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Abstract

- The linear dispersion relation for Bernstein modes, obtained by the integration of Vlasov’s
equation along the unperturbed cyclotron orbits, predicts that the modes propagating
perpendicularly to the magnetic fleld are undamped, i.e., v, — 0 as k) — 0. However,
when w is close to a resona.ncé w, = nil,; most of the pa,rt.iéiles become trapped for
small wave amplitude E and the unperturbed orbit approximation breaks down. The
trapped particle trajectories are calculated analytically here using a resonant Hamiltonian
approximation. Integration, consistent with the wave, along the orb.its yields the nonlinear
damping rate in a similar manner as the one used by O’Neil '(19.65) for the damping of

unmagnetized electrostatic modes. The results can be extended for the general case of

almost perpendicular, short wavelength electrostatic modes near cyclotron harmonics.




I. Introduction

The linear dispersion relation for Bernstein modes, obtained by the integration of Vlasov’s

equation over unperturbed cyclotron orbits is expressed by
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where subscript o signifies either electrons or ions and wy,, 2., are the corresponding
plasma and cyclotron frequencies. Equation (1a) describes short wavelength (kpr, can be >
1 for wpa > 2.,) electrostatic modes propagating almost perpendicularly to the magnetic
field. Equation (1c) shows that the damping rate is extremely small for k| < (w—nd2ea)/vin
and that the purely perpendicular modes are undamped, since vz, = Im(w) — 0 for ky — O.
This is due to the fact that the wave part‘icle resonances responsible for the damping occur
in the linear theory- when the Doppler shifted wave frequency sensed by a free streaming
particle along the magnetic lines matches a cyclotron harmonic, w —'k”v” = nfl.y. For
(w — nf2ea)/k) > vin there are only a few resonant particles and their number vanishes
at the limit kj — 0. However, for w in the vicinity of a cyclotrdn harmonic nil., and
kj < k1, a nonlinear trapping mechanism is activated (Fukuyama et al., 1977; Karney
1979) which completely changes the character of the motion. This nonlinear trapping
can be conceived as an oscillation of the perpendicular velocity v, due to a sequence of
correlated kicks Av, received from the wave over the time span of many gyroperiods. This

is shown in Figs. 1 and 2 where we have trapped particle motion for small wave amplitude

.with wave frequency equal and close to the second Cyclotron harmonic respectively. In

Fig. 3, the wave frequency is “far” from resonance and particles execute trajectories very
similar to the unperturbed cyclotron orbits used in the linear theory. The main objective
in this paper is to obtain the nonlinear damping rate utilizing the consistent with the wave

trajectories in a similar manner used by O’Neil (1965) for the damping of unmagnetized
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electrostatic modes. The analysis can be easily generalized to include any perpendicularly

propagating electrostatic mode near a cyclotron harmonic, such as, for example, the fast

magnetosonic wave near the ion-ion hybrid resonance in a two species plasma with small
minority concentration. In short, the nonlinear eﬁects'proaﬁce a direct coupling of the
wave energy to the ions and therefore the results obtained here can apply to ion cyclotron
plasma heating. In Sec. II, the analytic solutions for the particle trajectories are obtained
using a resonant Hamiltonian approximation. In Sec. III, the time evolution of the Velocity
distribution function along such. orbits is determined and energy balance between the wave
electrostatic energy and the particles kinetic energy yields the damping rate. Section
IV contains a more detailed discussion and comparisons with numerical results obtained

performing particle code simulations.

