

’
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surface (high—kl) or that the fields match asymptotically to the
exterior \_éolution.‘

Section IV contains a discussion of analytic stability proofs for
this model. The method of Ref. 7 is extended to the present set of
equations. It is shown that finite-f effects do not modify the
stabillity results significantly: one can prove the absence of marginal
modes with w/w*e > 0. However, it is also found that when fhé full ion
Z-function is retained, this stability proof fails because nothing can
be said about the existence of marginal modes in the range

0 < w/wgy < l+den T;/den ny.



II. Unperturbed Systems

In linear kinetic theory the perturbation of the distribution
function is obtained by integrating the perturbing field along an
unperturbed orbit. The charge density and current are found by taking
moments of the distribution. In this section the quantities needed for
these calculations are obtained. A simple, cylindrical wversion of
guiding center theory of the unperturbed motion is developed. The
appropriate velocity operators, needed for taking moments, are written

in terms of the convenient guiding center variables.

A. Cylindrical guiding center theory
The unperturbed motion in this cylindrically symmetric system is
detemined by the unperturbed Hamiltonian,
1 1 1
by =3 plzs +5 (pe—rAe)Z/r2 t 3 (pz-Az).2 ’ (1)
where Ag and A, are functions of r alone. As mentioned in the
introduction, units satisfying e=m=c=1 have been chosen for this part
of the analysié. The Hamiltonian (1) does not depend on 6 nor z, so

one need find only the radial motion, which is that of a particle in an

effective potential,
1 1
W(x,pg,pz) = 3 (pe--rAe)z/r2 t3 (pz-Az)2 . (2)

In this section we analyze the Hamiltonian (1) in the limit of small
energy (gyroradius/scale length). We introduce cylindrical guiding

center coordinates and find the unperturbed motion.
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Low energy particles are trapped near and oscillate about the
minimum of the effective potential. This leads to the definition of
the "ecylindrical guiding—center radius" R as the position of the
minimum. That is, R is a function of the canonical invariants Pgy and

P, that satisfies

oW
o (R(PgsPg)s Pgs Pz) = 0 . (3)

Continuing with the low energy expansion, we write

2
1 1 W
h'o = 5 P% + W<R,P9,PZ) + ‘2‘ (r—R>2 E (R’Peipz)
1 3 (. 9B B
Z .
+ - —R B —_— = — + e e e . 4
5 (TR ( ~ ]IR | (4)

As one can see from the divergence of the_last coefficient of Eq. (4),

this expansion technique breaks down near the axis. Thus, we assume

the region of interest to be at least a few gyroradii from the center.

The lowest order part of the Hamiltonian (4) consists of three
terms. The first and third terms yield the gyration and, hence, must
comprise the perpendicular energy. The second turn must, therefore, be

the parallel energy,

1
-2— uz = W(R,Pe,Pz) . (5)

To relate u to the velocity, we define the quantities
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- h
Ve = —aap (R:PG,PZ) = PG/R - Ae(R) s (63)
0
and
- h
v, = (R,pgsP,) = P, = A,(R) , (6b)
sz

which are the velocities of particles whose amplitude of radial

oscillation vanishes. In terms of these variables, Eq. (3) becomes
Vg[B,(R) + Vg/R] = ¥,Bg(R) = 0 . - (7
This result allows us to deduce that u defined to be

VgBg(R) + v,[B,(R) + Ge/R]

1/2 ®

{B3(R) + [B,(R) + ¥o/R]%}

satisfies Eq. (5). We note that u is primarily v(R)+B(R)/B(R), with
corrections due to the centrifugal terms Ve/R, which are small because
of the small gyroradius assumption. Furthermore, this approximation

allows us to deduce

2
2T (R,pgyp,) = B(R) = 0 . (9)
or
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For 1later purposes, we need the partial derivative of

the

guiding—-center wvariables R and u with respect to the canonical

invariants Pg and p,. We find

R
R~ ByR)/BAR)
apz
2R -, /rB%(R)
Bpe

3
ou Pz P
sz B RBZI- ’
and
B,.(R) uBZB

u 6 682

3pg RB(R)  p2gh
This allows us to compute the Jacobian,
dpedpz = RB(R)dRdu ,
to lowest order.
One can put the wunperturbed Hamiltonian . completely

action-angle form with the generating function,

1
F o= — E_(p]%/Q) cotany + Opg + Zp, + Rp, ,

(10)

(11)

into

(12)



