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ABSTRACT

A theory of the nonlinear  evolution and saturation of
resistivity-driven turbulence, which evolves from |inear rippling

instabilities, is presented. The nonlinear saturation mechanism is

identified both analyticaliy and numerically. . Saturation occurs when

the turbulent diffusion of the resistivityA is large enough so thst
dissipation due to parallel §|ectron thermal conduction balances the
nonlinearly modified resistivity gradient driving ﬁerm. The levels of
potential, resistivity, and density fluctuations at saturation are
calculated. A combination of cdmputational modeling and analytic

treatment is used in this investigation.
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D
I. INTRODUCTION

Tokamak edge plasmas exhibit turbulence characterized by large
density and electrostatic potential fluctuations'»2 in regions of
significant cross-field transport. It fis important to develop an
understanding of the observed fluctuations and transport in order to

optimize design of divertors and limiters and in order to gain insight

into the effects of the edge turbulence on improved tokamak operation

regimes, such as the ASDEX H-mode,® and on edge pumping schemes. Also,
since the edge turbulence is- strong and relatively well diagnosed
experimentally, it provides an excellent test bed for the development
of realistic and comprehensive nonlinear plasma turbulence models.
Turbulence driven by resistivity gradients, via mechanisms such as
the rippling mode,* has been advanced as possible explanation for the
edge fluétuations and anomalous transport. Previous investigations
have discussed the |inear and quasi~linear theory of rippling modes,®
an elementary theory of the initial transition to nonlinear evolution,®
and the viability of rippling modes as an explanation of experimentally
observed edge turbulence in tokamaks.® In this paper, 2 theory of the
nonlinear evolution and saturation of resistivity-gradient-driven
turbulence, which evolves from linear rippling instabilities, fis
presented. The nonlinear saturation mechanism is identified, and the
characteristics of steady-state, resistivity-gradient—driven turbulence
are discussed. The levels of potential, resistivity, and density
fluctuations and of energy and particle ftransport are calculated.

Throughout the paper, theoretical assumpbions and predictions are
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examined in detail and compared to the numerical solutions of the basicv
nonlinear equations.

Rippling modes are primarily electrostatic instabilities that
result from the coupling of resistivity fluctuations to potential and
current fluctuations—through Ohm’s law. The resiétivity fluctuations
are driven by convective relaxation of the average temperature
gradient. In addition to resistive field line diffusion, parallel
thermal conduction x“Vﬁ, which restricts the resistivity response to a
small region about the mode resonance surface, is a strong stabilizing
-effect. = Thus, rippling modes. are not - generally thought to be an -
important instability mechanism in regimes of moderate .

However, in this paper, it is shown that nonlinearly evolving
resistivity-gradient-driven turbulence departs significantly bfrom
-expectations based on the linear theory 6f~therrippling mode.v.‘Indeed,
this departure is the motivation for the d}stinction, made frequently
in the course of this paper, between (linear) rippling instabilities
and resistivity-gradient-driven turbulence. -Here, the theory of
-stationary resistivity-gradient-driven turbulence is cast in a simple
framework similar to that used to describe turbulent hydrodynamic. shear
flows; namely, saturation by the (nonlinear) dynamically regulated
balance of energy input by gradient relaxation with dissipation. In

particular:
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(i) Using the numerical solutions, the efficiency of the
nonlinear saturation mechanism for a fixed average resistivity profile
no(r), the case relevant to experiment, and its importance relative to
quasi-linear flattening of dno/dr are verified in detail.

(ii) The radial asymmetry and nonlinear broadening of the
resistivity and potential eigenfunctions imply that, in the region
where resistivity-gradient-free energy is extracted, the perturbed
current jz R 0. As a consequence, the vorticiﬁy evolution decouples
from the resistivity evolution. The nonlinear dynamics are governed by
the nonlinear resistivity evolution equation and Ohm’s law, now .

simplified to -V, ¢ ¥ %J0.

(ii11) As 2 result of the interaction of turbulent radial: -

diffusion and parallelﬂthermaf conduction, the nonlinearly evolving..

~ resistivity and potential _eigenfunctions are characterized by “an

amplitude-dependent radial scale length® A = (D/x”kﬁ2)1/4, where D is
the turbulent diffusion cofficient and ky Ts the radial derivative of
the parallel wave vector.

(iv) At saturation, the level of diffusion and thus thé mixing
length Ac adjust to a value at which thermal dissipation balances
resistivity gradient drive. This result supersedes our previous work,>
in which the fluctuation - level at which transition to nonlinear

evolution occurs was calculated using a |inear rather than a nonlinear

drive.
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Points (i) through (iv) are the principal results presented in
this  paper  that  pertain  to  the  basic  physics® of
resistivity-gradient-driven turbulence. Due to the simplicity of the
rippling mode model, it is reasonable to expect that rthe nonl inear
evolution of many other dynamical sysﬁems may exhibit features similar
to those discussed here. Thus, these results may be of general
interest.

In addition to the elucidation of the basic nonlinear physics,

this paper discusses the analytical and numerical calculation of

several relevant physical quantities. The root-mean-square . (rms) ..

potential fluctuation level (ed/T )..c and resistivity fluctuation
level (ﬁ/no)rms are predicted. Treating the density as a passive
scalar convected by Tluid turbulence, a density fluctuation level
(M/ng) pps 1S estimated.  For parameters similar to those of Macrotor
edge plasmas, 2 density fluctuation levél-(ﬁ/no)rms N 0.24 is predicted
with  the corresponding  temperature fluctuation level being
($/T0)rms N 0.05. The induced anomalous particle and thermal transport
is also discussed. |

The remainder of the paper is organized in the following manner.
The basic resistivity-gradient-driven turbulence model is presented in
Sec. II. In Sec. III, the dynamics of nonlinear evolution and
saturation are described. The nonlinear instability dynamics, the
saturation mechanism, and the significance of the nonlinear resistivity
mixing length are all discussed in detail. Section IV contains a
discussion of the results of multiple-helicity nonlinear numerical

calculations. Questions of numerical convergence and the relative
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importance of nonlinear saturation and quasi-linear profile flattening

are also ‘addressed there. In Sec. V, predicted fluctuation and

transport levels are presented. Section VI contains the summary and

conclusions.
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II. RESISTIVITY-GRADIENT-DRIVEN TURBULENCE MODEL

In this section, the basic resistivity-gradient-driven turbulence
model is presented and discussed. A simplified set of nonlinear
equations that describe the nonlinear evolution and saturation of
electrostatic rippling instabilities is derived, and quadratic
energy—like quantities are identified.

