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ABSTRACT

The nonlinear stability of ion wvelocity distributions in simple
beam-injected mirror machines is investigated using a one-dimensional
kinetic equation. The steady states and their linear response functions

are calculated, and the nonlinear behavior is studied both analytically .

and numerically. It is shown that when charge exchange effects are
negligible, the oscillatory instabilities found in a previous work [1] are
suppressed. When unstable steady states are present, the eventual
equilibrium of the system is shown to depend not only on the initial
density, but on the initial velocity distribution as well.



I. Introduction

A steady state density can be maintained in a mirror machine using
neutral beam injection. The ionization of fast neutrals compensates for the
loss of ions and electrons from the system ends. The ionization rate
increases as the first power of the density while the loss rate usually grows

faster than this (for example, the loss rate caused by Coulomb collisions is

proportional to the density squared). As a result, the plasma density, after an

initial growth period, usually comes to a stable steady state. Unstable steady
states may exist when the ionization rate increases more rapidly with
density than the loss rate (negative density perturbations in this case can
result in the loss of all particles from the machine, positive perturbations in
the saturation of the injected beam).

Besides this “rough” mechanism of stabilization, there exist kinetic
effects that can also effect the stabi.li_t.g, These result from the fact that the
ions entering the system have a much higher energy than those leaving the
system. If the density increases due to an increase in the ionization rate, the
corresponding increase in the loss rate will be delayed by the time necessary
for a particle to diffuse from the injection velocity to the loss velocity (all
velocities in this work refer to the transverse velocity v _L).'As was shown in
reference [1], this delay can intensify the density perturbation and promote
instability. The instability produced by the time delay effect is oscillatory in
nature and is characterized by a frequency which is close to the inverse of
the particle lifetime (the delay time).

In reference [1], the stability analysis was based on the solution of a



linearized kinetic equaiion. The present paper uses another approach in which
an exact nonlinear equation for the density evolution is derived. This allows
for the investigation of the long-time nonlinear behavior far from the steady
state. The analytic model is described in section two. In section three, the
density evolution equation is derived. The steady states and linear stability
are rederived in section four. The nonlinear evolution of the system is

investigated analytically in section five, and numerically in section six.

2. DESCRIPTION OF THE MODEL

A simple mirror machine is considered in which a monoenergetic
neutral beam with velocity v, is injected at the midplane, perpendicula'r to
the magnetic field. It is assumed that only a small fraction of the beam is
ionized as it passes through the plasma column. The beam density N may thus
be treated as a constant, independent of position and the plasma parameters.
When the neutral beam is turned on at time t=0, the plasma is characterized
by an initial ion velocity distribution h(V'). The behavior of the system at
later times is studied here using a one dimensional mode! for the evolution of
the ion velocity distribution f(V;t) in a uniform volume of the plasma.

There are two parameter regimes that can be analyzed relatively
easily. The first corresponds to the case in which ions drag on the electrons
but do not undergo significant angular scattering. The second is the opposite
case in which electron drag is negligable and the main relaxation mechanism

is fon-ion angular scattering at constant energy (the small mirror ratio



regime R-1 << 1). In this paper, only the first regime is considered. The
electron temperature Ty is assumed to be small enough (Tg << T =
(mg/m;)1/3 miv12/2 ) that the ion velocity is damped by electron collisions
while ion-ion collisions play no role.

Neglecting the small terms that describe ion-ion angular scattering and
the small second order diffusive term (which is of higher order in To/T"), the

ion kinetic equation can be written

oF _ , @
=05y (VF) + n(vj+ucy) q(v) - veyf (1
where F(v,t) is the velocity distribution function averaged over the angles and

multiplied by the factor vZ
F(v,t) = 20v2 [ f(o,v,t) sin & do

The first term on the RHS of (1) describes the drag on the ions due to the
electrons. The ion damping rate is given by v & nTy™3/2, while its derivative
v' = du/dn o Ty73/2 is introduced to separate the dependencies of v on the
density n and Tg. The time-dependent density is defined in terms of the

distribution function by

n(t) = J : F(v,t) dv

The second term in (1) is a source representing the ionization and
charge exchange of the beam neutrals. Here, Vj=Np<oiv> is the frequency of
“electron impact, ch=hb <0cyv> is the charge exchange frequency, and q(v) is
proportional to the velocity distribution of the neutral beam. It is assumed to



be localized near vy and normalized to unity;

J:q(V) dv =1 o (2)

/

The electron impact frequency v; depends on the electron temperature via the

factor <ojv>, while vy is considered to be a constant. The third term on the
RHS of (1) represents the removal of ions from the sgstem due to charge
- exchange.