-
which yields the transformation to new variables (w,J,O,Pe,Z,PZ) via

the usual rules,

etc. These rules yield

r =R+ (ZJ/Sz)l/2 cosy

Py = -(2szJ)1/2 siny

=0~ (ZQJ)l/2 (BZ/RBZ) siny + higher order terms
Pe = Fg

z =127+ (ZQJ)I/Z(BG/BZ) siny + higher order terms

P, =P, (13)

In terms of the new variables, the unperturbed Hamiltoian is

hy = QJ +-% u? + higher order terms . (14)
As the Hamiltonian is now in action—-angle form, the motion of the

new variables is particularly simple. From Hamilton’s equations we

obtain

=—=0 _ (15a)
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202 -
. uB u“B3B B
d=_0__ 082, ;38 72 (15b)
RB R2gh BR pp2
243
, uB, u"By 3B Bg
2=_24 S L (15¢)
B - 3R 2

In the last two equations we recognize the terms due to the parallel
velocity, the curvature drift, and the VB drift.
Two useful auxilary variables are the perpendicular energy W, and

the gyroradius p. We define them as follows:

- W= ‘ (16a)

o = /Y2 = (2w )1/ ?%/q . (16b)

Finally, for later purposes we will need the functions

R E-aho/ag and v, = ﬂx%-aho/ag. To lowest nonvanishing order we
obtain

V= u, _ (17a)
and

il

-p cosy . (17b)
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B. Unperturbed distribution
The unperturbed distribution may be any function of the three
invariants (hO’Pe’pz) or, alternatively, (hy,u,R). For present
purposes we want a distribution that is locally Maxwellian. Thus, we

choose

£y = ng(R)[27T(R) ] 73/2 exp[-hg/T(R)] . (18)

By taking moments of this distribution one can easily verify that it
yields a demsity, ny(r), no parallel current, and a local temperature
T(r) through first order in gyroradius to scale length.

For the purpose of taking moments one must note that the number of
particles in an element of phase space is fdrdedzdprdpedpz. The number
of particles in an element of configuration space is n(r)rdrdedz, where

n(r) is the usual density. Together these facts yield the formula,

1
n(r) = = [ dpdpgdp, £ , (19)

for the density.

For later purposes we define the quantities,

[=}
1l

= 94n nO/BR (20a)

and

kp = 3% Tp/dR , (20b)

whose inverses are the radial scale lengths associated with the density



in the temperature.

also define

As defined,
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K.
n

and kp are typically negative. We

(20c)
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III. Linear Equations
Linear theory for the cylindircal model is facilitated by the
existence of two ignorable coordinates, 6 and z. This ignorability

allows the use of the ansétz,

o = o(r) exp(ikz + im6 - iwt)
él = ug(r) exp(ikz + im8 - iwt)

for the electromagnetic perturbations. The perturbation of the
distribution function due to these fields is found by integrating the
linearized Vlasov equation along the wunperturbed orbits. Taking
moments yields the perturbed charges and currents. Finaliy, a closed
set of equations is obtained by substituting these charges and currents
into Maxwell’s equations.

This procedure is carried out .in this section. The main
assumption made is that the radial scale length of the perturbations is
intermediate between the ion gyroradius and the background scale
length. The result is a set of two coupled second-order differential
equations with independent variables ¢ and gﬁqts ﬁ.q?§  The component
is eliminated by a choice of gauge, and the remaining component

A

r

'u{i = gx%-cfﬁ is algebraically eliminated.
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A. Perturbed distribution function
The perturbation of the distribution function is found from the

linearized Vlasov equation, which, in Hamiltonian form, is

of
-+ {€1s00} = ={fg5h; } (21)

where the braces indicate Poisson brackets, and the perturbaton of the

Hamiltonian is given by

Py op, 1%

As the unperturbed distribution fo depends upon only ho, Py, and p,,

and given the form of the perturbation fields, one can separate fl into

an "adiabatic" piece and a remainder.

The remainder satisfied the equation,

——* {gpohgl = i(w =+ k—+m— ) . (24)
ot 1°70 8h) op, 3pg

To solve this equation it is useful to write g1 in the form




of of of
0 0 0
= + k + .
81 (w g %, m 3Pe) Wy (25)

It is then easy to show that wj satisfies

Bwl
“aT+ {wl, hy} = ih; . (26)

This divides the calculation of g) into two parts. The first is the
explicit calculation of the factor in parentheses in Eq. (24). The
second is finding the solution of Eq. (26) for W, by integrating along
the unperturbed orbits.