The reduced resistive magnétohydrodynamic (MHD) equations in

cylindrical geometry7 are

0
E, =_él£. - B0 =l ‘ (1)
du . o |
i BZV“J2 s . (2

where ¢ is the poloidal flux function, ¢ is the fluid stream function

(= /B, where ¢ is the electrostatic potential),

is the current, and

-2 -»>

is the component of the vorticity in the z-direction. The ccordinate z
is taken to extend along the axis of the cylinder. Here pm'is the mass

density. In Egs. (1) and (2),

s Rt
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L By e gD
BZV”= (V_UI)XZ) .V+BZ‘8—E

are the total convective derivative and the parallel gradient,
respectively.  To describe rippling instabilities, a resistivity
evolution (thermal balance) equation is necessary.* In its simplest

form, this equation is

% = V” (X;;Vﬁﬂ) _ (3)

Here ¥, is the parallel electron heat conductivity. Equations (1)-(3)
constitute the basic resistivity-gradient-driven turbulence model.
These are the.equations used in the numerical cal culations.®
Significant simplification of the basic model can be achieved by
using bhe electrostatic approximation, whereby ¥ =0  and
V= 760) =be¥V. The vector b is 2 unit vector parallel to the
equilibrium magnetic field. The validity of this approximation in the
context of rippling instabilities was discussed in Ref. 8. Employing
the electrostatic approximation and writing J, and nm as 2 sum of
average (slowly varying) and perturbed (rapidly varying) pieces,

Egs. (1)-(3) can be simplified to

‘BZV§O)¢ =fldzg + ﬂOJz ; : (4)
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Pngg V1P = Bzvﬁ )Jz ’ (5)
" - dn
di . o(0)2m _ 189 0 |
ab X740 = r3e dr (®)

The subscript 0 is used to indicate average quantities and the tilde
(v) to indicate perturbed ones. As a consequence of the electrostatic

approximation, Ohm’s law [Eq. (4)] has been linearized. As a result,

the current perturbation J, can now be eliminated from'Eq. (5),

z

yielding two nonlinear equations for ¢ and 7,

Pn d 2 1. §0)2 J20 ?0) (ﬁ{)
md g2y oLy e 7)
2 dt L | A I ’
B "o B2 "o |
dn ‘
d o 02y _ 1a¢ 0
;ﬁ;ﬂ - Xuvﬁ ) T BT ‘ | (8

Equations (7) and (8), for the vorticity and resistivity respectively,
constitute the basic resistivity-gradient—-driven turbulence model to be
used in the analytic calculations.

The linear fnstability regime described by Eqs. (7) and (8) has
been studied in detail in Ref. 5. The basic results are that this
system of equations reduces, in the linear approximation, to a single

second~order equation,

2o {12 X
g0 _ 22 _ 52 W_o,
dx2 (4 1+bx"’>$
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where X = x/xR is the radial variable that is dedimensionalized in

terms of a resistive singular layer width X with

2 o 174

« = |n {hOPm ﬂO(PS) Lsrs

RO\ /) B0 a?|

J
5. s 020 1
Lﬂ B, quR ’
s
' 2
. R
, r'g[_g i i

Here, Ly = [d{in 'qo)/dr]‘1 is the gradient scale length of the
resistivity, and Lg = (r-sq"/RoqQ)“1 is the magnetic shear scale length.
A key dimensionless ratio is S = TR/TH , where T = uoa2/n ~is’ the

R 0
resistive diffusion time scale, and T = Ro/Va is the poloidal

hydromagnetic time with Vy = BZ/(p,Opm)l/2 the Alfven speed. -
In the absence of parallel electron heat conduction (b =0), the

lowest—-order eigenmode is

¢ = 4y exp[;-£§¥§r§lfq exp[—i(%%-z - m9> + qt]

with eigenvalue & = v2 and, hence,

; 2/5
[SmLsno(rS)2Jzo(rs)2}
r

R T

-1
R
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In the limit of large electron heat conduc’oicn,s’9 the linear

growth rate is

s 8{“o(rs)]4’3 [L@rs T‘o(rs)Jzo('"s)T“SQ
N ks mB

Note that parallel electron heat conduction reduces the growth rate for
Xy 2 no/uo but does not completely stabilize the rippling modes because

the x, effects are negligible near x = 0.

It is straightforward to identify two energy-like quantities

quadratic in the fluctuation level,

q_—f&xt¢ﬁ

ET :-%—fdax l'fN’ll2 s

for Egs. (7) and (8), respectively. These quantities satisfy the

evolution equations

o B o 60 (i) [T
woa R ©
BET = [ & [‘ %_%_B_Q__X“Wﬁo)mz]. (10).

Equation (9) states that Ey, the fluid kinetic energy, evolves by a
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competition between a destabilizing J X B force induced by resistivity
perturbations and a stabilizing JxB forée induced by the magnetic
field line diffusion. Similarly, Eq. (10) states that Ey, indicative
of the mean-square resistivity fluctuation level, is driven by
relaxation of the average resistivity gradient [note that
<(f/r) (00/30)> is the average radial resistivitybflux] and damped by

dissipation due to ;.
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III. DYNAMICS OF NONLINEAR EVOLUTION AND SATURATION

In this section, the analytic theory of nonlinear evolution and
saturation of resistivity-gradient-driven turbulence is presented. The

tevel of resistivity diffusion at saturation is calculated. The

implications of these results for predictions of experimentailyv

observable fluctuation levels and edge transport are then discussed in
Sec. V.

Before proceeding with our discussion of the dynamics of nonliinear
evolution and saturation of reéistivity—gradient—driven turbulence, we
pause to address the question of whether quasi-linear flattening of

dno/dr or turbulent stabilization is the relevant saturation mechanism.