The presence of a nonzero source in eq. (1) leads to the accumulation
of ions near v=0. Since the angular scattering of ions is assumed to be small,
it does not contribute sighif icantly to the ion detrapping rate. The primary
ion loss mechanism is related instead to the ambipolar potential which
always exists in mirrors with finite electron temperatures. lons whose
velocities fall below a certain threshold vg<<v, are detrapped and rapidly
(during a bounce time) lost from the system. Consequently, F(v,t) should be

zero for vevg
Fivt)=0 V< Vg (3)

Formally, eq. (1) is a first order equation and cannot admit nontrivial
solutions which are equal to zero at both v=0 and v=e. Physically, this is due
to the neglect of the diffusive eff ects of ion-electron scattering, which
would be represented by a small coefficient times the second derivative of F

with respect to v. If this term were taken into account in eq.(1), the



detrapping effect, eq.(3), would be an appropriate boundary condition and
F(v,t) would drop smoothly to zero at v=vg. Since this diffusive term is
proportional to the small parameter Te/T*, it affects the form of F(v,t) only
in a thin boundary layer near v=vy. As the width of this layer tends to zero,
the distribution function profile tends to a limit which is discontinuous at
v=vg. Thus, for v>vg, the distribution function satisfies eq.(1) with the single

boundary condition
Feo,t) = 0 (4)

For v<vg, the limiting profile is given by eq.(3). The detrapping effect is
included by taking vy for the lower integration limit in the expression for the

plasma density

n®)= [ Fb) v 5)
Vo |
where F(v,t) satisfies eq.(1) with the boundary condition (4).

Equations (1) and (5) are a system of equations for the time evolution
of the density. However, the ionization rate v; and the density derivative of
the ion damping rate v’ both depend on the electron temperature Tg. The value
of T is determined by the electron energy balance. The energy is transmitted
to the electrons from the ions, and can be lost via various mechanisms:
mirror end losses, contact with a cold plasma outside the mirror, contact
with warm streaming plasma, etc. Since the electron transit time is short,

the électrons are close to equilibrium so that T, depends only on the



instantaneous plasma density n. The specific form of the function T4(n)
depends sensitively on the mechanism of electron loss. The following
analysis is not restricted, therefore, to a particular function Tg(n). It
investigates instead the dependence of the density evolution on certain

general properties of vj(n) = vi[Te(n)] and v'(n) = V'[T(N)].
3. Derivation of the Density Evolution Equation
An analysis of the linear stability of the system (1) has already been

presented in reference [1]. There the steady state solution of egs. (1),(5)

were found, the functions F(v,t), vi(n), and v’(n) were linearized near the

steady state point, and the dispersion relation was derived. The approach here

is to examine the properties of the solutions of the exact nonlinear

egs.(1),(5) with the boundary condition (4) and initial condition
F(v,0) = h(v) (6)

The steady state solution is easily found upon setting the time derivative

equal to zero:

o= g [T [4)7 v )

where P(n) = vee/0'n expresses the relative importance of charge exchange

with respect to damping.



