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Abstract

The effect of frequency modulation during stochastic ion heating
induced by lower hybrid waves is examined. The modulation occurs
either in the ion cyclotron frequency due to the variation of the

magnetic field in toroidal devices, or it can be externally imposed on

the frquency of the lower hybrid waves. It has already been observed

“.numerically [Phys;lFluidsdgz,”184(1984)].that a.small variation in the
ion cyclotron frequency can ‘induce velocity diffusion for wave
amplitude well below the stochasticity threshold in a uniform magnetic
field. Here a detailed study reveéls that to the iowest order in the
small parameters, the modulational effects can be incorporated in a
two—dimensional Hamiltonian. 'This allows £h63 &erivation “of the ﬁew
stochasticity thresholds. It 1is found fhat a small amount of
modulation, %? < 1%, produces an order of m&gnitudé reduction in the
stochasticity threshold relative to the constant frequency case.  The
stochastic regime in velocity space also grows in size, resulting in a
considerable increase of the number of heated particles in the case of
de&ices lwith modeét .aépeét lrafio. Both ion cyclotfon ahd“wave
frequency modulation. lead to similar results. The modulation of the
wave frequency offers 'the ability to control and optimize the
modulation parametersk and is proposed as a method to enhance RF

heating.
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I. INTRODUCTION
The interaction of a charged particle with a coherent
electrostatic wave propagating perpendicularly to a static magnetic
field has been éxtensivély studied in a number of papers. Karney1 has
considered this problem for the case of a uniform B-field. He has
shown that under certain conditions the equations of motion of the

particle are well-approximated by & discrete two—dimensional map of the

form
uj+1 = uj + 2n6 — 2nA cosyj
(1)
vj+1 = vj + 276 + 2nA cosuj+1
with
u; =95 = p; bV =0y ey

where P and ¥, specify the particle speed perpénﬂicular to B and its

]

gyrophase. The index j signifies that these quantities are evaluated
at the j—th cyclotroh period. The quantities A and 6§ are parameters of
the system; A‘ is the normalized wave amplitude and ¢ the normalized
wave frequency; 6 = w/wc mod 1, where w and w, are‘the wave frequency

and the particle gyrofrequency. Karney finds that when A exceeds a

critical value, A_ ~ 0.25, wideébread diffusive behavior of the

S

particle energy results. Thus, if the amplitude of the wave is large:

enough, energy transfer from the wave to the particles becomes possible

and heating of the plasma results.l’2

In particular, this picture has
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been invoked with reference to ion heating in lower hybrid heating
experim.ents.3

Karﬁey's map was modified in Ref. 4 to include the effect of the
nonuniformity in the mégnetic field, a familiar situation in many cases
of interest. As the magnetic field strength changes, ion cylcotron
frequency w, changes as well and the frequency mismatch 6, defined in
the. previous paragraph, is modulated in time instead of being a
constant. It was argued that for sinusoidally varying magnetic field
strength and free streaming particles along the magnetic lines

B = Bo(l + ¢ sinkz)_llﬁ, v, = const. ,

the autonomous map (1) valid in the uniform B-field case evolves into.a . -

" similar nonautonomous ‘map, by replacing 6 = const. with

6; = 6g + evsinnjQ , O = kv, /o, ' (2)

an explicit function of time tj = 27j. Numerical results4 obtained by

]

small size ripple in the magnetic field (SSI%) can completely change

iterating Eq. (1) with modulated 6., Eq. (2), showed that relatively

the behavior of the syétem, inducing diffusion of the particle velocity
for values of the wave amplitude A much lower than the homogeneous
magnetic field stochasticity threshold As‘ The observed thresholds for
fast diffusion were much,lqwer‘thanﬁﬁthe uniform field stochasticity
threshold Asﬂ while slow diffusion persisted for very small wave
amplitudes. An analytic derivation of the. fast diffusion thresholds
was not possible +through the frameﬁork of Réf. 4, and remains to be

considered. The effect of the inhomogeneity on the boundaries of the




parameters.
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stochastic regime in velodity space also needs to be examined since,
after all, it will determine the percentage of particles that absorb
energy from the wave. Finally, the approximations made during the
introduction of the nonautonomous map, considering the variation of |§|
along magnetic ljnes as the main effect (i.e.,.ignoring perpendicular
gradients) énd assuming the ions free streaming in the same. direction,
need to 56 justified in a more systematic way. Note that the'time
variation of the mismatch dj betweep fhe'cyclotron frequency w, and the
wave frequency w can be produced by thé modulation of either one of the
above two characteristic frequencies. Although variation of We is

inherent in toroidal devices due to variation of the magnetic field

strength, it can be  advantageous to externally modulate the wave

.frequency .w,. . .offering the -possibility .of optimizing the modulation:.