~ First, in the relevant case of turbulence in tokamaks, the average

temperature (and thus the resistivity)vgradient is maintained by the
balance of ohmic heaﬁing with thermal transport. Thus, a nonlinear,
rather than quasi-linear, saturation mechanism is necessary for a
theory of steady-state, fixed resistivity-gradient-driven -turbulence.
Second, in the relevant regime of large x;, the processes of radial
diffusion and radially dependent paralle! thermal conduction combine to
produce an efficient nonlinear saturation mechanism, which persists in
the presence of quasi-linear relaxation of dno/dr. The importance of
this mechanism, described in detail in this section, can be illustrated
by the heuristic argument that diffusion of § couples to (diffusive)
dissipation associated with ¥x; via the radial dependence of k;, but
diffusion of no cannot. Hence, it 1is not unreasonable that the

non!inear mechanism is more potent than quasi-|inear flattening.
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It is natural to specify the saturation condition for the

resistivity-gradient—driven turbulence as

Ok Eﬁi[,_ 0
Bt ~ ot !
namely, that the turbulent energies must be stationary in time. Note
that when this criterion is satisfied, resistive field line diffusion
balances resistivity-induced destabilization in Eq. (9), and drive by
dy /dr relaxation balances dissipation due to y, in Eq. (10).
It should be noted that requiring dE/ot = 0 is equnvalent to

imposing the criterion that
[ #x 490, =

A sufficient, but not necessary, condition for satisfying this
criterion is that jz = 0, leaving BE7/0t = 0 with —V§0)¢ = ;JZO as the
conditions used to determine the turbulence level at saturation. The
condition jz =0 is satisfied except in the immediate vicinity of the
mode rational surface (x ¥ 0), where V§0)¢ NO and T, W —nOJ
However, in this region ¢*V&O)EZ N 0 since Vﬁo)jz N 0. Furthermore,
the 7 and ¢ eigenfunctions, which, in linear theory, are skewed off
symmetry about the mode resonance surface, are broadened by turbulent
diffusion as the fluctuation level increases. Thus, the detailed
structure around x = 0 is smeared out. For these reasons, the region

located at the singular surface is irrelevant to the nonlinear dynamics

~of rippling mede turbulence.
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As a consequence of the saturation condition jz = 0, the vorticity
~equation [Eq. (5)] decouples from Egs. (4) and (6), which now
exclusively determine the nonlinear evolution of the rippling modes.
It is apparent that the structure of the resistivity perturbation is
determined by the parallel electron thermal conduction term ﬁx“V§O)2
and the convective nonlinearity.

As discussed in Ref. 10, standard iterative methods can be used to
obtain the renormalized resistivity evolution equation. The nonlinear

resistivity evolution equation is

= xukifty + ( L (kg gﬁk,,} ke Z nf(»,g

| M,
ol o1 A\ _k)
‘%x‘ [g’(—lke)ﬂ_}*,cbg,{]—lke I 5k kD gk

where all fields are expanded in toroidal and poloidal harmonics ‘m, n.
For simplicity, each harmonic is labeled with k= {m, n), and the
following notation is used: kg = m/r, k, = [m/q(r) - n]/Rp, x = r - r

with r such that q(r») =m/n.  This equation is renormalized by

2 2 (2
substituting % 2. and ¢+ for ﬁé”) nd ¢é”? Here, ﬁé:)and ¢é”)are driven

by the direct beat of the test (k) and background (E’) modes. Since

N

the full range of x” is swept over by the K integration, the J, =0
approximation is not valid for the driven modes (ﬁ”). Thus, in order

to simplify the renormalization procedure, (associated with

¢—)’I
L@ K
shielding effects) is neglected. Thus % M is given by




ok sy (kg + k02 [
RO I M R TR TRy

[ 2 > n
Substitubing né”)into the nonlinear equation, noting that 7 p = %K and
0 7= ¢E, and retaining only the dominant radial diffusion term (as the
radial wave number exceeds the poloidal wave number) yields the

renormal ized resistivity equation:

o &y dn,
+ +X"k”n-> D> — = ~ikehr o » (11a)
) 10 e+l + T (116)

Here DK accounts for the crucial nonlinear effect, which is random
convection of % by fluid turbulence. In Eq. (11b), k” refers to the
background spectrum produced by modes of neighboring helicities.

Noting that when jz =0, ¢? N ﬁz/x, it follows that for stationary
turbulence (aﬁz/at = 0), the radial structure of ﬁ? is determined by
the asymptotic balance of thermal conduction with diffusion. This

~ yields a radial scale for ﬁz given by

C 174
’;:: (D"/Xn I ?) ’

where k, = kix. As A% is amplitude dependent (through DK), it follows

that, in the nonlinesr regime, the basic radial scales for 7 and ¢ are
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determined not by the linear eigenmode width but rather by the
turbulent correlation length. This length is in turn determined by the
coupling of radial diffusion and radially varying paralliel thermal
conduction. Thus, it is clear that the saturated state, characterized
by jz =0 and by a nonlinear scale size AE, is radically different in
character from the linear regime.

At this point it is useful to indicate the correspondence between
AE and the scale length x, = (D/kﬁvTe)1/3, defined in Ref. 11. Recall

that x, is the radial correlation length associated with shear-induced

resonance broadening; that is, x, = wc/kﬂvTe, where w, = (kﬁzvieo)i/g

is the electron decorrelation rate for radial diffusion in a sheared -

magnetic field. In that problem, radial diffusion coupled to radially
dependent single-particle ballistic streaming (NkﬁvTex) to yield a

correlation length x, ~ D73,

Here, radial diffusion couples to
radially dependent parallel thermal diffusion (~kﬁ2x"x2) to yield a
correlation length AE ~ DI, Thus, in both cases “the nonlinear
decorrelation mechanism involves the coupling of 'radial diffusion to
the shear-induced radial dependence of k.