The steady state density is obtained by substituting (7) into (5)

Uj * Uy

n= -
u' P

[ { I- [!ﬂ]P] V') dv’ 8)

Vo v

Since q(v) is highly peaked and normalized, it may be approximated with a
delta function |

q(v) = 8(v-vq) (9)
Substituting (9) into (8) gives

_ Ui Ucx _pA ‘

n=—op (1-e P (10)

where A = In (v{/vg).
As mentioned above, v; and v’ are functions of n, so that n appears

on both sides of (10). The steady state density n, is therefore found by
solving (10) for n. It is convenient to represent the solutions of (10) as the

intersections of two functions G(n) and N(n), where

G(n) = A (v * vey) / 0
NN = A nP(n) / (1 - e”AAP(N) ) (11)

In the limit v.,=0, (11) simplifies to

G(n) » g(n) = Avy/v'
N~ n (12)




Depending on the phgsical situation (the specific dependence of T onn), a
wide range of functions G(n) are possible. In Fig. 1, three realizations of G(n)
are shown, The first, curve "A”, intersects N(n) at one point; the others,
curves "B” and "C", intersect N(n) at three and no points respectively.

The first step in studying the time evolution is to find the formal
solution of (1), given an arbitrary function n(t) (i.e., disregarding, for the
time being, the dependence of n on F given by (5)). Equation (1) can be solved

by the method of characteristics. Defining
Y(v,t) = Av F(v,t) (13)

eduation (1) can be written

9
_\P - no'v — = An (ui +UCX) Y Q(V) ~ Uy y . (]4)
ot Y |

The characteristic of (14) is given by
v = u exp [-AT(t)] o | (1)
where u is the velocity at t=0 and z(t) is the dimensionless time

t
T = J v’ ndt’ (18)
0

A

* Replacing the variables (v,t) with (u,t), equation (14) reduces to



dy
o = An(0j * Vey) VAV) - Opy ¥ (17)

where the full derivative indicates the derivative taken with u fixed. The

solution of (17) is

t
Y(u,t) = A expl-veytl [ J'odt, expl veyt'l N(vj+oey) v'a(v') + uh(u) } (18)
where v’ is v at time t’, from eq. (15)
SV = () = uexp [FAT()] (19)

Changing the integration variables from t’ to v’ in accordance with (19), and
using (15) to express u as a function of (v,t), (18) can finally be written in

the form

| veT(t)
Ylv,t) = exp[-ucxt][ dv' explogyt’] G(t)a(v') + Av eNT n(v eAT)|  (20)
v

where G(t') = GIn(t")]. The intermediate time t'(v',v,t) is related to the

current time by
() - T(t) = (1/A) In(v'/v) (21)

Note that t'(v',v,t) is the time at which a particle, moving along a
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characteristic, must leave v' in order to reach v at time t.
The differential equation for the evolution of the density may be

obtained by integrating (1) over v from vy to ce. This results in

dn
— = gln(t)] - Y(vg,t) (22)
dv

in terms of the dimensionless variable, T, eq.(16). With a localized source

function (9), the value of ¥ at vg is, from (20),

Avge/NTh(vgeNexpl-vet] <1

(23)

Ylvpt) = -
’ explogy (-1 6(1) 7>1
The retarded time T=t’(v,,vp,t) can be written in the form
o(t) = o(B) + 1 (24)

The two expressions (23) for <1 and ©>1 are not equal at T=1 due to the
use of the delta function source. If the source had a finite velocity spread, a
smooth transition between the two solutions would appear. Substituting (23)

into (22) gives

A vg eDT h(vgeT) expl-uegt(z)]  <I

o (25)
GIn(z-1)] explogydt{z)-t(z)}] z>1

dn _ )
i - gln(z)]

On the RHS of (25), t has been replaced by the dimensionless time . For the
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sake of simplicity, the function h(v) was assumed to be zero for v>v,. If
Vey=0, (25) reduces to:
A vg eNT h{vgeNT) <l

dn
L - 26
dr g[n(t)l g[n('L'- Dl o (26)

This delay-differential equation describes the long time behavior of n. The
first term on the RHS is the rate at which particles are being injected. The
second term is the rate at which particles are being lost due to detrapping.
The specification of twd distinct time regimes results from the way in which
the initial conditions are defined: when ©<1, the rate at which particles are
lost is determined only by the initial distribution h(v), since particles
injected before =1 have not yet had time to reach vy. At later times, 7>1,
all of the particles initially confined in the system have been lost, and the
rate of detrapping is determined by the rate of injection at z-1.

Note that eq.(26) can be easily derived from a simple qualitative
analysis. When t>1, the influx of ions during some short period At at time t

is
An, = nujAt

During the same period, the particles leaving the system are those that were

injected at the retarded time T.