II. Calculation of the Trajecfories

Assuming for Simplicity that k) = 0, the Hamiltonian of a particle in a uniform magnetic
fleld B = By2 under the influence of a perpendicular electrostatic wave E = QEQ cos(kpy—

wt) is given in normalized units (time to 2771, length to k') by

1
H(Py,y) = §(P; + yz)‘— asin(y +Y — vt) (2a)

with o = (2eEo/kL)/m(2e/kL)?, v = w/Q,, and 2, = ¢Bo/(me). Here P, and P,
are the canonical momentum components expressed in the normalized units by P, = py,
Py = pz—y and (z,y) signify the position relative to the guiding center coordinates (X,Y).
P, coincides with the position of the guiding center ¥ and is a constant of the motion
because H does not depénd on z. This is utilized by shifting the origin of our coordinate
system onto the guiding center position, yielding P, = 0 and reducing the original two
dimensional Hamiltonian (for example Eq. (4) obtained by Karney (1978)) to the one
dimensional result, Eq. (2a). The transformation y = (2I)/?sind;, P, = (2I)Y/? cos ¥,

¥y = vt, K = —E /v transforms the Hamiltonian into

H=I+vEK—a Y  Jn(r)sin(md; — 9, +7),

m=—00




with
r= (21)1/2 = (k_]_v_]_/ﬂc).

To the lowest order 4; = 1,9, = v, and since in the case of interest v is close to n (i.e.,

w = nfl;) the main contribution comes from the resonant term m = n = Int(v),
Hp =2 I+ vK — alJ,(r)sin(nd; —d, +Y).

For low harmonics (small ) one can approximate J,,(r) by Jy,(r) = (2/77)1/2 cos[r — (n +

1/2)/2] provided that r > 4n?/8. Now, a local approximation of Hp around the zeros r;

of J} (r;) = 0 is performed, as it will be soon clear that these points signify the location of -

the centers of the trapped particle islands in phase space. From the above representation
for the Bessel functions it is found that r; = ¢7 + (n + 1/2)7/2, i=integer, and one can
approximate r = /21 by r = ri+(I—1I;)/r;, for |r—r;| < /2 < r;. Defining new canonical
coordinates | |

Jy = (I = L)/r:,
Yp=nd; -V + (Y —7/2) + o,
Js=n/riK + (I - L)/,
b= 05— (¥ — nf2) — im,

and rescaling Hg leads to

H; = —6Jy +vJp — A;cos Jycosp o (20),

with A; = an/ry(2/mr) Y%, 6 = v — n. ‘

The above procedure is analogous .to the one followed by Doveil et al., (1983). The
Hamiltonian H; in the vicinity of an island is renormalized relatively to the center of this
island rathef than to some global scaling constant, since the island width Ar is not very

small compared to r for low m. The equations of motion for Jy, % now read

Jy = —AjcosJysinyg , = -6+ A;sinJycosep ' (3)




where the variation of Jy expresses the oscillation of the perpendicular velocity v around
the average value v; = ri2./ki. Stable fixed points, the centers of stability islands in
phase space, are defined by jw =0, zp = 0 and appear for J;, =0 (i.e., I = I; 61‘ r=r;),
¢ = cos™!(6/A;). The second equation has a solution only if |6 < A;. This condition,
namely that the wave frequency departure from a cyclotron harmonic be smaller than
the normalized wave amplitﬁde, signifies the emergence of islands in phase spacé and the
breakdown of the linear theory. For |§| < A;, Eq. (3) can be solved analytically yielding

J, ¥ as functions of the initial conditions and time. Ignoring §, the system Eq. (3) can be

written as

2J 4+ A%sin2J =0,
2§Z}+A?sin2¢ =0

where the subscript ¥ is dropped from Jy. Both equations are coupled through the initial
conditions and share the common invariant of the motion W = 1/2(2J)? — A?cos2J =
1/2(2¢))* — A?cos2¢ = A? — 2H?. One can then introduce a parameter A by A\? =
247 /(A?+W) = (1—cos® J cos’¢) ! and solve Eq. (3) in terms of elliptic functions with
the aid of the transformation sinJ = A7 !sing¢, sinty = A~ !sin €. The solutions are.
sind = AT sn[F(¢, A7), A7, sing = AT en[F(£,A7HATY,
| (4)
F(gaA_l) :F(SLO:)‘——I) +A'Lt ) F(§7>‘—1) :F(é‘o,A—l)ﬂ—f- A‘Lta

with F(&,A71) the elliptic integral of the first kirid. This result will now be used to

compute the evolution of the particle velocity distribution function in time.