Another consequence of the condition J, = 0 is that the second

saturation criterion 0E7/0t = 0 reduces to

L |52
dx %, 3|12 = [ dx = Ep —X (12)
f"xuu""; = th-o o

where Eq = “OJZO’ and it is understood that x N 0 is excluded from the

domain of integration. The prescription for resolving the x = 0
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singularity is discussed below. The structure of the right—hahd side
of Eq. (12) illustrates the intimate connection between the rippling
instability and the asymmetric (in xj spectrum structure, since for
lﬁ¥]2 even in x, the driving term, which contains the free energy
source (I/Lﬂ)‘ would vanish. Also, the asymmetry of Iﬁ?[2 is another
indication of the irrelevance of the x & 0 region to the rippling mode
dynamics. Equation (12) is homogeneous (in explicit dependence) in
resistivity fluctuation level and is only satisfied when the amplitude
dependent radial scale (correlation) length adjusts to the value
determined by Eq. (12). Using Eq. (12), it follows that saturation

occurs for

¢ LEp oy-173
& (L,@) kie)

which requires that

4/3
1.3

E | |
L:‘BO> k) (13)

Equation (13) states that saturation occurs when turbulent diffusion is
large enough so that dissipation due to parallel thermal conduction,
proportional to x”(k A») balances the resistivity gradient driving
term, proportional to ( S/Ln)EO/AE' The length AE can be viewed as an
amplitude-dependent mixing length, which adjusts so that source and
sink terms balance, thus satisfying the condition 8Ey/0t = 0. In this
picture, the nonlinear saturation mechanism is radial—diffusion—induced

thermal dissipation, which occurs through the coupling of radial
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diffusion to radially varying parallel thermal conduction. Physically,
damping occurs wien a resistivity fluctuation parcel is first scattered
to finite x (and hence finite k) by diffusion and then destroyed by
thermal dissipation, proportional to Xy (kg A») Alternatively, it may
be said that because radial diffusion smears out the structure near
x N0, x"kﬁ2x2 is always greater than X”(kﬁAE)2, its value with x = AE,
the radial correlation length.

A quantitative calculation of the level of turbulent diffusion
required for saturation is now presented. Using Egs. (4) and (5), with

N

J; =0 to eliminate ¢ from Eq. (11), at saturation yields

2 2 S
Xk e - D* QTB_

(14)

By 2 convenient change of variable x = AEAl/gy, where

A= LSEOAE/(LnDt), Eq. (14) can be written as

82'?']-) .
k . pa3(l 2y, _
ay2+A (y y)z_o. (15)

Using the WKB phase integral quantization condition, the
eigenvalues of Eq. (15) are given by

8§-+0 2 + &

34 J172
A2 lin é [_ﬁl_:_é_l} dz = pm . (18)
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Since A w I/DK’ p=1 corresponds to the largest level of

diffusion, so that

173
G ki) (17)

o - [I"(l/s)P(l/Q)] [-<E o)

k 2n1(2/3) \FnB

at saturation. Apart from the numerical factor, the results of
Egs. (18) and (17) are identical.

A striking characteristic of the level of saturation for the
kinetic energy predicted by Eq. (17) is the comparatively weak
dependence on Xy. This is in marked contrast to any expectation based .
on the linear theory, in which tﬁe linear growth rate scales as Xﬂ4/3
Furthermore, it is in disagreement with a previous result obtained by
these authors and reported in-Ref. 6. In that paper, the level of
diffusion at saturation was estimated by balancing xﬂ(kﬁAE)2 with the
linear growth rate n, yielding DK' Thus, while the nonlinear damping
‘mechanism was the same, the driving term in the saturated: state -was
erroneously approximated by the linear growth rate. Here, the jz =0
condition has facilitated a more accurate apprdximationv of  the
nonlinearly relevant driving term as (LSEO/Ln)/AE’ which results in a
weaker scaling of DZ with x,. In retrospect, the previous result
yielded, in essence, a measure of the level of diffusion at which the
system undergoes the tranSItlon from |inear [y > D»/(ﬁﬁ) 2] to nonlinear
Eﬁ < D»/(A») ] regimes, rather than the actual saturation level itself.
It is readlly‘apparent that the level of diffusion at saturation is

significantly larger than that for which X"(kﬁA§)2 ~ . Thus, this
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problem is an example of a nonlinear theory that addresses the
mechanisms of both saturation and drive in the stationary state. Also,
it is instructive to remark that the large difference between the
levels of diffusion at transition and saturation is an indication of
the errors that may result from the use of oversimplified mixing length
*rules," such as D w q/ki. Finally, it should also be noted that, as
in the case studied in Ref. 6, the mechanism of diffusion-induced
thermal dissipation, rather than quasi-linear flattening of the
resistivity gradient, is the dominant saturatjon mechanism.

The validity and limitations of the assumption j; =0 have been
studied by numerically solving the renormalized equations for the

resistivity evolution, Eq. (11), together with the ¢ evolution equation

in the steady-state limit. They are:

i 1
Oy =7 - Xllkﬁ2x2ﬁi + Tgny T dr=0, (18)
ot | ]
k 1 22, . ¥Z0 Lo~
M - —k“x%ps - | =——kxm> =0 . (19)
ax4 " i k BZTIO ™

Equations (18) and (19) reduce to Eq. (14) in the limit w = 0, which is
equivalent to the jz = 0 condition. This system of equations has been
solved as an eigenvalue problem. Here Dﬁ is taken to be the eigenvalue
for a given viscosity w. An anomalous viscosity m is generated by
fluid convection and can easily be estimated by following the procedure

used to obtain Dﬁ‘ However, since the convective nonlinearity of
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'Eq. (5) . conserves energy, replacing the nonlinearity by a simple
viscosity is not, in general, an adequate renormalization -procedure.
Indeed, a simple 82/8):2 is an overestimate of dissipation. However,
thé basic features of the result, that sensitivity of Di to ¥,
increases, do not change when a more sophisticated renormalization is
used. In Fig. 1 the calculated values of DE are compared with the
analytic result, Eq. (17), obtained in the Ilimit p=0. The
calculations have been done for equilibrium parameters close to
- characteristic plasma edge parameters in the Macrotor! tokamak: namely,
Ly = 0.3a, Lg = 4.2, rg=0.752, S= 10°, and 10* <, < 107, where
Xy = X”TR/R%. For w=0 the analytic results ‘agree well with the
numerical ones. There is a reduction of the level of diffusion
requibed for saturation as viscosity increases. This effect is
stronge: ab high x;, and it increases the dependence'of.Dz on ¥, for
finite J,.