An. =1 o; A
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where N and vj are the density and ionization rate at T. Using the

characteristic eq.(15), one can relate At to AT.
v'n At = 0'n At

Combining the above three expressions, the final equation for the evolution of

the density can be presented in the form

.éﬂ__/l_-_-[/\vi_/\,?i]
At v'n v’ v’
which coincides with (26) when z>1.

Besides the differential forms (25) and (26), the density equation can
be presented in an integral form (which will be useful in the nonlinear
analysis of section five). To derive this form, the solution (20) is substituted
into (5), using (13). Introducing new variables of integration, z’=t(t’) instead
of v’ (see eq. (21)) and u instead of v (see eq. (15)), and changing the order of

integration, (5) becomes

() = [t explocyt(@)-teM 6(x) [ qw) av +
0 VOGA(‘U“t‘)
+ expl-vy t(T)] J h(u) du (27)

AT
Vot

Assuming a delta function source (9), and a time long enough that the second

term on the RHS of (27) becomes negligibly small, then the density given by
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(27) reduces to

o) = [ 0 eplot(®) - N BN w1 (28)
T-1

In the limit vy=0, (28) further reduces to

T
mw=j aln(z")] d (29)
-1

eq. (28) expresses the fact that, at the moment z, the value of the density is
determined by the ions that entered the system between z-1 and T (AT = 1
is the ion lifetime, i.e. the time taken for an ion to damp from v to vg).

Note that the steady state (10) satisfies the evolution equation (28).
To see this, put n=constant, v'=constant, and v;=constant. Then t(z) can be
easily found from (16): t=TvA/v’n. Substituting this into (28) and integrating
over ¢’ results in (10) . |

The following analysis is concerned with the relaxation of the
system (26) to a steady state from far-from-steady-state initial conditions

(without linearization and for arbitrary dependencies v;(n), v'(n)). Because of

the difficulties of this analysis, only the particular case vy=0 is considered.

For review, and to illustrate the present approach, the linear results of [1]

are rederived in the next section using the density equation (29).



4. Linear Stability of Steady State Solutions

Equation (29) shows that in the case vqy=0, the long time behavior of
the system is governed only by the function g(n) (in the general case, vey=0,
it is determined by both G(n) and P(n)). The steady state values of the density
satisfy the equation ng=g(ng), which follows from (12). These values are
represented by the intersections of the two functions graphed in Fig. 1.
Linearization of the system is accomplished by linearizing g(n) about the

steady state ng, to obtain from eq. (26):

AVp eNT 5h(ye/\T) <]
dn . g’ &n(z) - 0 0

(30)
dr g'sn(z-1) T>1

where g’ is dg/dn evaluated at the steady state point ng, and 8n=n-n, and
éh=h-Fq are the deviations of the density and the initial distribution function
from their steady state values (10) and (7), taken with v,=0. During the
initial period 0<t<I, the solution of Eq. (30) has the form

AT
8n(T) = exp(g'v) [ sn(0) - JVOQSh(v) (v/ve) 97/A dv J

Vo

(31)

When z>1, its solution can be found from its Laplace transformation. If we

define the Laplace transform as

o0
8ng = L dv e7ST §n(7) (32)

then the Laplace transform of (30) when ©>1 is
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1
Q(s) 8ng = €73 [ sn(1) - ¢ I dz ST §n(z) J
0
The inverse response function Q is defined by
Qs) = s-g (1-¢73) (33)

Note that since the integral (32) starts at =1, (33) can only be used to
describe behavior at times later than 7=1.