In this paper the emphasis will be given initially to the detailed
study of the case when the cyclotron frequency Qc is modulated due to
toroidal effects. The Hamiltonian formalism will be used to show that,

for small size ripple ¢ in the magnetic field; the system behaves as a

" two—dimensional system and this behavior determines - the fast scale

diffusion. Proper action angle variables will be introduced for the
study of the surfaces of section and the transition to chaos. Lower
thresholds compared to the uniform magnetic field case are expécted as
the modulation frequency 0 introduces a new family of.resonances in the
system. This indeed turns out +to be the case, when an appropriéte
condition is satisfied: Turning back to thé map representation, this
condition simply means that 6, can go through one of the princip&l

J

resonances 6=0 or 6=1/2 of the uniform field case. The nonautonomous.
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map will be derived from the Hemiltonian of the system, justifying the
use of Egs. (1) and (2) to approximate the pafticle motion. Next the
attention will be turned to the case when the wave frequency w is
modulated externally while w, remains constant. It will be proved that
this process is physically equivalent tq that of the Wg modulation,
leading to similar conclusions. The picture will be completed with the
study qf the‘enlargement of the stochasti¢ regime in velocity space due
to the modulation, préducing enhanced power absorption from the wave.

The outline of thevreméinder of this p&per is as follows. In -
Sec. Il a large‘aspect ratio, slab geometry model is used to write the
ﬁamiltoniah of a particle ih a tokamak static field under the influence
of an. electrostatic wave propagating perpendicularly to the field
lines. :Keeping:only first ofder.terms.in'the perturbation paramétersmﬂ.”
reduces the system into a two—dimensional one. Then the equations: of
motion in the rippled magnetic field are derived. Resonant
approximation is wused to define the new action—angle variables. In
. Sec. III the motion on a surface of section in the phase space is
examined for different parameter values. Existence of invariant KaM
surfaéeé for wave amplitudes below some threshold is verified by direct
numerical integration 'of the equations of motion. The island
overlapping technique is applied in Sec. IV for the evaluation of the
new large‘ scale chaos threshold, and the process is repeated for the
higher order islands. It is found that the maximum reduction of one or
two orders‘of magnitude in the wave amplitude threshold oécuré for such
parameters ¢,v that AIJOW'G. to go through the main resonances (6=0 or

J
6=1/2), of the uniform field case.
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In Sec. V the nonautonomous map, Eqs. (1) and (2), is derived from

the Hamiltonian of Sec. II. kThe‘addtional validity condition to these
obtained vby Karney for the uniform field case is that the modulation
frequency 1 is slow enough for éj to be considered constant during one

gyroperiod. The qﬁantities pj and ﬂj are now computed at the end of

the j—th "reduced” gyroperiod, introduced through the transformations

of Sec. II. In addition, p signifies the square root of the magnetic
moment “1/2 father than perpendicular-velbcity. Since in normalized
units v, = (1—5)1/%H1/2, the diffusion coefficients derived
elsewhere4 are still.;alid for diffusion in velocity space for ¢

small. In thg same section -the apparent contradiction between. the
dimensionality of the nonautonomous map and the time autonomoﬁs
~Hamiltonian from which it is derivéd will be resolved. To bermores .
specific, the explicit time dependence in Eq. (2) is not generic but
imposed due to an approximation. The fast diffusion above a certain
threshold in A, observed in Ref. 4, is connected with the desfruction
of the invariant KAM surfaces,‘ shown in Sec. IIIl. The persisting

extremely slow diffusion below this threshold occurs due to the higher

5

than 2 dimeﬁsionality'of the map.