To conclude this section, it is worthwhile to add that the
nonlinear theory developed here is essentially one of a renormalized
resistivity response calculation. This analysis yields insight into
the nonlinear space and time scales AE and (x"(kﬁAE)2)"1, analogous to
the eddy size and eddy turnover time of fluid turbulence, respectively,
that are necessary for construction of a basic nonlinear theory and
calculation of fluctuation levels. However, detailed calculation of
fluctuation spectra réquires construction of a two-point theory for
<ﬁ(r1)ﬁ(r2)>§, which accounts for incoherent mode coupling as well as
the nonlinear coherent response and resistivity gradient drive. The

spectrum is then determined by the balance of the difference of
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incoherent emission and coherent damping (diffusion) with resistivity
gradient drive. The importance of incoherent mode coupling is easily
seen by noting that the nonlinearity $¢ Xz §n conserves Er but the .
renormal ized coherent response equation [Eq. (11)] does not. However,
none of ﬁhe results of this paper are sensitive to this deficiency,
which will be rectified in a future publication. Finally, in lieu of
an analytical calculation of the poloidal mode number spectra,

numerical results are used to compute (m),..o when necessary.
IV. MULTIPLE-HELICITY RIPPLING MODE CALCULATIONS

Numerical studies of multiple-helicity rippling mode turbulence
have been done using the basic rippling mode model described in
Sec. III. The nonlinear equations, Egs. (1)-(3), are solved by a
nonlinear three-dimensional (3-D) initial value code KITE.B The
numerical method used in this code is finite differences in the radial
variable r and spectral representation in the poloidal angle © and
toroidal angle ¢ = z/Ry. The time integration is first order accurate,
and all of the linear terms are treated implicitly. For details on the
numerical scheme and convergence studies, see Ref. 8.

When Egs. (1)-(8) are written in dimensionless form, they depend
on two dimensionless parameters S and ¥, which are defined in
Sec. III. For many of the numerical studies, a viscosity term has been
included in Eq. (2). It has the form R;1VEU. There is also 2 small

perpendicular heat diffusivity term included in Eq. (8), XlViﬁ‘
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It has been assumed in the numerical calculations thet the
rippling mode turbulence is localized in the annular region in minor
radius. This allows us to treat the problem with a moderaté number of

modes.
The equilibrium considered here is similar to the characteristic
edge plasma conditions in the Macrotor! tokamak. An electron

temperature profile
Teo(r) = Tep(O) [1 + (r/r)?] 7

is asumed for the numerical calculations. The resistivity profile is

~then determined by the Spitzer relation. = The equilibrium current

profile, J, 5, is chosen to be consistent with a resistive equilibrium.
The safety factor q profile is determined by taking q(0) = 1. The
value of "o is then fixed by setting the safety factor at the plasma’
edge qfa) = 3.5. This gives Fo = 0.632a. An~equi|ibfium mass density

profile
pg(F) = pp(0)[0.75(1 - r?/a2)? + 0.25]

is assumed. This gives a value for p, = 0.89%,(0) in the region of the
rippling mode activity. The dimensionless parameters S = 10° at the
magnetic axis and ¥, = 2.5 X 10° correspond to a peak electron density
of 10! em=, a toroidal field of 2 kG, and an electron temperature of
15 eV at r = 0.77a, the center of the region where the rippling mode
turbulence is supposed to be localized. In this région, S=10* The

major and minor radius for the calculation are taken to be those of
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Macrotor,  that is, Ry =90 cn and a =45 cm. The perpendicular
diffusion coefficient is fixed for all the calculations to X = 1072,
and the viscosity term is neglected unless otherwise stated.
Since the equilibrium is an exact, steady-state solution of
Eqs. (1)-(8), it is necessary to add a small perturbation to break the
symmetry, in order to perform a stébility calculation. An initial
perturbation is usually added to each Fourier component of the variable

¢, which has the form

where Pg = rg+ T, withI' = 0.0144. For the calculations described in
this paper the normalization constant Wy is taken to be 107°. Al the
modes used in the calculation were initialized at this level. The low
initial amplitude of the modes allows a separation of the linear phase

of the evolution, which is a useful way of controlling the numerics.
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To compare the role of quasi-linear stabilization with that of the
turbulent stabilization of the rippling modes, the numerical
calculations have been performed in two different ways. One way was to
allow the free evolution of the resistiviﬁy profile. Another
alternative was to hold the average resisbivity profile constant. The
latter can be justified by the balance of the ohmic heating and thermal
diffusion in an actual tokamak and is probably a more realistic way of
simulating the experiment. Comparisons between these two types of
evolution are given in this section. .

Let us first discuss the effect of turbulent stabilization of
rippling modes. For this purpose, the numerical calculations must be
done with a relativel& targe value of x,, in order to detect its
effects with a moderate number of modes in the caleulation. If x, ‘is
too large, the unstable spectrum of rippling modes is too narrow and
the assumptions used in the theory of turbulent saturation are no
longer valid. The dependence of the linear growth rate on ¥,
discussed in Sec. II, can be used to make an estimate of the relevant

number of modes m to be considered in the calculation,

574
m < 10 (_(i> st
I

For Macrotor parameters, m < 50. This indicates that for these values
of the parameters a full 3-D calculation is feasible. Several
nonlinear calculations have been done for different numbers of modes,

namely, 2, 13, 49, 108, and 177 modes. The average resistivity profile
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has been held constant for all these calculations. In Fig. 2 the

mean-square radial velocity

_ 2
E= E l_er} ¢mn|
mn

is plotted as a function of time for the five different cases. It is
clear that, in spite of not allowing the gradient dno/dr to relax,
there is é'strong stabilization effect associated with increasing the
number of modes. It is also apparent that E saturates when a
sufficient number of modes is included in the calculation.