Equation (33) depends on n(z) for ©<1, which is obtained from (31).
Substituting (31) into (33) gives (after some manipulation)

B - PEENE VP NN
ing - HE),_H(g)eld S) = H(s)

Qs) | s-g'
(34)
Vi
He) = | nw) | 1 - (g S/A | av
Vo

The long time behavior of the solution is governed by the poles in the
expression for 8ng. Equation (34) appears to have poles at the zeros of Q and
at s=¢’. However, two of these zeros, s=¢’ and s=0, have zero residues and

- therefore do not correspond to eigenmodes of the system. From (34), the
other zeros of Q can be found by solving for s = ¥+iw . Separating Q(s) = 0
into real and imaginary parts gives

| - % = e cosw ; %’- = ¢ % sinw (35)

Solutions with w=0 satisfy (35) when ¥ satisfies the condition
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7 = % (36)
One can see from (36) that this particular solution describes a purely
growing mode when ¢'>1, and a purely damped mode when g'<1.
when ®w=z0, we obtain
g-injg] = In| L+ yeotw = kw)
. , 5in

?5-nn[g——w ] (37)
where the values of g' and w are required to satisfy the condition

g'sinw/w>0 | (38)

Equation (37) can De'solved graphically. InF ig. 2, the function k(w), which is
an even function of , is plotted for w>0. The roots of (37) correspond to the
intersections of the k(w) graph with the horizontal line defined by the
function g'~In|g'|. One can see that there exist an infinite number of roots
wi(g) and ¥;(g") (i=0,1,2,...), each of which belongs to a certain interval ti <
w < 7(i+1). From condition (38), the even numbers i=0,2,... correspond to
positive values of g', the odd numbers i=1,3,... to negative values.

In the first interval, corresponding to i=0, the graph in Fig. 2 gives no
solution with w=0 because for any g'>0 the value of g'-In|g’|is greater than
one (see Fig. 3). Since the particular solution (36) with =0 formally
belongs to this interval, we will associate it with i=0 and call it the "zero”
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mode.

Within the interval i=1, the solution exists only if g'<0. When ¢’
varies from -e to 0, the function g'-ln| g‘] changes from -e to +o0 and
correspondingly, the frequency w1(g’) varies across the whole interval i=1.
The sign of ¥(g’) given by eq.(37) is clearly negative for |g’|<m. It is also
negative when | g’| >, as can be seen by the following argument. In order
for ¥1(g’) to change sign, it must be zero at some value g'y. If ¥1(g'5)=0,
then from (37) g'q sinwg = wq. But this also implies, when substituted into
the first part of eq.(37), that g'q coswg = g'y. This is not possible since cos
w =1 everywhere. The contradiction implies that ¥(g") is always negative.

The interval i=2 is different from i=1 in that the solutions for wy
and ¥, exist only if ¢'>0. When g’ varies from 0 to +co, the function g'—ln] g'|
changes from +oo to +e0 and reaches the minimum value, unity, at g'=1.
Correspondingly, wo(q') does not pass through the entire interval i=2, but
goes up and down within some part of it, while ¥o(g’) is always negative for
the same reasons that ¥(g’) is negative. The dependencies of wi and ¥;j on ¢’
are plotted for i=1-4 in Fig. 4. |

In summary, if g'<1, all modes are lihearlg stable. The relaxation to
the steady state is dominated by the zero-mode (36), which is purely damped,
but decays more slowly than the oscillatory modes. All oscillatory modes
come in complex-conjugate pairs, are infinite in number, and are always
damped. The high frequency oscillations decay faster than the low frequency,
and the decay rates increase with w approximately as ¥= In (g'/w).

If g">1, the zero-mode becomes unstable and the steady state is
unstable. For example, the points "A" and “C" in Fig. 1 correspond to stable
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steady states, while "B” corresponds to an unstable one. These results show
that the oscillatory instabilities described in section one do not exist when
Vcx=0 (they were shown to exist for vey#0 in reference [1]). Since we allow
for arbitrary functions vi(n), v'(n), and g(n), the condition for instability g">1
corresponds to the physical situation in which the ionization rate grows

faster with density n than the loss rate.
3. Nonlinear Analysis

For the linear theory to be valid, the density deviations from the
steady state must be small in comparison to the characteristic variations of
g'(n) with n. |

sn'?dn-( Ing') << 1 (39)