The first task is accomplished by applying the differential
operator (k 8/8pz + m 8/3pe) to the distribution (18). The chain rule

for differentiation, together with Eqs. (10), yields

k) (R) B
B(R) 9R

du

(27)
apz 8pe ’ .

through lowest order in the ratio of gyroradius to equilibrium scale

length, where

k (R) = [kB,(R) + mBg(R)/R]/B(R) : (28a)

and

iy (R)

Bx§-1~<|R = [kBg(R) ~ mB,(R)/R]/B(R) . (28b)
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These results allow one to calculate the derivative of fO:

of of of
w.—~9 + k ——9-+ m 0

Ly 3
ahO 3pz *é;g T {U) (k._L/B)[KnT-l-KT(hO ZT)]}fO . (29)

Here we see the prominence of the drift frequency,

W = lenT/B . . (30)

Solving for wy involves considerably more work. First, it is

convenient to divide hl into three parts, h; = h1¢ + hyy + hyy, with

h1¢ = ¢(r) exp(im® + ikz - iwt) , (31a)

113

hyy = -V“gﬁq exp(im6 + ikz - iwt) = -ucd| exp(im® + ikz - iwt) , (31b)

and

13

hy = —vlcﬁ& exp(im8 + ikz - iwt) = pB cosy 061 exp(im6 + ikz - iwt) . (31lc)

Corréspondingly, wy and g) are so diﬁided. Aé the solution for each
part of Wy 1is identical, we present the caléulation only for Vg Just
the results for Vi and Wy | are presented.

To integrate Eq. (26) for W1¢ it is convenient to wuse the

coordinates of Sec. II.

ow . oW . oW
AL Y SN DU L

Tt Ry 36 YA

= 1¢(R+p cosy) exp(im6 + ikZ - ik, o siny - iwt) . (32)
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To solve this equation, one can expand both sides in harmonics of the
gyroangle ¢ and then divide through by the resonance denominator. The
ordering w << Q@ then allows one to discard all harmonics save the
average term,

_ exp(imotikZ-iwt) f2n dyp

Bic? 0 2: ¢(R+p cosy) exp(—iklp siny) . (33)
wmO-kZ

W1¢=

The averaging of Eq. (33) is facilitated by the small gyroradius

approximation mentioned in the introduction. Thus we use p3fn¢/3dr,
kip << 1 to obtain
2

k252) o(R) + L o2 29 (m) .
1P7)¢ % ° o2

1

fén dy ¢(Rtp cosy) exp(-ik p siny) = (1 -

2

The resonance denominator of Eq. (33) is evaluated using Eqs. (15) and

(28)., The result is

w - md ~ kZ =w- ky(R)u - w, = wg (35a)
where
242
_ klu Be
e =7 ———— (35b)
RB .

and

(34)
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B

11

Q)‘Q)
o

are the contributions due to the curvature and VB drifts.

Finally, Eqs. (33-35) are combined to yield

[(1 - %.kip2)¢(R) +.% p2¢”(R)] exp(imO+ikZ-1wt)

' = = .
l¢ w=k (Ru - w, - wg
Similarly, one can find the other pieces of wy:.

[(1;.% kipz)U9ﬁm<R) +-% pqufﬁ(R)] exp(imo+ikZ-1iwt)

wyg =+
LI w- K, (R - u, - ug

%—szudl(R) exp(imo+ikZ-1iwt)

Wit

0 —'k"(R)u - w, — wp

These results, together with Egs. (23), (25), and (29)

perturbed distribution function.

B. Plasma response

1. Density perturbation

(35c)

(36a)

(36b)

(36c)

specify the

The density perturbation is obtained by taking the lowest moment

of the distribution as in Eq. (19). In doing so we divide

perturbation into several pieces, an adiabatic piece

the density
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1 3%y
Nia =T [ dp.dpgdp, Ty h; ,

and the pieces due to 81> 814> 81> and g;,. With Egs. (18) and (22)

one finds

1 L . '
njg = - 7 (d + doy + dore) s

in which np, jQ",‘and o are the equilibrium density and currents in
the b and bxr directions. For the assumed distribution (18), jOH = 0.
Pressure balance does dictate the existence of j,, = B_la(noT)/ar.
However, the corresponding contribution to the density perturbation is
small compared with the result (44) in the ratio of perturbation scale
length to equilibrium scale length. Thus, the adiabatic part of the

density perturbation is
= — ' (37)

The calculation of the remaining part of the denisty is more
difficult because g; is expressed in terms of the transformed variable,
not the physical variable. This difficulty is easily overcome by first

writing n; in the form

]. ’ ’ 7 ’, ’ ’
nlg(r,e,z,t) = ;-f dprdpedpzdr de’dz’ &(r-r’)8(6-6")8(z~z )gl .
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Then the transformation to cylindrical guiding center coordinates is
introduced.
1

nyg(r,9,2,t) == [ dRdudJdpdedzRB(R) &(r-R-p cosy) §(6-0+p(B,/RB) siny)

6(z—Z—p(Be/B) siny) g(u,J,R,0,Z) .