III. Computation of the Nonlinear Growth Rate

Let f(v 1;0) be the v averaged initial distribution function. Along the trajecto-
ries that are consistent with the existence of the wave df /dt = 0, so f(vi(t);t) =
flvio(vi(t),9(t);t);t = 0]. The rate of change of the kinetic energy density dT/dt =
No/V [ [dXdYdz [ [(1/2)dv? dd¥(1/2)mv? 8f/8t, No=number density, can be written

in the new normalized variables as

N 2n-1 (J+1/2)7r 4 v7r/2
i |

dT/dt = NOZ Z/

where use is made of the local variables around each fixed point r;,, I =
I + rid, and f(oiit) = fb(Loee = o, of/or = (af(t=0)/oL)fy =
<8f(t = 0)/8.[0)]' n-J'o(J,zp,t). The integration over J and 1 is carried up to the sep-
aratrices around each fixed point. They are given, from Eq. (3) with § <« A, bysthe
straight lines J = +(m/2), ¢ = (5 £ 1/2)7 corresponding to r = r; £ 7/2, ¢ = j7r/ﬁ,
7=0,...,2n —1 in Fig. 1. So for § < A the size of the islands is essentially independent
of A, Ar = 7, and islands occupy all the available phase space. The summation over 7 stops
at t=N that signifies the outermosf island around the last fixed point r,. For é exactly
zero N tends to oo, however the main contribution comes from r; less than few times the
thermal velocity. The derivative of f is calculated at the center of the island I; = (1/2)r?
provided that the island width ~ 7 is less than r;. This still gives qualitatively correct
behavior for the innermost islands with r; ~ 7. Using the equation of motion (3) for J,

we substitute

JolJ,9) = —Ascos Jo(J (£), $(2)) sin (I (8), B(2))

into Eq. (5). Then, following the method of O’Neil (1965), equations (4) are inverted in
time using the double angle formula for elliptic functions to obtain the expressions'for

cos Jog, sin ¥p
sin o = (sinYen(z, A" )dn(z, A7) — sn(z, A7) sin J cos? ) /(1 — sin® psn?(z,A71))

cos Jo = (cos Jdn(z,A7") — sn(z, A" )en(z, A7) sin J cos J sin ) /(1 — sin® psn?(z,A71))

6

dJri(I; + r;J) (8 fo /BI)Ii}ijo(J, $)  (5)




After taking the product of the above expressions, all but one term will be averaged out

during the integration in Eq. (5), with the remainder given by

Ll v
g = isNOAiT? (%> /_2— d¢/§ dJJSinJCOS t],sn(z) A_l)dn(z,'}\_l) |
1=1 I,L. 0 0

01y 1 —sin® Jsn2(z, A~ 1)

The integrant Z(J,v;z) (the ¢ dependence is hidden in A(J,%)) is Fourier transformed

using the doubly periodic properties of the Jacobi functions in the complex plane,

SN ¥4

1+ ¢2m+1 70T 2K (A1) SR (A1)

20,07 _SZZWJst gtz (2m—l—1)7rF(g‘,>A_1) . (2m+ )7

q = eXp[WK’(A_ )/ K(ATY)], z=At, aﬁd K(A™1), K'(A~1) complete elliptic ‘integrals of
/2 pm/2 ) ’
the first and second kind respectively. To compute / / dJdyZ(J,1;2), a change of
: 0 0
variables from (J, %) to (J, A) yields

Z/ /si - (A'l)dJ JsinJ qm+1/2
Az —1)1/2 1= A%sin? J]V/2 K(ATY) (1 4 g2 )
. 2m+1)7F | 2m+1)7
At.
X sin 2K (-] -sin 2K (1)

To integrate over J one can take advantage of the periodic properties of the elliptic func-

‘tions by expressing J as J = cos~}(dnF). The integral over dJ becomes

K . - K
1/A/- dF cos™[dnF]sin ((2m + 1) F/2K (A7) =1/2 Im/ H(F)dF
0 . - K

with H(F) = A~!cos™![dnF) exp|i(2m + 1)7 F /2 K] analytic everywhere inside and on the.

contour of integration in Fig. 4 and obeying the following properties: H(F+2K) = H(F),
H(F + 2iK") = {msnF exp (i(2m + 1) Fr/2K") — H(F)} g~ (?3m+1), Then,

K
(1 + q_(2m+1)> /_K H(F)dF =

g (2m+1) {_/ H(F)dF + W/K snF exp[(2m + 1)7rF/(2K)]} .