In Sec. VI equivalence 1is established bétweeh the modulation inv
irequency mismatch 6 due to the B-field ﬁonuniformity, and the
modulation of 6 in a uniform g—field due to an external variation of
the driviné wave frequenéy.» The new stochasticity threshold is
computed numerically as a function of the modulation pafameters and the
results are in'good agreement with the theoretical predictions of
Sec. IV. Frequency modulation in the LH waves is proposed as a method

to lower the wave amplitude threshold for effective RF heating.
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In Sec. VII the study is extended to include the case of a big
size ripple in the magnetic field, connected with the heating of
«compact tori. When ¢ is a modest fraction of one, the small parameter
expansion of Sec. II fails, and the ful; set of equatiqns of motion in
three dimensions must be solved simultaneously. Numerical integration
shows that the velocity threshold for stochastic ion heating is lbwered
considerably, and thus heating can become more efficient, as the
population of the. responding particles incrgases exponentially with

decreasing velocity. Section VIII is the conclusion.

~

~

IT. DERIVATION OF THE HAMILTONIAN

Here a Hamiltonian will be derived for a particle gyrating inw.the .- .

magnetic field of a tokamak,'including the effects of the variation of
l§|~along the magnetic lines. In the large aspect limit and using
rectangular coordinates with 2z along the field lines and y along the

direction of propagation of the electrostatic wave,

E = yEOcos(kly—wt) ,

B can be modeled by

(BX;BY,BZ) = By(0, ecosk ‘zsink 'y, 1 - esink ‘zcosk 'y)

where




¢ = inverse aspect ratio = r/R ,

k"= (RQ)"l,

g = safety faétor >1

r = minor and R = major radius of the torus ,

and the condition Z'g =0 is satisfied. g can be derived from a vector

potential A through B = VxA with A given by

~

A= (A,,0,0) = -By(y - ¢/k’sink zsink’y, 0, 0) .

Larmor radius Pj is considered small compared with the magnetic ripple
wavelength 2m/k’ but large compared to the electrostatic waveleng;ﬁ;a.
Zﬂ/kl accqrding to

A-k'pi << 1 <<k p;

This situation is different from the one examined by Gell and
Nakach;G’ they éonsidered the +finite Larmor radius+« effects of a
magnetic gradient perpendicular to both the field 1lines and the
direction of propagation of the wave with constan£ B along 1z, while
here finite Larmor radius éffeéts in assbciatién with the perpendicular
gradient are'éhown to be less important, and the dynamics is determined
by the variation of the magnetjc field strength along the field lines.
Since the motion perpendicular to B is to remain bounded for long
peribds, kK'y ~ k’p; << 1, and an expansion of the sin k’y term in the

vector potential yields




N £ ,
A, = —yBy(l-esink’z) + O[Ej (k pi)s]

The Hamiltonian H is given by

,elEOI ) _
H=H, - » 81n(kly—wt) ,
L
1 . 2 2 2

Hy = gn {[PX + mwcoy(1—551nkz)] + Py + PZ} ,
where w,, = eBy/m;c. Renbrmalizing lengths to kIl and time to w;é .. We
obtain H in a dimensionless form

H = é {yz(l—asinxz)g + Pg + PE} - o sin(y-vt) '(Sa)}

where "
IeIEOk
l rd
o = > s V=wlo,, » kK =k /ki
MW e g
and

x = y(l-esinkz)

The purpose now 1is to introduce an approximate Hamiltohian linedr in
the small parameters e, «, a~O(A) with A<<l. This is doné by applying

successively the canonical transformations




= (s 1/2 (1 -1/2
qy (1-esinkz)*/®y | Qy (1-esinkz) Py ,
(3b)
EKCOSKZ
= 2 ) =P = — »
4z QZ z l-esinkz ¥
and
qy = (211)1/2 sinﬁl ,
o . (3c)
Qy = (211)1/2 cosdy

and discarding terms of order Ag or higher. .The mathematical details
of the derivation are ‘given in Appendix A. The new approximate
‘Hemiltonian is

\ . 1 . ;
K(ﬂl,z,ll,PZ;t) = (1—551nxz)11 + > Pg - a81n[(211)1/231nﬂl~ut] : (4).