The ¢§-functions allow one to collapse the integral to obtain

nlg(r,e,z,t) = f dudydIB(r) gl(u,J,r—p cosy ,

6+p(B,/rB) siny, z-p(Bg/B) siny) (38)

to lowest order in the ratio of gyroradius to equilibrium scale length.
The intégration. over ¢ in Eq. (38) proceeds via the expansion
technique introduced in Section IIIA. To highlight one further

difficulty encountered, we show some of the details of the calculation

of By 4 the density perturbation due to ¢. With the results of

Sec. IIIA and Eq. (38), one can derive the following.expression:

3 u R
[omus + (G - 7 - 7)) exp(- 55 - 3

p [__du _dy dw)
2

[(1 - 21; k2% ¢ + .[1: 024" ] exp(ime+ikz+ik p siny~iut)

% - , (39)
w - "u - wc -~ wB

where w, = QJ. In this expression, the radial argument, i.e. T or
R = r-p cosy, has been deliberately left vague. Clearly one can use t

nearly everywhere in the integrand of Eq. (39) because the gyroradius
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is small compared with the equilibrium scale length. However, this
distinction must be maintained in two places, the functions ¢(R) and
k"(R). The reason for using ¢(R-p cosy) in Eq. (39) is to obtain the
entire FLR connection to ny. The reason for using k"(R=r-p cosy) is
that the scale of the resonant factor vanishes at resonance. We will
see, momentarily, what this implies for 0. For the moment, let wus

expand, e.g.,

[w - k”(r—p cosPlu - w, - wB]—l 2 [~ k"(r)u - W - wB]_l

-5 cosw-g% [w - k (ru - w, - wB]_l . (40)
We thus obtain
g = = ([ = =)+ &) + — & Wyg = 5 Wy = Wop) 16

Nwy,

3 1
& Wop = 5 Wa1 = Wop) Jo

2 2 e
- keg[(1 - —) &gy + >

W

3 W nwx 3 1 0
+ p.% E {[(l - T) EWO]. + _(.U—— g(f WO]_ - 5 WZ]_ - WOZ)] 3—3}) > (41)

in which we have used the finite—~B8 resonant integrals of App. A, the

thermal gyroradius is given by
o2 = /8% , (42)

and § = m/lkHIVT, where Ve = Tl/z.
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Similarly, we calculate the density perturbation due to dql and

, dl We find

no Wy Nwy 3 1 o
= L= o + == (5 Wip = 5 Va0 = Wiy Mlesyiy (43
and
g s nox 3 1
nyy == pgB[(1 - —Jalgy + — E(5 Wop = 5 Wy ~ Wop)ly .+ (44)

The total current is found from

At this point it is apparent that we have kept the FLR éorrection
to n1¢ but neglected them in oy and ny . The reason for keeping the
FLR terms in n1¢ is that they yield the dominant contribution for
(k"ve/m, w./w, wg/w) + 0. In fact, if these terms are neglected, the
resulting quasineutrality equation, which may then be algebraically
solved for ¢, predicts a singularity in ¢ at x=0. In comntrast, the FLR

terms in oy and ny | are merely small corrections and may be ignored.
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2. Parallel current perturbation

The parallel current perturbation is obtained from the integral,

£4) (46)

The second term of this equation is due to the change in the velocity
function of canonical variables by the perturbation. The adiabatic

part of this current is defined to be

. dhy 3f, . oy

. 1

£5) -

With the formulae (17), (22), and (51) we find jj, = 0. Thus, we need

find only
A
Iy = 7 [ dpdpgdp, ugy -

This proceeds exactly - parallel to the corresponding density

calculation. The result is
Iy = 3yt I T IyL o (47a)
with

0 Wi W% 3 . 1

ng = =5 (1= =g - — (5 Wio = 5 W3 = Wyp])Jus/ky (47D)
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. Wy Ny 3 1 o

3yp = mol(1 = )80 + - £ Moo = 3 Wao = War )1+ (47¢)
and

: "o WV Wit nwx 3 1 =

Sypm = (- =iy + — (G Wy - 5 W3y = Wyp)leped) o (A7)

3. Perpendicular current perturbation
The perpendicular current perturbation is obtained from the

_expression

8hy A~ 8h
£, + bxr - £5) - (48)
op op

~ ~

f dprdpedpz(gx; .