-K

The path segment labeled by o encircles the branch cut at F' = 1K’ since cos™*[dnF] =
—iln[(i/A)sn(i K’ + x) + dn(zK' + x)] = —u€n(ix/2) around :K’. The contribution from
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this part is computed by approximating H(F) around 1K’ as
=i [ (ax/x)entix 2 xpli(em + /2K ()]
o

——ilig = / dnexp (= [(2m -+ Ve /K (e)) /(-)"+,1 = ~(ix/2)

Inside the right-hand side derivative is the well known Hankel integral, purely imaginary,
thus ¢ fa is pure real and does not contribute. Calculation of the remaining part of the

integral leads to the final result in normalized units,
. fe%e) 1
dT/dt = — ) 327°NyA;r? Bf ol / dre(k,m) sin[(2m + 1)1 At /2K (k)]
Jdi= =3 oo (°/>n,§oo (i, m) sin|(2m + 1)m Ast /2K ()]
with
k= A e(e,m) = (1 #7) 72~ G /(14 @27 (14 g @) K )]

The quantity ¢(x,m) tends to zero at both ends of integration k=0, k=1 and the main
~ contribution comes from particles away from the separatrix or the center of an island
respectively, since J tends to zero there. Undoing the normalizations and equating

1/87dE?2/dt = —dT/dt yields the evolution equation for the wave amplitude

N oo 1

dEy : . (2m+ 1)mA L,

Lo _yroy / dre(m, ifle, 6

& = 2, ke(m, k) sin 2K (r) (6a)

92 i 1/2 wzinc £ : .
(i) = s2r (T ) (FLoi) 77 Ot 9o . (6b)
kie 27 kJ_ vy i
we()

The rate of change dEo/dt given by Eq. (6a) is determined by the comstants I'(z) in .

Eq. (6b), with the index 1 signifying the cpntribution from the ¢-th island chain in phase
spéce, and is not proportional to Eo as opposed to the usual exponential béhavior during
Landau damping. However, the damping rate is oécillating in time with a period pfopor-
tional to the bouncing period of a particle around an island 7, ~ 27/A;f2. and therefore
inversely proportional to the wave amplitlide FEo. From Eq. (6b) dEy/dt is negative for
a monotonously decreasing velocity distribution of particles resulting in damping of the

wave energy.




IV. Discussion and Implications

The damping is due to the fact that at any given moment, for an initially monotonously
decreasing velocity distribution of particles there are more particles gainiﬁg energy from the
wave than these losing energy to the wave. Although the above mechanism is the same as
for the .da,mping of electrostatic modes in unmagnetized plasma, there are some differences
to be erﬁphasized. The most obvious is that, for very short time intervals compared to the
bouncing period 73, the dafnping rate is a constant independent of the wave amplitude Eo,
as the right-hand side of Eq. (6a) is proportional to the constants I'(¢) while Eq enters only
through the bouncing frequency A;(Ey). This is attributed to the fact that, b.ecause of a
degeneracy in Hamiltonian Eq. (2), the width of the islands is independent of Ey, provided
that 4; > ‘5, and of order nf2./k, , as opposed to (fZe.E’o/mkl)1/2 in the uﬁmagnetized
case. Thus the number of the trapped particles in each island entering the integral in the
velocity space, Eq. (5), is independent of Ej. 'Actualvly, ‘large size islands occupyr.most
of the available phase space for arbitrary small Fy as long as § = w/f2, — n can becoﬁe
much smaller than A4;(Eg), Figs. 1,2. This produces a very effective mechanism coupling
the wave energy directly to the bulk of the ions distribution function. For low harmonics
(n =1,2,...) even cold particles (kpz < 1) can respond and be heated.