The energy of the particle in the magnetic field .is given by

Ky = (l—asinfcz)I1 +_% Pg ,

Here 11 is the normélized magnetic moment

1 2
2 = mv
Mo, -1 2 1
=5 By(l-esincz) el
kiBO 0




and ¥, is the reduced gyroangle expressed through Eqs. (3b) and (3c) as

¥y = tan‘l((l—asinxz) gl}
y

In  the absence of the wave interaction giﬁen by the term
o sin[(BIi)l/zsinﬂl—ut] in Eq. (4) the -magnetic moment I, is an

invariant of the motion according to

M 8K1 e s
I, =« 55; ) ¥y = (1-esinkz) (5a) -~
PZ = I excoskz , z = P, . _ (5b)

One can now obtéin the first—order solutions z(t),'Pz(t) from Eqs.’(SBf& 
applying perturbation theory. The details of the derivation are given
again in Appendix A. Replacing z and P, in (4) with their approximate
solutions z(t) and Rz(t) leads to the new one—dimensional,

time—dependent Hamiltonian

K = (1-esin0t)l; ~ « sin[(21;)Psino,-vt] . (6)
Finally, introducing (-t,E) as a pair of canonical variables, where E
is the total energy, we obtain the foilowing two—dimensional,

autonomous Hamiltonian

K = [1~ésin(% 85)]1; + vIy — sin[(211)1/2sinﬂl—02] . (7)

where
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It represents two harmonic oscillators, coupled through the nonlinear

wave term, with one of  their fundamental frequenéies being slowly
. 0 - . .
modulated according to 1 — ssin(;‘ﬂz]- In the limit of either &»0, or

0~0,

K~ I, + vy - quin[(ell)l/zsinﬁl—ﬂz] ,

while

2 ' 2.2 .

P P,tyY” 1/2
Ly Rl s 1/2 iy
= (5 ioiam + 7 (tmesinnt ) )7/ - (=5—)

and we recover the uniform B-field results, discussed in Ref. 1.
The equations of motion, derived from (5) are expressed in the

velocity—like variables Qy' qy,'defined through Eq. (3b) and (3c) as

4, = Qy(1—5s1th) .

Qy = —(1—5s1th)qy + acos(qy—ut) . (8a)
The above Eqs. (B8a) are combined into

dy f%%f?igi éy + (1—5sinQ’p)2qy = « cos(qy—vt) . (8b)

Note that ifv one neglects the second order term « aQéy, the LHS of

Eq. (8b) is the equation of motion for an harmonic oscillator with a
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time modulated characteristic frequency. As we should.expect, at the
limit 20 or 00  both (Q.q,) - (Py,y) and  also
Eq. (8b) » y+y = acos(y-vt), i.e., we recover the uniform B-field
results.

Expressién (7) for the Hamiltonian will be uéed later in Sec. V
for thé derivafion of the ‘nonautonomous map (1) used to model the
behavior iﬁ & nonuniform B-field, thus establishing the validity of the
finite difference approach. We proceed‘now in order to define proper

action-angle variables, Hemiltonian (7) can be written as

K=Ky +K, ,
where KO is the integrable part

.0
Kqg = (1~esin M 02)11 + u;z ,
since it possesses a second'integral of motion, I1 =C. . Therefore,_the
angle dependence in KD can be éliminated by introducing proper
action-angle variables such that, to zeroth order in a, Tl = Tz = 0,

51 = const., 52 = const., This is done using the generating function

~

~ . ~ —] 0 ~
FIT). Tgo 9y, 85) = Tpoy + 07 Tpe, - o cos(= 35T ]

Then




v _ .0 o
I2 = VI2 - 51131n y ﬂz , ﬂz = Vﬂz R
(9a)
I1 = I1 , 61 = 61 + q cos Qﬂz s
and K is transformed into K = KO + KI ,
Kp =1+ 15,
o~ . X ' ~ b . ~ £ ~ ~
K; = -a sin [(211)1/281n(01 + a'cosnﬂz] - Vﬁz]
.Expansion of the perturbation. in a series yields
o e ~ \1/2 em . ~ %~ o Am
K = T+T« mzl i [T )Y J3, [ x sinlndy - (-4, + ] . (ob)