Iy

==

The adiabatic part of this current is given by the definition

. 1 3ty
Ja=3/ dPrdPesz(VOL'gﬁa hy + vyifg) -

Straightforward calculation yields

4%
B or

3

However, this contribution to j| may be neglected because it is small

compared with the main contribution [cf. Eqs. (49)] by the ratio of the
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perturbation scale length to the equilibrium scale length. The

calculation of the remaining part of the current,

. 1 A A ah
Ip=< | dpydpgdp, bxr -

g]_)

proceeds in parallel with the calculation of nj. The result is

J1= 3ttt 3o (49a)
where
n
. 0 2. 3 Wi nwx 3 1.
0o 93 3

Wy NWws ’
= 7 o 0 {[(1 - =)y +— (5 W - % Wap = Wyp)Judy /iy ), (49¢)

T = 7 PP 52 2

and

R0 a2 8- By 4 1

pp = = o7 o {11 - )8y + — &5 Wop = 5 Wap = Wp3)]

NI

derdy
‘51:—} . (494)
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C. Differential equations for the perturbations
In this section we obtained a closed set of differential equations
for ¢, gﬂﬁ and g?i by summing the expressions for charge density and
current over species and inserting these sums into the quasineutrality
equations and Ampere’s law. As we shall see, the perpendicular

component of Ampere’s law can be solved algebraically for,d&l; Thus,

one is left with two coupled second-order differential equations for ¢

and cﬂﬁ.

In order to sum the charge and current densities over species we
need to restore ordinary units. This involves appending subscripts on
the results of the last section and inserting factors of ej; my, and c
to make tﬁe units come out right. Our.notatibn uses Qj E'(Tj/mj)l/2

for the thermal wvelocity, w% = 4ne%nj/mj for the plasma frequency;

= v./w; for the Debye

Q. = ejB/mjc for the signed gyrofrequency, kj 3/ W5

J

length, gj = m/|k"|Vj, and other quantities as will be obvious.

The perpendicular component of Ampere’s law is simply

,

- f :
L 47,

== g (50)

or ¢

with the assumption that the scale length of the perturbation is small
compared with the equilibrium scale length. From Egqs. (49) we see that
the perpendicular current has the form of a perfect radial derivative.

Thus we obtain the particular solution of Eq. (50):

R A

") ,"/. . (51)
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where

r=l- JZ :g:; [(1- i):—j)%:j‘”’gz * 'T']"J'?J‘ Ej@ Wy = 3 Wy = W)l (520)

Cy = JENT%: [(1 - %)gngl + EF gj@ W, - % W - wi,)] (52b)

and

Cq = - z_‘fi% [(x- :)%)W{l * nj:*j @ W) - % W - W)l . (520
3 agke _

-The geneéal solution of Eq. (50) would have an additional constant of
integration in Eq. (51). - However, this additional constant would
prevent dﬂl from satisfying the boundary conditions, which will be
discussed in Sec. IIID.

We note also that the solution (51) is singular if T vanishes.

This happens if the frequency w is low enough such that w?v%w*j/(ﬂgczm)
is of order unity. This occurs at (m/m*j) = o(sj), where we have used

w%v%/ﬂ%cz = %'Bj' To properly treat this singularity one should
include FLR corrections, which would resolve the singularity by adding
a term of order p§a4~a1/ar4 to Eq. (50). For present purposes, we
assume m/m*j = ¢(1) and ignore this effect.

Upon substituting this result for é,@ﬁ?ar info the quésineutrality

condition, Z njej = 0, and the parallel component of Ampere’s law,
J
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—azdﬁMar2-+ kidﬁl= Anj"/c, one obtains a pair of

differential equations,

second-order

and
o2ty -
- = Tyat + Ty .,d" , (53b)
where
= (p20H[(1 - —2)gWdy + ! 51(3 WGy - : 5 W1 - W2)] s (54a)
Ty, = K3 - 2 A3 [(l‘- —=)(1 + £5¥30)
+ an ] EJ@ Wi - % W - Wiy)] - &g/, (54b)
Tya = Jz%T [(1 - =2y
2 Gl - 5 o - )] - e/t (ske)

and
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2
-2 _ v Y | Wy :
;W% s . . .
1% 3 1 2
= ‘Ej(i Wy - 5 Wio = W3y)] - cg/T . (54d)

As much research20 in this field is based on variational
principles, it is useful to note that Eqs. (53) can be defived froﬁ a

variational principle,

Sf dri.(r) = 0 ,

with

D. Boundary conditions

To complete our specification of the ;erturbation, we need to
determine the boundary conditions to be imposed on the Egs. (53-54).
In the absence of finite-pg effects, i.e. ddl and magﬁetic-drifts, these
boundary conditions have been discussed in detail.3,10,15 Thus, here we

discuss only the finite-g modifications.