It should be pointed out that the linear equation (30) is exact, even
far from a steady state, when g(n) is a purely linear function of n. Consider,
for example, a linear g(n) with g'>1, for which the steady state is unstable.
Since all oscillatory modes decay rapidly, the long time behavior is
principally determined by the zero-mode (36). Using the inverse Laplace
transformation, one finds that sn(z)ecH(¥)e%T, where the factor H(%) is given
in (34). This shows that whether the density drops to zero or grows to
infinity does not depend on the sign of the initial density perturbation sn(0),
but is instead determined by some moment of the initial distribution function
h(v). In particular, situations are possible in which the initial density
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perturbation ny is substantially smaller than the steady state density ng, but
for which, nevertheless, n eventually grows to infinity. Its possible to find
the minimum value of n, for which n can still reach infinity. The
(exceptional) limiting situation in which the system reaches the unstable
steady state and stops there is characterized by the condition H(¥)=0. When
Vex=0 and q(v')=8(v'-vy) in (7), Fo(v) = ng/Av. If 8h(v) is replaced by
h(v)-Fo(v) in (36), the condition H(¥)=0 can be written

J

where use has been made of (36) and the identity A=In v;/v,,.
In order to minimize ny= [ h dv under the constraint (45), h(v) should be

V .
v1h(v) {1 - expl-(¥/A) In (v/v)lt dv=ng (1 - 1/g") (40)
0

localized near the upper limit of integration v=v,. This is because the
weighting factor (in brackets on the RHS of (40)) has a minimum at vy. When
h(v)=n;8(v-v+0), equations (40) and (35) give for the minimum value of n,

Mimin = No _(gg—;) o (41)
where ¥ is the growth rate of the zero mode, eq.(36). The graph of
Nimin(@')/ng is plotted in Fig. 5. It shows that in the case where g'-1<<1, an
initial density less than ny can still grow eventually to infinity: but.that if
Ny<ne/2, the density always drops eventually to zero.

It is possible to make certain rigorous statements about the general
evolution of the system, even when g(n) is not a linear function of n. It can
be shown, for example, that if g(n) satisfies the rather weak restriction
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| ) - glng) | < |n-ng | (42)

(which implies there is only one steady-state solution, and it is stable), then
regardless of the specific profile of g(n), any initial perturbation of the
density will always tend to the steady state. To see this, note that the exact

nontinear equation (29) can be used to obtain the inequalities
| ¥ T T
In=nol = | [@-a0) 02| = [ |a-goldw <] [nnglew  (43)
-1 z-1 -1

Where the last inequality follows from (42). Eq. (43) says that the value of
the positive function |n(z)-ng| at any moment = is always smatler than the
average of the same function over the previous unit time interval. Thus
|nng | necessarily approaches zero. These results show that the nonlinearity
does not affect the stability of steady states when they are linearly stable.

6. Numerical Calculations

The actual nonlinear behavior of the system can be computed
numerically. In this section, equations (1) and (5), with v4=0, are integrated
numerically for several different functions G(n) and initial conditions h(v).
Using the definitions from section three, (11) and (16), and assuming q(v) to
be a delta function at v=v4, eq. (1) can be written in dimensioniess form
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f _ 8w
3 - oy
In the numerical model, velocity space is divided into 100 cells of width
AV=0.01 (vi~vg) where vi=1 and v4= 0.1 . Each cell is labeled with an

integer i, where 1 <i £ 100. Each cell is characterized by an average

G(n) & (v-vy) - APM) T (44)

velocity, V= vg + AV (i - 1/2), and an occupation number Nj. The
evolution of each Nj is obtained by integrating (44) over the ith cell:

a0 5 Ay (Vier Niep = ViN) - AN i2100

(45)
Nigg_ -A ~
- Ay YioNiwo - ANy +G i=100

where A = A P(N) and G = G(N) are given functions of the total density N.
The 100 coupled ODEs are integrated numerically using a Sth order Runge Kutta
routine. | ’

The results for A=0, shown in Figs. 7-9, show that there are no
unexpected nonlinear effects. The system is attracted to stable equilibria and
repelled from unstable equilibria. The asymptotic behavior is consistent with
the evolution of the zero and one eigenmodes described in section four (the
zero-mode dominates when G(Ny)>0, the one-mode when G(Ny)<0). The
two-mode can be seen when G(Ny»>O, providing the zero-mode is supressed.