Hemiltonian K = KO + Kl is generally nonperiodic in 52 unless v and Q
are commesurable: v/Q = p/q, p,q integers. If, however} v is close
enough to a resonance we can reduce K to an approximate form periodic
in 52 by keeping the dominant terms in the perturbation, 1i.e., tefms
with ‘the phase varying slowly with time. Oﬁserving that to zeroth
order él = 32 = 1, the closest to resonance terms in the expansion (9b)

involve combinations of (m,%) that satisfy

[A(m,2)| < 0 with A(m,2) = v-m—20 .




Given that M = Int(v), L = Int(ZSM], all the (m,%2) combinations that

satisfy the above can be expressed as either

(Mts, L¥sq) or (Mts, (L+1)7Fsq)

with s=0,1,2,... aﬁd q = Int(%), When o < Q, according to the
standard guidelines of Lee fransforms (Deprit7_8), an infinitesimal
‘transformation is possible that kiils all other terms in the expanded
Hami 1 tonian Eq. (9b), exéept the two closest to resonance families of

terms. This is done by introducing

. iy, (r)3 ()
Iy =Tjy—« ] m—(v—20Q)
m

- m#MEs  2#L¥sq

sin[mna1 - (V—lﬂ)&z + %?)

(r=20) 3 (r) 7 (2]
m—(v—20)

sin(md, — (P—QQ)& + Am
1 2 o

. Jm(vr)Jl(EQIE) FM]

¥y = B to Y 5 —(—20) cos[mn?1 = (v=20)95 + rY
m L
I

m#Mts 2#£L¥sq

The above transformation changes the values of the variables very
slightly; one finds, keeping the most important terms with (m,4£) in the

vicinity of (M,L), that




I,-1
11 ~%M L T >M>> 1,

and so to avoid further complication in the notation, one may -take

il = Tl’ @1 = &1 etc.  The amplitudes corresponding to the surviving

IR

terms in the perturbation are given by

e (P pzgq(Fyeg)

where
-~ 1/2 +
I‘=(21 ) , Xy =££M_Sl‘_
1 Mts 0
For 0 small q is large and one can ignore terms 'with s#0. The new

transformed K is given by

I My o~ ~ | Lm
R=1, + I, - aJM(r)JL[F)mn[Mﬂl - (v-L0)35 + ?]

= ady()p (M)siny - (-(1r1))5, + Lilm (10)

+ O(az) .

One can assume that v is much closer to the (M,L) then to (M,L+1)

resonance, expressed by the condition -

1804L) | << [AOLL41)|
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Keeping only the (M,L) resonant term in K and performing a final

transformation
"9'2, =A (U"'LQ)’&Z ’ 12 = (V—LQ)Ié s
(11)
19‘:{ = 19‘1 s I]. = Ii ’
yields
L . , AN1/2, . , , , Ln
= _ S | - + =] . 12) .
X 1{ + (v-La)15 — «'Iy((21) "/ “)sin[Me; - 03 2] | (12)

-

The structure of the above Hamiltonian is identical with that of the™ ' .

resonant Hamiltonian in the uniform B-field case,

K=1, + vly - a JM[(211‘)1_/3]s1n[M1s1~192] :

with

v replaced by v’ v=L0

frequency mismatch 6 = v-M replaced by A = v-LO-M , (13)
o« replaced by o« = « JL(EM)

The resonant amplitude o is significant as 1long és JL(%?) remains
finite, hence the condition %% > L must hold. Physical interpretation

of the above will be given in the next section. In the special case
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when M approaches a zero X, of JL(X), the next closest to resonance
term, namely JL+1(%¥)’ must be kept in (10), and the same procedure as

in Egs. (11), (12) is repeated.