The Eqs. (53-54) are seen to have a parity symmetry with ¢ and:J&?i

having opposite parity. Hence, we may work on the half-line x>0 .and

specify the boundary conditioms at the origin according to whether we’

-~

are looking for modes with drift symmetry,

+ 5 Taa.,d" . (55)



-30~-

(b'(O) =,.."fJJ"(O) =0, , (56a)

or tearing symmetry,

$(0) = "",,(0) 0. (56b)

The remaining two boundary conditions for these equations are
. found by considering their large x (x = r-r,, where k"(ro) = 0)
behavior. With the WKB ans&tz, o = P(x) exp[S(x)] and
oA (x) = .Z(x) exp[S(x)], where (8'%,8" ) > (¥ ,"), we find four
possible solutions for the phase: S(x) = iS¢(x) and S(x) = #5,(x),
where

kv (HTe/T3) (1/2, 3 (1/2

)

(

2
SeGa) = 3 | 7 ;
w‘w*i‘E N{ W4 psLs

and

Sa(x) =kx,

and the branch in S¢(X) is chosen to have Re[S¢(x)] >+ as x > o, In

these equations we have introduced the wusual ion sound radius,
= 1/2 . ' o

Py = pi(Te/Ti) and shear length Lg defined such that k"(x) = klx/LS.

A WKB analysis of the amplitude shows that any asymptotic solution of

Egqs. (53) has the form




x /4 s x 1/4 -8 wlg S . =S
= = ¢ = ¢ a a
+(ps) © _(ps) © k,xc [d+e + e ] (572)
and
2 1
_ wgelwmegg = o nwg) 1/4 s 1/4 =g
Ay = -i/n/2 - p ) et e () e Y]
Q%k%vic Ps Ps
+od e e e (57b)

where ¢, ¢_,. d_l_, and &_ are constants for any given solution. To
obtain an acceptable bounded solution to Egqs. (53) we must therefore
apply the boundary conditions ¢, = ,,‘él_i_ = 0.

However, in the case where kl is small, e.g., of the order of the
inverse of the machine radius, as it is 1in tearing rﬁodes, then- the :
solutions appear to be degenerate on the interior scale length. 1In
this case one matches onto the exterio.'r solutions.!0 To find the

matching parameters we examine th Eqs. (53) with the assumptions

(Mo”) " <« T¢¢¢. This yields the equation

(58)

= 2
= Dsd"/x ,

where

(59)
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'is the usual coefficient of resistive MHD tearing theory (cf. Ref. 10).

Thus, the asymptotic solution for’é%%'is now

Ay = Al o)™+ og(xl0) ] (603

plus the pieces proportional to exp(iS¢), which are unchanged, where

afo and A are constants and

1 -
Therefore, for k, small the boundary‘conditions are ¢,=0 and that A

must match the parameter A’ obtained from solving the exterior

equations.

E. Low-B approximation

In writing Eqs. (53-55) no approximation has been made concerning
the size of the curvature and gradient~B drifts. However, for the
modes to belconsidered, w is of the order of w,, which is much greater
than @C and EB. Thus, we can expand the resonant denominators in the
finite-B resonant integrals to obtain the ‘lowest order correction due
to B. This procedure reduces the coefficients of the differential
equation to combinations of generalized Z-functions (see App. B), which
are easily evaluated numerically.