When only. two modés are included, the {m=0; n=0) and
(n=5; n=2), and the (m=0; n=0) is held constant in time, the
(m=5; n=2) grows without limit at its !inear growth rate, and there
is no saturation. Including 13 modes, the nonlinear stabilization
effects are obvious; nevertheless, they are not sufficient to reach 3
saturated state. It is necessary to include 49 or more modes to reach
saturation. Reasonably converged results are obtained with about 100
modes. It is important to look at the effect of the nonlinear
stabilization on individual modes. Figure 3 shows the kinetic energy
for the (m=5 n=2) and (m=28; n= 12) modes for the different
cases being considered. For the calculation with 13 modes the
{m=28 n=12) mode is not included. It is clear that, for a given
test mode, the convergence of the results depends on the number of
modes to which it is nonlinearly coupled. For a fixed set of modes,
- because of the method of mode selection, the m = 5 mode couples to more

modes than the m = 28. Namely, for the case with 49 modes the'm = 5
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couples to 45 modes; the m = 28, only to 23. Hence, convergence of the

kinetic energy of the m =5 mode is achieved with a lower number of

modes. The m = 5 mode is slightly stabilized for the 13-mode case bhut,

since the number of modes is insufficient, the mode does not saturate.

Although the m = 28 saturates for the case with 49 modes, the level of

saturation is five times larger than the converged value. The

amplitude of the oscillations around the saturated level decreases with

increasing number of modes. The frequency of oscillations is very

high. To clarify the comparisons of results with different numbers of
modes, the plotted results have been averaged over this fast frequency.
This high-frequency oscillation is discussed later in this section.

As previously mentioned, the numbér of modes réquiréd to observe
the turbulent stabilization at low values of Xy can be very high.
Nonlinear calculations have been done for the same Macrotor-type
equilibrium, changing only the value of ¥, from ¥, = 2.5 X 10° to
Xy = 10*. Nonlinear stabilization effects were also clearly observed
for this case. However, it was not possible to obtain converged
results with a number of modes and grid points that can be handled
reasonably.

All  the numerical results show very clear evidence of a nonlinear
saturation mechanism, totally unrelated to the quasi-linear flattening
of the resistivity gradient. It is interesting to combare the
situation in which both stabilizatibn mechanisms can compete with each
other. This can be done by letting the resistivity profile relax
during the nonlinear evolution. A calculation has been done for the

same equilibrium parameters as before, including 108 modes. In Fig. 4
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the evolution of E for the two cases is compared. Figure 5 shows -the
evolution of the kinetic energy for the (m=5; n=2) and
(m = 28; n = 12) modes for both types of nonlinear evolution. The
level of saturation with quasilinear flattening allowed is lower than
that for the case in which the resistivity profile is held constant.
This different level of saturation is due primarily tb the m = 5 mode
(Fig. 5a), the lowest m mode included in the calculation. The level of
saturation of the high-m modes is almost unchanged (Fig. 5b). However,
the frequency of oscillations around the saturated value fis clearly
different. Here, the high frequency oscillations of the kinetic energy
of the individual modes have been retained. In the case of the frozen
resistivity profile, the oscillations are high frequency, with period
T [y, (k03)?

1"k rms _
oscillations are low frequency, on the time scale of the fluctuations

]_1. In the case where no is not frozen, the
in dno/dr caused by convection of m, by the (m = 5; n = 2) mode.

The numerical calculation can also be used to directly test the
condition EZ =0, which has been used in the analytfc theory of
resistivity-gradient-driven turbulence. For the (m = 5; n = 2) mode at
saturation, the functions V"¢, nOEZ' and ﬁJzO have been plotted. In
Fig. 8 it can be seen that in the relevant region, near the peak of ¢,

the condition J, = 0 is approximately verified.
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From Eq. (18) it is clear that the level of turbulent diffusion
required to saturate an (m;n) rippling mode scales as w273,
Therefore, in the numerical calculation, the nonlinear stabilization
effects are evident first for high-m modes and, as the level of
turbulence increases, are then manifestéd in low-m modes. It is
interesting to make a more quantitative estimate of this effect. To do

so, ignoring the k, dependence of DK, one can express the level of

resistivity diffusion in terms of the mean-square radial velocity

: - 273
Dy (t) = [___E.KE)__J
n)rms
where it is explicitly shown that the mean-square radial velocity is a
function of time in the calculation (Fig. 2). The time at which a test

mode k = (m; n) saturates is given by the equation

Di =Dy (t) .

Then, using Eq. (17), it is possible to calculate the mean-square

radial velocity required to stabilize the test mode,

2
E=1.55 () s /L5E°> .

v (o

In Fig. 7 the value of E has been plotted vs m for the particular

parameters of the numerical calculation. The value of E for which the
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different modes present in the calculation are stabilized is also
plotted in the same figure, in the form of a histogram. The modes have
been divided into five groups, in relation to their m value, and the
level of mean-square radial velocity required for stabilization is
defined as the value of E when the net nonlinear growth rate of the

‘mode becomes zero. There is a clear correlation between the

analytically calculated value and the numerical results.
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V. FLUCTUATION LEVEL AND TRANSPORT

Having elucidated the basic nonlinear saturation mechanism and
calculated DK at saturation, it is now possible to estimate a number of
relevant quantities that characterize saturated
resistivity-gradient—driven turbulence. These include the mean-square
radial velocity, and the rms potential, density, and resistivity
fluctuation levels. Ignoring the k, dependence of DK (which
constitutes a Markovian approximation, already tacitly assumed),

Eq. (17) can be rewritten as

E2. 4/3
E’x [ 72, ]2 _134%8> L R
i T

where Ez = k%l¢§lz and, consistent with the fact that summation over [
sweeps the background turbulence response function over its radial

width AE» " was approximated as A,” Thus, taking kg~ (kg)pps, it

fol lows that
E:ZEI(»N 1.55 (LS%)Q o (21)
z z
and
Vo) s 1.23:—22, | (22)
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L E
) yi1.93- 20 (23)
Te Jrms Ln Bz sps(ke)rms

Here 7r is the radial fluid velocity, cg = (To/m;), and pg = co/Q;,
where m; ana ); are the ijon mass and gyrofrequency, respectively.
Finally, 1t should be noted that the somewhat puzzling absence of a ¥,
dependence of E can be resolved by inclusion of a viscosity W, as
discussed in Sec. III.

In similar fashion, the rms resistivity fluctuation can be

estimated as

(ﬁ_> SR p— LjEO .
0 . c
0/rms Xu(kﬂ )vr'ms(A'k*)2 LﬂBz

Tt follows that

Note that (N/MQ)pms ™ Ac/Lﬂ n RT3 Thus,  the  resistivity

fluctuations increase rapidly with increasing radius as T, decreases.