III. SURFACES OF SECTION

Hemiltonian Eq. (9b), or the resonant part of it, Eq. (11) are
two—dimeﬁsional. Existence of invariant KaM surfacess is expected,
bounding the motion in phase space when the perturbation size.& is
below some threshold. In case when v is close to a resopance; \the
. proper action-angle variables can be chosen, as in Sec. II, sb that the
‘coherent pgfiodic structure of the phase space in the nonstochastic
case is .revealed. Thé surfaces .of sectionl®

numerically integrating Eq. (8a) and then recording the values of

either (Qy’qf) or (Ii,ﬁi) every time the particle trajectory crosses

the plane v¥5
a = 0.0498, ¢ = 0.0055, vb= 20.10023. Figure (1la) clearly shows'the
bounded character of the motion when o« is  small, as'vparticles are
confined in & bounded regime in the Qy’qy plane. To see the periodfc
structure, we have to switch into the action—angle variables Ii,@i

obtained from Qy’

dy through the successive transformations Egs. (3b),
(9a), (11) yielding
;1 2 AN
1{ =7 (a7 + qf) .
¢ = -1 _ EcosOt
3f = tan"(q,/q,) - 222

are constructedﬁby@*‘

2n. Figures (la) and (1b) show“such‘ surfaces for
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Figure (1b) shows periodic coherent behavior demonstrating that
although Hamiltonian (9b) is not exactly periodic in ﬁé, the behavior
of the system is dominated by the resonant part of (9b) Hamiltonian
(12), which 1is periodic in ¥5. Half of the total number of the
stability islandé are actually plotted, due to the initial conditions.
Although the new freqﬁencva, introduced thrpugh the modulation of the
magnetic field strength, is small, it produces large changes in the
behavior of the system. It édds new resonances and at the same time it
lowers the threshold in the pérturbaiion'amplitude oo for the appearance
in phase .space of the stability islands that correspond té\éach
resonance. This can be seen by comparing Figs. 2 and 3, the firét
representing motion in a rippled and the second in a uniform (e=0)
magnefic field. Every other parameter being the same, islands appears..
only in (2b) where the modulation has been turned on.
The set of resonant values for v becomes denser as nearby first

order resonances (M,L) and (M,L+1), occuring whenever the new frequency

mismatch becomes zero, i.e.,

[AM,L)] = v -M~-10] =0 ,

are separated by 6v = 0 << 1, while in the uniform B-field case we have
6v=1 between successive resonances. For example; in Figs. 2 and 4 we
have two different chains of islands corresponding to resonant values
of v ='20;10 and v = 20.09 respectively. Iﬁ addition, when A. is not
exactly O, the threshold in « for the emergence of a siability islands

chain is proportional to A, (see Sec. IV) which satisfies




—20—

A~ 0(R) << 6 ~ 0(1) .

-Large scale chaos results through the formation and overlapping of

11,12,13

islands in phase space, so both of the modulation effects tend

to lower the threshold for stochasticity.
IV. NEW STOCHASTICITY THRESHOLD

~ IVA. First Order Islands

~

To illustrate how island chains appear for lower values of o due
to the modulation 0, Hamiltonian K'(Ii,Ié,@i,ﬂé) ‘is reduced to a

two—dimensional form that describes the motion on a given surface- of

section. First notice that K’ possesses one more integral of motionsgi.

Léttiﬁg MI I,=1", ¥ =M8{ =85, ¢ = 85 be the new canonical

y =11 Y
variables, the trajectories on a given surface of section ¥5 = C are

derived from the Hamiltonian

h=K - (v
K | (v-L0)1,

or

=
It

(M+LQ—V)I¢A— aJM(r)JL[%¥]‘sin(w + %?) . - (14)

The stationary elliptic points at the surface of section are given by
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2k+1 L '
= — - = , k=0,1,...,2M-1 . 15a
W="pg TG (15a)
, eM A
I, root of [ady(r)iy (?;]I =4 (15b)
with r = (211)1/2','(') = L él . According to (15b) when A is small,
r dr . :

but not exactly zero, the threshold for the appearance of the chain of

first order islands is given by

: 1 A
e |J'(r ) eM
MVY'max’/ J. (==
L)

= ay | v‘(16)

and rp . is the value that makimizes,lJﬁ(r)l. Since A is of order
oy 1is lower than the limit for primary island chain appearance in the
uniform-B case by a factor A/JL(aM/Q) which, depending on the
parameters, can be much less than 1.