In this expansion procedure one can use TI'=l, since the terms such
as C¢Ca in Eq. (54c) are already of order 8. The resulting

coefficients through first order in B are
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2 . _
A~ Pi Wi 201 i 2uwgg i
M= 2 {(1- T)Ci(z(l),l + ti23 9 2i%,2)
1
nj Wig 1 L Yt ; ;
t——ul5 %, - %, w0+ 2% 5)
Ggs . .
+ 2L (37 g - 27 )]} + et (62)
25 22 5 Wieg njwey -
Tgo = kM- €3 - T 237 {00 - —)zf | - ——= (741 - 5 21 1)
28, i 1 ,
i iy,2 §%3 2 1
o L= —)ey7g, o t(E, - 5 4,,)]
ugj Wkj, o il 5 1 L2
+— [(1 T)z;JZ(J),2 - z5(24 5 + 3 23 2)]1+ (8% 5 (63)
S 1w “%3,3 N3%3 1
Toa = Ot L R -2, - == (5, -52%1)
3
Zacj Wriy . N 5 1
+—= [0 = —)"423,0 - == t5(23 5 - 5 735 ]]
YB3 s NPT R L RO R g 2
B [(1 ‘T)Cjzf,z - z3(24 5 + z] 5)]}+ e (8, (64)

and




[~ - 12 _ 2 w - _JY7] -t 7]
Taa =k Ca § Az‘k%cz {( w ) 1,1 w (Zg,l Zl,l)
J
ZBCj Wy 5 Ny Wk § 1 4
+—= [(1 --—5—122, i (23,2 - 5‘22,2]]
g3 5 S el RO S G (g2
e Rl C RS K KNS LR
where
2
~ ws Wy MW s 1
= J J J "]
S Tae [0 w1 - =57 G 10+ %,))
and
E;=z_'ﬁ CI S U A% IR a2 A% ISRV IR
a § Qe k"c2 W 1, W 2 “1,1 3,1

The argument ¢ in these expressions is given-by Ty = Ej/ff.

(65)

(66)

(67)

It is useful to note that this low-B expansion does not modify the

asymptotics of Sec. IIID.
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IV. Stability Proofs

4

Following the numerical results of Ross and Mahajan™ and Tsang, et

6 proved that the equation governing electrostatic,

7

al.,5 Antonsen
cold-ion drift waves had no unstable solutions. Later, Lee and Chen
showed that the inclusion of dﬂl and some warm ion effects did not
modify this reuslt. Here we examine how these results are modified by
the inclusion of finite-g effects: udl, curvature drifts,' and VB
drifts. We find that the.stability results are not modified by these
finite—-B effects. However, we also find that in contrast with previous
work, these stability proofs say mnothing about the .existence of
marginally stable modes in the range w;[1+ ¢(B)] < w < o (B)wyj -

Without loss of generélity we take kl > 0 throughout this section.
This convention implies w,, = (klvg/we)azn n/3r > 0, and we; < O.

We analyze the marginally stable modes, Im(w) = 0, of Egs. (53) by
analytic continuation of these equations to the complex-x plane. 1In

particular we wish to comsider the ray on which the argument g of the

22,

introduce a new variable y such that x = =iy when w>0 and x = +iy when

Z ‘s 1s a positive imaginary number. Since Cj = mLs/klxv we

mn

w<0. Along the ray Z . is pure real (imaginary) if m is odd (even).

~ -~

Therefore, along this ray M, T¢¢, and %aa are real, while §¢a is

imaginary. Thus one deduces that

along this ray where
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, deed .
0 = mi i L - Pt 2. (69)

Furthermore, the boundary conditions (56) 'imply that’ Q(0) = 0.
‘Therefore, Q(yj = 0 for all real values of y.

We note that it is not possible to come to the same conclusion on
the ray where ¢ 1is negative imaginary. The 'reason lies in the
essential singularity of the Zmn’s at x=0. This essential singularity
prevents omne from concluding Lig Q(x) = 0 for ¢ being mnegative

p:e
imaginary even though Lig Q(x) - 0 for x real.
X

Next we wish to evaludte Q using the asymptotic forms of Egqs. (57)
and (60) with the coefficients b5 04; having the same value as they
have on the real axis, e.g., ¢, = &, = 0. For this procedure to be
valid one must verify (1) that in transforming from the real-x axis to
the real-y. axis one does not cross two antistokes rays,21 and (2) that
the set of differential equations has no singularities in the inclusive
quadrant containing the real x-axis and the real-y axis. The first
requirement is easily verified. The second réaﬁirement holds provided

the coefficient M has no roots in this quadrant.