In the unma,gnetized electrostatic case the width of the trapped particle island
scales as the square root of the wave amplitude, thus particles crossing the amplituae
dependent separatrices change from trapped to untrapped and vice versa and pose a serious
difficulty in the analytic study of long time behavior. Here, however, the island width is
insensitive to the wave amplitude A; as long as A; > 6 ~ 0 and the main effect caused by
the variation is a modification in the particle bouncing time 7, = 27/A;{2. Therefore it is
the rate of change of the wave amplitude rather than the overall change thét determines
the time evolution and one can distinguish two cases depending on the relation between
the particle bouncing time 7, and the wave characteristic time 77! ~ d/dténEy ~ I'/ Ey.

Case (a): 7. > 7 occuring when (27 /Af2.) (I'/Eo(0)) ~ 7p/7c < 1. The rate of
change of the bouncing period 7, is small compared to the bouncing period itself. Thus,
the solutions (4) are assumed to be valid with the constant A; replaced by A;(¢) in the
spirit of the WKB approximation. This is verified numericallyv by the results in Fig. 5
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where the trajectories shown correspond to the case of a slowly varying wave amplitude

A(t) = Aoe™ ¥ with 7, Z w™! > 7. They are very similar to the trajectories with constant
A plotted in Fig. 1 while the time span plotted is 2.257,.

Equation (6a) can now be solved exactly using A;(t) = &FEq(t) with & =

(623/2]@_)/(7?2937‘?/2), obtained by combining Eqs. (2a) and (2b). The solution Eo(t)

is given in implicit form by

Eo(t) = { Z 6101; (1) Z / dre(k,m)

- & 1/2
x [K(x)/(2m + 1)7][1 ~ cos(Bi(x,m)Eo(t)t)] } | (7)
with :
_em(2m + 1)1,
filem) = =K W)
and ¢(k,m) rewritten as
11— tanhu, 1 _ nK'(k)
c(n’m)_ZI{coshum \/1~—192K(/£) , m—(2m—?—1) 2K (5]

The long time limit can now be taken, ¢ > e, and the above complicated Eq..(7) reduces

to a simple form. As the time ¢ increases, the cosine terms in Eq (7) oscillate with an ever

increasing frequency over the slowly varying ¢(x,m) and the integral over x goes to zero.

as t — oo0. Thus

| X = ok, m 12
Ew = Ep(t - 00) = %Z szﬁfl(;% (0] Z/ dm—_ﬂz((/c’,m))} . (8)

1=1 m

where p < 1 in the upper limit of the integration takes care of the finite width of the

stochastic layer around a separatrix (Fukuyama et al., 1977). In short the behavior of

Eo(t) is that of an incoherent oscillation around an ever diminishing value tending asymp- -

totically to Ee ~ Eo(0)(1 — 73/7.) while the distribution function tends simultaneously

to a state of collisionless equilibrium with the wave such that fo is constant along the
trajectories H; = ¢, foo — f(H;) with H; given by Eq. (2b) (see Figs. 1 and 6(d)). The

depletion of the electrostatic energy stored in the initial field must balance the difference
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in kinetic energy AT, between the initial Maxwellian and the final equilibrium state, thus
(1/47)E?(0)(7s/7c) = . Since AT, is independent of the wave amplitude, Eo(0) must
be above a certain threshold, otherwise A;(t)t will remain small as ¢ — oo and the long
time limit of Eq. (7) is not given by Eq. (8). The case of relatively small energy transfer
compared to the initial electrostatic energy described by Eq. (8) results from solving an
initial value problem. The situation is different for the boundary value problem appropri-
ate for rf heatmg where the depletion of the electrostatic energy is balanced by the power
influx provided by zin antenna. Then a quasi-steady situation can be reached with the am-
plitude of the electric field remaining practically constant while particle heating continues,
no matter how small 7, /7, or Eo(0) is, until the final stage with the multiflattened velocity
distvribu'tion is reached. Some numerical results for this case are given later in this section.