One can now try an evaluationbof the new stochasticity threshold
due to the interaction between the two close to resonance terms (M,L)
'and (M,L+1) in the spirit of the approximation Eq. (10)2; Assuming that

the condition

|[AM,L)] < o < |A(M,L+1) |

holds, only the (M,L) chain of islands appears initially. It is
observed numerically that chaotic behavior sets in as a result of the

blow up of the stochastic layer arouné the primary islands. An

14,15

analytic method developed lately for the evaluatibn of the
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stochasticity threshold in systems demonstrating one primary resonance
is used here. The method is described in Appendix B. The result for

the new stochasticity threshold is

o ' N
al =T . (17)
I M (BN (g sy 12

-

The accepted value for the stochasticity threshold in the uniform

B-field case A = i can also be written as

Do 1 i _1/2
ag E &I JM(rK) JM(rK) I

Consequently the ratio -of the new threshold to the old one~ is

approximately equal to

Q 4n
. E o . ‘ 18
ag/dog By T _ (18)
L5 |
In case that %? =x, with x, a zero of JL(x)r JL+1(%¥) must be
substituted in the denominator of Eq. (17), in place of JL(%¥),

according to the paragraph after Eq. (13). The ratio ag/ag can be much

less than 1 if the denominator JL(SM/Q) is not very small, i.e.,

L <eM/Q or |[v-M| = |6g] < eM'= ev . : (19)

Recalling the notation used in Sec. I, namely




—23—

5j = 60 + ev sin 2njQ

the condition ev > [6g] simply means that dj, the modulated frequency
mismatch, can go through ZEero. A big reduction in stochasticity
threshold and diffusion occufs due to dj =0 resonance, thus
reaffirming one of the conclusions in Ref. 4.

Figures (5a)—(5d) illustrate the transition to chaotic behavior
for v = 20.10, 0 = 0.01 as the wave amplitude is grédually increasiné
‘ from o = 0.0995 to o = 0.199 to a = 0.398 and o = 1.194 respectively.
Ten particles have been followed for t = 2251 gyroperiods, starting
Wlth initial perpendicular velocities 45. < r < 55, . 1In Fig. (5d) the
motion is chaotic while « is still less than 1/4 of the uniform field
stochasticity threshold. |

One should not conclude that in the limit 0 » 0, ag *> 0 following

(18). When Q’is extremely small, succeésive resonant values of vy
become so dense that the resonant Hamiltonian Eq. (10) must ihclude
meny more terms_thaﬁ one. Then relation (18) does not hold. Now, 0
tends to zero When either PZ > U, or when k ripple » 0 meaning that the
scale length of the magnetic field tends to infinity.~»1n either case,
it will ‘take infinite time for the particle to feel the effect of the
1nhomogene1ty, and the finite—time behavior will be determined by the
uniform field approximation.

Now, assuming that the wave amplitude is 'well above the
stochasticity threshold, an estimate can be glven for the extent of the
stochastic regime AI in phase space. When the last KAM surface is
destroyed, the stochastic layers around each island are interconnected;

thus, the ‘extent of the stochastic regime is roughly equal with the
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distance between the innermost and outermost islands in phase space.
The centers of these islands are given approximatély (from Eq. (15b))

by

where the large argument approximation for the Bessel function is used

for rop >> v.- Consequéntly,

| 2_.2 2

Alg = 2 {r5-r7} ~ 0(v*) .
Thus ‘the modulation has a rather global effect spreading stochasticitys.-
over an extended regime. On the other hand, the effect of a slow
modulation acting on a non—degenerate Hamiltonian studied by

16

Chirikov (1979) and Tennyson17 (1979), 1is localized, creating a

~rather narrow stochastic band of width GIS = 2e0.