To locate the roots of M, we first locate the roots of

2
p% Wik . N W . 1 i

My 5)‘—; [(1- —wl)CiZé)L,l - (ZE,I T 28,1)] ’
i

which is M when magnetic drifts are neglected, i.e., the fé(so) part of

M. We see that the vanishing of MO gives a relation between the
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frequency, w, and the value of ci = w/(kﬁvix/f) at the location of the

root:

1 [ w 1 i i :
— (==~ 1)==+ 25 /25, . 70
ny (‘*’*i ) 2 T “2,17%0,1 (70)

The left side of this equation is real; thus, the right side must be
real for some T; satisfying Im(z;) > 0. In the domain the right side
of Eg. (70) has real values between one-half and unity when
real(ci) = 0. We therefore conclude that the evaluatiqn of Q as

discussed above is valid provided w is not in the range
1

. u ‘
l+=-mn; <—< 1+m; o ’ (71)
2 1 “i 1

The analysis of the vanishing of M proceeds similarly with the
exception that a quadratic equation for w is obtained. As a result one

can deduce that the range (71) of the lack of validity enlarges to

1 T+ e
(1+35n)[1+ (] < w%i CA+ D+ eB]

and a new range near zero, w/wgj = o(B), comes into existence.
With these caveats in mind we proceed to evaluate Q using the
asymptotic forms of Eqs. (57) and (60) with ¢, = &, = 0. For k, #0,

with the definitions

Q = K12
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and
o1
1 [stpelw Wei ™ Nyl 1+ Te)]1/21¢ 2
Q = — (1+22 12,
¢ Ag Zlei Ty .

one finds

Q = (Qa+Q¢) sign(w) for w0 or < w*i(l +.% ni) (72)
and

® 1
Q'—'--Qa for O<Ky¢;<l+§ni. (73)

From the earlier results we know that Q vanishesf We see that in the
domain of Eq. (72) this implies that ¢_ and uf_ vanish, which implies
. that there is no mode. .Howgver, in the frequency domain of Eq. (73)
there may exist a mode with & = 0 but ¢_ # O.

Next we consider the case where k~L = 0, We consider oniy the
Suydam stable case, since otherwise the column is MHD unstable. With

the definition

. ; 2(1-2v) Lo wka 2 .
- A n e 2
Q, = o % (_LS - ) cos(v_m)|A_|“ ,

we obtain the results of Egs. (72) and (73) with the replacement
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Q +-6a. Since 0 < v_ < %3 we deduce the absence of marginal modes
provided A’>0.

| In combination the results of this section indicate that marginal

modes with ki # 0 may be present only in the frequency domain,

co(B) <2< (Hn)[L + e(B)] . , (74)
, : . |

Therefore, electron drift wave eigenmodes, which have m/w*e +.6(1),
cannot be driven unstable unless their frequency changes dramatically.
Similarly we deduce that modes with ki = 0 cannot be driven unstable by

. bad curvature unless they have frequencies in the domain (74).
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Appendix A

Finite~B resonant integrals

The results of Sec. III are expressed in terms of integrals of the

form

g g e 2T D
T

I = —
mn (2“)1/2 P T1/2 0 T

rl/2 > (A

W= kyu - w, - g

where w, and wg are defined in Egs. (35). As usual, this expression is
valid for Im(w) > 0. Values for Im(w) < 0 are found by analytié

continuation. To remove scales from this integral, one can define the

variables
w
E &2 —— (A2)
&, 7/ 283
K- (A3)
]k"|RB3
and
1/2
k,T
¢z 28, (A4)
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Then, with the definition of the finite-B resonant integral

) o o Xy exp(- —;— x? - y)
Won(E,K,6) = ——— [ dx [ dy , (A5)
ma (2m1/2 e 0 x + Kx2 + Gy - ¢
one finds
sign(kﬁ+1) .
I, =- ——— " w (E,K,G) . (46)

To make the variables g, K, and G more easily understood, we .

provide their form in dimensional variables:

w
g0, (A7)
Iy v
A 2
k pmB
R=o-_+ T8 (A8)
lkyl grp2
and
k, p
L PT 3B
G = —— - - , (Ag)

where vgp = (T/m)l/2 is the thermal velocity, and pp = mch/eB is the

signed gyroradius.
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Appendix B

Generalized Z-functions

The generalized Z-function is defined by

o m. -z
Zy n(2) = de—/%%g , (B1)

22

for Im(z) > 0. The usual plasma dispersion function is Zy - The
1

generalized Z-function occurs naturally in the expansion of the

finite~B resonant integrals to first order in B. We find

m-1 m+1

(£,K,6) = nl2 2 7 ()+n'22w°z (2)
Vi ,n' &K : m,1%% : o “mt2,2%C

m-1

5 ug
- (2 22 tZ, o(2) (B2)
w ’

where

r = E/V2 , (B3)

2.2
k ;vTBy

Q RBZ

|

(B4)
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2
G. = CLVT 2B
B =708 or’

and Q = eB/mc is the signed gyrofrequency.

(B5)
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