Case (b): 7. < 7 occuring when (27 /12, A) (F/Eo.(O)) 2 1. In that caise, even if the
overall change AE(t)/Eo(0) turns out to be small, A(t) changes with a rate comparable to
the bouncing frequency and new resonances may appear changing the motion considerably.
The substitution A(t) in place of constant A works only for time ¢ < 7o S oor At < 1.

Then a linear expansion of the sine term in Eq. (6a) yields
dEo/dt = Eoy't

with

7

5 :'327r3n2(w7%!2c/kf’,_)2(.(2 k1 0:)(8f/0v1 ) ZZm—i—l /c}lnc(n,m)ﬁk(n), (9)

so the short time behavior becomes exponential with Eq(t) = Eo(0) exp|v't2/2).

| The dependence of the trapped particle bouncing frequency on the particle velocity
causes phase mixing that results in a flattening of the velocity distribution function around
the center of an island in phase space. In the unmagnetized case, studied in detail (O’Neil
1965), there is a single island in the interval —oco < v, < +00, 0 < kyz < 2m and a single
plateau is formed on f(v;) centered around v, = w/k”. Here a sequence of plateaus is
_ being developed in f(v, ), each one centered around v; = v;, where v; is the center of the

i-th chain of islands given by the #-th zero of J),(kjvy/f2.) =0
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To demonstrate the validity of the theory, a series of numerical simulations is
peformed using a 1 —1/2 dimensional self-consistent electrostatic particle code to model a
uniformly magnetized plasma. The “multiflattening” of the distribution function is evident
from the typical numerical results in Figs. 6(a)—6(d)' showing the time evolution of the initial
Maxwellian distribution. The Bernstein wave is driven externally at frequency w = 212,
across the magnetic field. In the dimensionless code parameters with time normalized
to w, 1" velocities to wpA (so that A = Ap for vy, = 1) the cyclotron frequency wave
is set to 2, = 0.125 and k, = 0.295 while the wave amplitude Ep (in units w2 AZ) is
remaining practically constant near Eg ~ 0.06 after a short initial build-up stage. The
corresponding bouncing periods for the three innermost islands are therefore 715 = 68w, L
Top = 245&)1:,_1 and 73 = 1130wp“1. The initial Maxwellian distribution of 153,600 particles
with k&, ps, = 6, Fig. 6(a), evolves into the multiflattened one in Fig. 6(d). The three

plateaus in 6(d) are formed around the centers of trapped particle islands (Fig. 1); given

by the zeros of J;(k1pz) at approximately (kpz)? = 10, 45 and 99 respectively. Steep
gradients are built at the positions of the separatrices, zeros of Jy(k_ p) at approximately
(lc,oL)2 =26, 71 and 135. Some diffusion across the separatrices due to statistical noise is
inevitable although the wave amplitude remained below the stochastiéity thréshold. The
time succession of the plateau formation agrees.with the theory as the mixing time 7, is
proportional to the bouncing per.iod, inversely proportional to the normalized amplitude,
Tm ~ 21 /A; o (kpr)®/?, Eq. (2b). Thus the innermost island phase mixes first, Fig. 1(b)
followed by the second and third islands in 6(c) and 6(d) respectively.

The time history of the kinetic energy during the same run is shown in Fig. 7.
After a short initial state of slow growth due to the sinusoidal time dependence of the
energy absorption rate, the growth remains almost linear until the final saturation state of
slow growth is reached. From the slope of the linear part it is found that 7o, = (d/dt)ﬁnT ~
5x ]O'Bcup_i1 much larger than the bouncing time 7, for all three island chains. Recalling that
15q. (6a) was obtained from the expression for the kinetic energy growth rate by setting
dT/dl = —(1/4n)Eo(dEy/dt), one can obtain an order of magnitude estimate for the

theoretically predicted growth by converting the quantities in Eq. (6a) into the numerical

simulation scaling, considering only the m=0 time harmonic and assuming that the rest
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harmonics give a correction C' ~ 0(1). It is found that 2 ~ C~1 x 1.2 x 10%, thus the
numerically observed growth rate exceeds the theoretical by a factor of 2. The difference
can be partly éttributéd to diffusion across the sharp distribution gradients built near the
sepa.ratfices due to statistical noise and the intrinsic stochastic layer around each island
(note the slow smoothing of the “steps” in the distribution function, Fig. (6e) and the
small but persistent growth of the kinetic energy at the end of the run, Fig. 7).