The evolution of the system is followed in two ways:

1. By plotting the total density N as a function of time,
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2. By tracing the system's trajectory in a two dimensional space,
the dimensions of which correspond, roughly, to the two dominant

modes of the system.

The first of these diagnostics is self-explanatory. The second requires a more
detailed description.

The trajectory of the secohd diagnostic is plotted in N,N' space, where
N and N' are the total density and partial density (density of particles between
v(24) and v(100)) respectively.

100
N = 5 N | (46)

The number =24 was chosen as the dividing point because, in a steady state,
about half the particles have velocities above Vo4 and about half have
velocities below.

The initial conditions are specified by giving initial values for N and

N' and calculating f(v,t=0) in the following way:

(N-N) AV .
Ny = ———o— 1 <1 <24
! A3 Vi . 47
Ny = LAY 24 (.1 £ 100

Ny Vi :

The constants Ay, Ao, and Az are defined as
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Vioo Vigo Vaq
N =In——— A= In—— Az = 1In
1 Vi 2 Vog 3 Vi

(48)

The initial distribution f(v,0) then has the appearance shown in Fig. 6.
Initial distributions of this type are used because they form a surface of
section of the infinite dimensional state space which intersects the steady
state solutions (the steady states are themselves acceptable initial states).

Two reference functions are also plotted on the N, N’ plane

Ny
a(N) = G(N) S

! (49)
i Ay
b(N) = N ““/\1

These are proportional to the functions G(n) and n plotted in Fig. 1. The
function a(N) is the partial density N’ that would exist, according to (45),

were N a constant in G(N). The function b(N) is the partial density that would

exist if the distribution f(v) (with total density N) had the equilibrium
velocity dependence f(v) « 1/v . As was shown in section three, the
equilibria are given by the intersections of a(N) and b(N).

The numerical analysis consists of two studies, each examining a
different function G(N).

In the Tirst of these studies,

GIN) = SA(.+25 N3 expl-N2]) (50)

This function intersects N at three points (see Fig. 7). At the first point, 0 <
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G’ <-1, at the second 1 < G’, and at the third G’ < 0. According to the
criterion derived in section 4, points a and ¢ are stable, their basins of
attraction being separated by a boundary intersecting the unstable point b. By
numerically integrating (45) for a number of initial conditions, the location
of the basin boundary was established and is shown in Fig. 7. The unstable
point b is a saddle point in the state space. If a trajectory is initialized
precisely on the basin boundary, it falls into b. This is illustrated in Figs. 7
and 8. Note that the basin boundary shown in Fig. 7 intersects a one
dimensional section of an infinite dimensional boundary, while the trajectory
shown in the same plot is the projection of the actual trajectory. This
accounts for the fact that the trajectory appears to leave the basin boundary
as it spirals into b. In fact, it does not.

The density evolution corresponding to the tra jectory of Fig. 7 is
shown in Fig.8. As the system spirals into the unstable steady state, N
undergoes damped oscillations. This behavior results from the fact that the
boundary trajectories (trajectories that move along the ridge that separates
the two basins of attraction) do not excite the zero-mode. The next most
unstable mode is the two-mode, which is damped and oscillatory. That the

oscillations seen in Fig. 8 correspond to the two-mode is supported by Fig. 4

which shows the eigenmode frequencies for the value of G’ at point b (G’(b) -

= 1.72). From Fig. 4, the period and damping time of the two-mode are P, =
27/, = .83 and Ty = 1/%, = =71, which compares to about .91 and -.52 in
Fig. 8. Since this trajectory could not follow the boundary exactly, a small
initial excitation of the zero-mode resulted in the eventual departure of the |

system from steady state b and its ultimate settling at steady state ¢. From
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Fig. 4, the zero-mode growth time for point b is T, =.80, compared to about
.95 from Fig. 8.

Figure 9 illustrates the case in which a stable steady state is flanked
by two unstable steady states. The plane of initial conditions is divided into
three parts. Trajectories that begin in region 1 are attracted to the origin
with zero density, trajectories that begin in region 2 are attracted to the
center steady state, and trajectories that begin in region 3 go out to
infinity. (This corresponds to the plasma becoming so dense that the entire
beam is stopped; under these conditions, the model (1) is no longer valid).