\
A
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These results can be compared with the mean-square radial velocity
and rms potential and resistivity fluctuation levels obtained in the
3-D numerical calculations described in the last section. To do this,
it is necessary to have an estimation of (m)rms. As the spectrum is
peaked at low m, it is tempting to use the lowest m value in the
calculation, namely m = 5. However, the correct procedure is to
calculate (m).,s ab saturation. In Fig. 8 the rms m has been plotted
as a function of time. The saturated value is (m)rmé = 8.8, which
indicates the peaking of the spectrum at low m. Using this value, the
rms resistivity fluctuation level can be calculated from Eq. (24), and
one finds (ﬁ/no)rms = 5.2 X 102; that is, (?/TO) = 3.5 X 102, The
mean-square radial velocity calculated with Eq. (21) is E = 303a2/7§.'
These values compare well with the numerical results. In Fig. 9 the
time evolution of the mean-square radial velocity, radial magnetic
field, temperature, and density is given. From this, the mean-square
radial velocity at saturation is found to be E = (375 = 25)32/¢§, and
the mean-square temperature fluctuation is (?/TO) = 4.9 x 1072, These
values agree well with the predictions of the analytic model.

In addition to the_quaﬁtities estimated above, the rms density
fluctuation is of considerable interest in the context of experimental
edge turbulence studies. The basic rippling instability model does not
include density dynamics, 'and it is difficult to properly and
self-consistently account for density evolution without a significant
departure from the very simple model adopted here. Nevertheless, some
insight into the level of density fluctuations driven by the rippling

mode turbulence can be gained by consideration of a model in which the
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~density n evolves by convection as a passive scalar in the field of
fluid turbulence, determined by Egs. (4)-(6). In this model, the

density perturbation n evolves according to

an - «.->_~an ‘
%5;4-(vl¢ Xz) *Vh= Vg - | (25)
As before, the rms density fluctuation level at resistivity fluctuation

saturation can be estimated by

n E ’
n NN s-0\ 1

n ) ¢ LﬂB ) L, ’
( 0 rms \M"z/ n » »

where L, = [d(In no)/dr]‘1 and 77 is the density résponse correlation

time, which, since T is convected as a passive scalar, is the fluid
N

eddy turnover time. Hence, 77 W (Vrms/An)—l’ where A is the radial

scale length of the density perturbation. As it is appropriate to

consider the relative size of density and resistivity fluctuations, it

is useful to define

R = (’ﬁ/n())rms ‘
(h/ng) rms

Using Egs. (22) and (24), it follows that
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n
N

o::lo.:s

-

where 7] = [X"(kﬁAE)z]'l. Since the enhanced decorrelation effects
related to parallel thermal conduction do not play a role in density
dynamics, 79 < 1] since Ap > Aﬁ. Thus, for Ly ~Ll, R<1 and
N N . c d

(“/no)rms < (W/ng)ppse Using Egs. (13) and (22) for AE and Vppe,

respectively, it follows that, more generally,

x4 O

(27

=>| =

RN

—Lf

Thus, rippling mode turbulence éan support a moderate level of density
fluctuation that exceeds the level of resistivity (temperature)
fluctuation.

When comparing resistivity and density fluctuation levels
determined by numerical solution of the equations, it is important to
note that due to the absence of dissipation in the density evolution

equation, the energy

_1lp o3 v2
%_§fdxh]
evolves according to

Oy 3, &
= = —f d°x (n7v
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and thus grows without saturation when dng/dr is held constant. Of
course, in reality density evolution is controlled by dissipation
associated with coupling to outgoing ion sound waves and thus,
ultimately, fon Landau damping. However, examination of R at the time
of resistivity fluctuation saturation can provide some insight into the
relative magnitude of the density and resistivity fluctuations. This
has been done using the numerical calculations. Equation (25) is
solved together with Egs. (1)-(3), not as part of the dynamical model,
but as a diagnostic for the induced density fluctuations. Note that
the density calculated with Eq. (25) does not couple back to
Egs. (1)-(8). In Fig. 10 the time evolution of R is plotted. At the
saturation of the resistivity fluétuations, R=0.3. For the
particular resistivity and density profiles used in the calculation,
Ly/Ly = 1.5, the resistivity widsh AE 2 0.082, and the density width
A, = 0.14a. Therefore, the value of R is consistent with Eq. (27).
The density fluctuation level at saturation is (fi/ng) = 0.22, using the
Macrotor parameters and the value of (ﬁ/no) obtained in the numerical
calculation.

Thus, in contrast to a statement made in  Ref. 12,
resistivity-gradient-driven turbulence, which evolves from rippling
modes, can produce large density fluctuations. Also, since significant
deviation from adiabatic density response ('h'/n0 ~ ed/T,) has‘been
observed experimentally,® the viability of this model does not depend
on its predicted relationship between density and potential

fluctuations.




In order to complete our study of rippling mode turbulence, the
thermal and particle transport in the saturated state is noﬁ discussed.
Since no evolves by electrostatic convection (conduction being
negligible for relevant x, and 4 levels), it follows that the
resistivity (temperature) flux Ih is

(28)

Using the rms values of Vr and (ﬁ/no) given in Egs. (22) and (24),

respectively, to estimate fh, it is easily verified that

<Ep 2 1/3
, -173 1
Ty =1.3 LnB > (x<ky "2 rms) T (29)

and the resistivity (thermal) diffusivity D, is given by

4/3
sEo ,0 -1/3
Dy N 1.34 L,IB ) (x“<k > rms)

Note that Dﬂ is the same as DK with kﬁ2 evaluated at the rms value. 1In

particular, the dependence of Dﬂ ony, is quite weak. For Macrotor

plasma edge parameters, D, = 8.8 X 108 cm? /sec.