The long tirﬁe phase mixing of the distribution function coincides with the phase
mixing of dFy/dt — 0 as ¢ — co and a final state of dynamic equilibrium between the
wave and the distribution function is reached asymptotically. : The evolution towards this
final state can stop however if it so happens that the wave amplitude Eq(t) drops below
the threshold for particle trapping, i.e., €;Eq(t) < Ath = §. Past that time the linear
undamped behavior of Egs. (1) is recovered. On the other hand for very large initial
Eo(0), the coherent motion in Figs. 1,2 is replaced by stochastic diffusion (Hsu 1982)::The
innermost islands disappear first and the stochastic régime is sprea.diﬁg towards larger v
for increasing A;. The results obtained so far for k” = 0 are ai)proximately correct for
small but finite k) as long as the Doppler frequency shift from the cyclotron harmonic
6' = ki /02, does not violate the perpendicular trapping condition 6’ < A or kj/ky <
eEoJ) (kipr)/(2k,mv2,). The results in this paper can be easily extended to apply for the
general case of an almost perpendicular electrostatic mode near an ion cyclotron harmonic.
In particular they can be important in understanding the observed ion heating through the
fast magnetosonic wave in two ion species plasmas. For small minority ion concentration,
the fast magnetosonic mode is converted to a perpendicular electrostatic mode close to
the ion-ion hybrid resonance layer (Swanson 1975), with frequency near the minority ion
cyclotron frequency, thus perpendicular trapping can be the heat absorption mechanism
in case of small k), since the standard linear Landau damping of ions due to &y, Eq. (1),
is insufficient to account for significant ion heating. |

In clonclusion, the damping of a single perpendicular monochromatic Bernstein
mode due to non-linear particle trapping by the Wéve has been examined. Perhaps, to
avoid confusion, it should be mentioned here that the situation considered in this paper

is completely different from the one studied theoretically by Baldwin and Rolands (1966)
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and numerically by Kamimura, Wagner and Dawson (1978). The damping in their case is
a collective effect coming from the linear superposition of infinitely many, closely spaced,
Bernstein modes at the limit when the frequency separation between successive cyclotron
harmonics tends to zero, i.e., the magnetic field vanishes. Each mode by itself is undarﬁped
with a dispersion relation.of the fofm of Egs. (1), based on .unperturbed'cyclotron orbits.
However, for small but ﬁnite we, the collective damping exists for only a short time com-
pared to 2,1 while for timesA tn ~ 27n /(2. the system exhibits semiperiodic behavior and

returns to the initial state.
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Figure Captions

1.

S oo W

Trajectories in phase space showing r=£k, pr versus ¥ = (2.t for different particles’

and for v = w/f, = 2.00, 0.0034 <" A; < 0.0360, §=0. Each trajectory is ob-
tained by numerically integrating the equations of motion for the single pémrticle
Hamiltonian, Eq. (2a). |

Same as Fig. 1 with v = 2.006, 0.162 < A; < 0.015, A = 0.006 < A;.

Same as Fig.'1 with v = 1.93, A; < 0.04. Here |6] = 0.07 > A;.

Contour of integration for H(F).

Same as in Fig. 1 with slowly varying amplitude A4;(t) = A;e~*?, w = 0.001.
Plot of f(v) versus (k1pz)? at times (a) =0, (b) t=183w; !, (c) t=244w, ! (d)
t=366w, ', (e) t=549w,'. Dotted line in (b)-(e) represents the initial distribution.
The results are created by using a self-consistent electrostatic particle code to
model a uniformly magnetized plasma.

Kinetic energy as a function of time for the run shown in Fig. 6.
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