Note that in both figures 7 and 9, the boundaries intersecting the
unstable steady state points have negative slopes. This means, as described
in section five, that initial densities can indeed grow to excede ny when the
initial distribution h(v) is concentrated at high velocities.

The numerical studies support the analytic predictions of sections
four and five. In particular, the linear modes described in section four are

observed, as is the qualitative nonlinear behavior described in section five.
7. Summary and Conclusions

The integral equation (27) in section three gives a general description
of the time evolution of the ion density in a simple beam-injected mirror
machine. The solutions of (27) were investigated for the special case in
whicr\u the charge exchange rate vy is zero. Linear analysis showed that the
behavior of the system close to a steady state is characterized by an infinite
set of eigenmodes. The frequencies w; and growth rates ¥; were shown to
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depend on the value of a single dimensionless parameter g'. The growth rates
¥j of the oscillatory modes w = 0 were shown to be damped, and the high
frequency modes were shown to decay faster than those with low frequency.
When ¢">0, the temporal behavior of the density was shown to be dominated
by a zero frequency mode which is unstable when g'>1, and stable when
0<g’<1.

An important feature of (27) and the special case (29) is that they
allow one to make very general rigorous statements concerning the nonlinear
stability of linearly stable states. Specifically, it was shown that if |g'|<1
everywhere, a linearly stable steady-state solution is also nonlinearly stable.
Numerical experiments were performed that confirmed the predictions of both

the linear and nonlinear analysis.
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FIGURE CAPTIONS

Fig. 1 The intersections of the graph of G(n) with the graph of N(n) give the
steady state solutions. Three possible realizations of G(n) are shown.
Function A gives a single solution, while B and C give three and none,
respectively. In section four it is shown that steady states a, ¢, and d are

stable, while b is unstable.

Fig. 2 The frequency wj of the ith eigenmode is given by the intersection of
the function K(w) in the ith interval im<w<(i+1) with the function

g'—ln[ g | If g'<0, the even-numbered modes are suppressed while the value
of g'-In|g'| ranges from o0 tg o0, If g'>0, the odd-numbered modes are

suppressed and g'-In|g'| ranges one to +so,

Fig. 3 A graph of the function g'-In|g'|.

Fig. 4 The frequencies and growth rates of the first four eigenmodes are
plotted as a function of g'. The zero-mode has zero frequency and is the only

eigenmode with a positive growth rate. Higher frequency are more strongly

damped.
Fig. 5 A graph of the function nyyin/ng . 4. (41), as a function of g'.

Fig. 6 A typical initial velocity distribution for a numerical run. The

velocity space is divided into a fast part (above Vo4) and a slow part (below
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V24). The initial conditions No and N'q are such that the total density is Ny,
the density of particles with velocities above V24 is N'g, and within each
part, Nj is proportional to 1/V; . The two distributions join smoothly when
N'o = No/A4, which corresponds to the line b(N) in N, N’ space.

Fig. 7 The basin boundary and a tra jectory in N, N’ space for the model
defined in the text by equation (50). The steady states are given by the
intersections of the two curves a(N) and b(N). The tra jectory projection
shown begins on (or"verg close to) the basin boundary, spirals into unstable
point b with two-mode behavior, leaves b with Zero-mode behavior, and then

spirals into stable point ¢ with ohe-mode behavior.

Fig. 8 The density evolution of the tra jectory shown in Fig. 7 displays
explicitly, at different times, the oscillations and growth rates
Characterizing the first three modes. For times less than =8, the damped,
oscillatory two-mode dominates. After =8, the growing zero-mode takes
over. Finally, when the trajectory approaches point ¢, the damped oscillations
of the one-mode begin to appear.

Fig. 9 The boundaries of the basin of attraction in a system with a stable
steady state flanked by two unstable steady states. The system is defined by
the function g(N)= a(N~1) + b(N-1)3 + 1/A, with a=-.2 and b=2; so that g'=1
at the steady state N=1. Trajectories originating in region I go to N=0, those
originating in region I go to the stable steady state, and those originating in
region Il go to infinite density.