!
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Similarly, the density flux Th is given by

—k} -
7&; . (30)

Thus, evaluating I, by a procedure similar to that used in the

evaluation of Iy, it follous that Iy =T} /R, and

21 Lh
D, “RT, Dy, (31)

where D, and D,n are ﬁhe density and resistivity diffusivities,
respectively. Since R< 1, it is apparent that rippling mode
burbulence can support moderate levels of density transport at smaller
levels of thermal transport. For Macrotor parameters, Eq. (31)

‘predicts a density diffusion coefficient D, = 1.7 X 104cm2/sec.
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VI. SUMMARY AND CONCLUSIONS

An analybtic theory of nonlinear evolution and saturation of
resistivity-gradient—driven turbulence has been developed. The
“nonlinear saturation mechanism has been identified. The saturation
mechanism is the turbulent diffusion of the resistivity fluctuation
into the region of large damping due to parallel heat conduction. The
basic model of the resistivity—gradient—driven turbulence and the
saturation mechanism have been confirmed by detailed numerical
calculations. The main results of the theory are as follows:

(i) The vorticity equation decouples from the resistivity
evolution and Ohm’s law, 72 = 0.

(ii) The dominant nonlinearity is the nonlinear convection of the
resistivity. The  turbulent radial diffusion, induced by this
nonlinearity, coupled to the radial dependent paralliel heat conduction
is the dominant dynamical effect controlling the nonlinear evelution of
the rippling modes.

(iii) The resistivity and potential eigenfunctions have an
intrinsically nonlinear  character, The eigenfunctions  are

' c
characterized by an amplitude dependent scale length AE'
(iv) At saturation, AE adjusts to a value at which thermal

dissipation balances the resistivity gradient drive.
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(v) The turbulent saturation mechanism is the dominant mechanism
when the average resistivity gradient is maintained by an adequate
balance with ohmic heating.

Having studied in a sequence of papers the quasi-linear
saturation,® the transition to nonlinear evolution,® and in this paper
the nonlinear saturation of these resistive MHD instabilities, we now
briefly indicate their differences and intefrelationships. This is
done in terms of the radial decorrelation length &x and the
decorrelation time dt. The values obtained in the various levels of

nonlinear models (at least from a scaling standpoint) for these

N

quantities and thus for the maximum radial convection velocity v. and..

the resistivity (temperature) diffusion coefficient Dy ™ (8%)2/t are
~indicated in Table I.

There are two important facts to learn from this table. First,

the transport characteristics at the turbulent saturation are very
different from the commonly used D ~ q/k§ quasi~linear time estimate.
Although the fundamental drive mechanism (the resistivity gradient) is
the same, both the radial the decorrelation length and the
decorrelation time are increased and unrelated to their quasi-linear
values. Thus, even though the linear growth rate of these modes

. ¢ '
decreases as xﬁ4/3 for large heat conduction x,, A» decreases only as

k
xﬁl/s, so the effect of these modes in their turbulent state is much
targer than might be expected from linear or quasi-linear type

estimates.
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Second, and equally importaﬁt, is . the fact that the turbulent
decorrelation distance or mixing length Aj and the concomitant
decorrelation time Tj must be determined from a turbulently
self-consistent model? Namely, A: attains the value required for the
free energy drive (resistivity gradient) to balance the thermal
dissipation (through parallel héat conduction in a sheared magnetic
field with turbulent radial diffusion), as discussed in Sec. III.
Thus, we find that in order to properly‘assess the possible impact
of any particular plasma instability, fully turbulent self-consistent

models of the free energy sources and the dissipative mechanisms must

be . developed and solved to determine the relevant "mixing" lengths and -

times and the consequent transport. Linear/quasi-linear estimates are

inadequate and, at least for the rippling mode turbulence we have'

considered, very misleading in their scaling.

The theory of resistivity—grédient—driven turbulence makes
conerete  predictions for the saturated level of resistivity
(temperature) and potential fluctuations and also allows us to estimate
the level of density fluctuations. Theée predictions, (¥/TO) R 0.05
and (N/ng) N 0.25, are consistent with measured values at the tokamak
plasma edge. The main properties of the resistivity-gradient—driven
turbulence — fluctuation levels, correlation lengths,® and predicted
ancmalous diffusion coefficients — assert the viability of this model

as an eiplanation of the edge turbulence in tokamaks.
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TABLE I. Characteristic decorrelation lengths (8x) and times (8t) and
the consequent maximum radial convection velocity Vr and resultant

transport (Dy) for various levels of nonlinear models.

Transition Nonlinear
Quasilinear | to nonlinear saturation
saturation® evolution® {this paper)
8x  xg (resistive Ay (lowest mode | AE (amplitude~-
layer widbh) decorrelation dependent
or Arg (heat conduction distance) mixing
fimited) length) .
-1 ’ -1 c c
&t = A
Vi near _ Vi near TE( K/vr)
~ L. E : L. E
s =0 M s -0 1
¥ N XR N T—5— = —— ~y A — ==
X L*R Ln B; “OLn L=0 Lﬂ B, “OLn

C
Dy quﬁ ﬂLA% (A§)2/¢9
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FIGURE CAPTIONS

FIG. 1. Diffusion coefficient at saturation as a function of the
parallel electron heat conductivity for different values of the
anomalous viscosity.

FIG. 2. Mean-square radial velocity as a function of time for
calculations with 2, 13, 49, 108, and 177 modes.

FIG. 3. Kinetic energy for the (m = 5; n=2 and (m=28;n=12)
modes - for the cases in Fig. 2. The‘ (m=28;n = 12) mode is not

included for the calculations with 2 and 13 modes.

FIG. 4. Mean-square radial velocity for calculations with 108 modes: -

when the average resistivity profile is frozen in time and when it is
allowed to relax during the evolution.

FIG. 5. Kinetic energy for the (m = B;n = 2) and (m = 28;n = 12) modes
for the cases in Fig. 4. '

FIG. 8. -The functions ¢, v és “03 and ;JO’ are shown for the
(m =5;n = 2) mode at saturation in the region near the peak of 4.
Arbitrary units are used.

FIG. 7. Mean-square radial velocity required to stabilize a given mode
vs m. The actual values for which the modes are stabilized in. the
simulation with 108 modes are also plotted, in the form of a histogram.
FIG. 8. Time evolution of the mean-square m for the case when 108
nodes are included in the calculation.

FIG. 9. Time evolution of the mean-square radial velocity, méan—square
radial magnetic -field, mean-square temperature perturbation, and

mean-square density perturbation for the case in Fig. 8.
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FIG. 10. Time evolution of R, the ratio of the relative size of

density and resistivity fluctuations, for the case in Fig. 8.
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