IVB. Second Order Islands

So far the analysis has been based on the effect of first order
resonant terms. They dominate the behavior of the system provided that
their emplitudes are not negligibly small, guaranteed by the condition
(19)“ In the opposite case, when L =‘Int(X§M] > eM/Q, the pesonant
term coefficients JQ(aM/ﬁ) with 2's close to L are negligibly small,
and the first order islands do not appear for smail values of a and
A#0 . (Even for A exactly zero, the contributidn of the nonresonant

terms becomes dominant and drives the particle out of the first order




resonance.) Then, resonant terms quadratic in o can become the dominant
driving force in Hamiltonian (9). These terms, which are not
explicitly represented in Egs. (9a) and (9b), are generated by
nonlinear interaction, (i.e., "beating together"”) between any two terms
linear in o and emerge from the Hamiltonian through the canonical
transformation (Tl, 1., 51, B5) » (Vy, Vo, 91, ¢5) derived from the

generating function

em) cos[m¢1—(u—lﬂ)¢2]
n. m—(v—40)

1

v = v = + 11/2
F(T).Tpop100p) = ~Tioi-Tovp = o T In((2T) 721,

namely,

. cos [mp,—(v-20)py + Eﬂ}
'& = ¢y + o J'(T ) J [m) 2 )
1 1 mi17 %4 g m—(v—420)
o em
~ me(Il)Jl(?;) . o
Vi, =1, -« m?l —(—20) 51n[m¢1—(v—20)¢2 + 2;] ,

sin[mwl - (v=20)gg + %?]

_ (u—m)Jm(Tl)Jl(%m)
Vz = Tl + o Z
m, L m—(v—24Q)

The sums involved in Eq. (20) converge and the transformation is close

to an identity if

a < |AM,L)|

Then K’ » A, where
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nZk n—(v—k0)

X {cos[(m+n)¢1—(2u-(2+k)Q)¢2 + Egk ] + cos[(mfn)¢1+(l—k)ﬂ¢2 + £§£ 7]}

The above transformation is equivalent to phase averaging out all terms
linear in o« when first—order resonances do not appear. Instead, 2nd
order resonant terms emerge for all these combinations of the four

independent integer parameters m,n, %,k which satisfy

| (mn) — (4+k)0-2v| <

|

Let My = Int(Rv), Ly = Int((2v-My)/0). Using the same kind of
arguments as in the previous subsection to select the dominant terms in

the expansion,18 the approximation for the resonant Hamiltonian is

M ‘ (Lg=1)m

' 2
s =~ s ’ o A O 3 ’ ’
AR = V{ + (ZU—LOQ)VE Y C(r)JLO (_6_) 81n[MO¢1 - @5 + 2 ] (22)

with

and

(21)




C_g7-

Jﬁo(r)Jo(r) Jé(r)JMo(r)
AR v s

Figure 6 is a surface of section for v = 15.575 showing theApresencg of
2nd order islands. Note that the number of stability islands is
MO = 31 = Int(2v) showing that the resonant part of the Hamiltonian,
Ag, dominates the evolution of the system. The stfucture of Ag is the
same as Ké. Then we can éésily eétimate a neW'stochasticity threshold
due to the blow up of the stéchaétic regime by repeating the same

_procedure as for the first order islands. It is found that

IR

} M|JM(r1)|1/2 20 1/2 (23y
g/ %s 1/2 . 1/4 o)
M/ lC(rg)C " (ro)| (*—Q]l

. : Lo 0

13

where ry, r,, respectively satisfy Jﬁ(rl) =0, C'(rz) =0, and ag is
the new stochasticity threshold due to secondary island overlapping.

' Observe that ag/o is roughly equal to (aé/as)l/z;)with ag given by
Eq. (18). Again ag/as can be much lower than 1 if JLO(EMO/Q) is not
too small, i.e., Ly < o Then, Lyl = IZV—MOI < &My £ 2ev, or lv -

MO/ZI < ev. 'When My = 2M+1, the above means |v-M-1/2| < ev or

69 = 2l <ev . (24)

Recalling the notation in Sec. I




Gj = 60 + ausinzﬂjQ ,

condition (24) means that, even if the system does not go through the

éj = 0 resonance, a big reduction in stochasticity threshold and

diffusion occur if it can go through the 6j = 1/2 resonance.

A final word must be said for higher order résonances, O(as).

When o is leSS‘than a threshold oo given by

. . 1/2
o < ag = | 24 |
I/Z)J (EMO)
MnJy, ((R3,) —
0'M, ' (=g Lo\ Tq
with |A7]| = |2v—MO—LOQ|, second order stationary points disappear.

‘"Then one must look for resonances of higher order. Assume that v isv

such that a resonance appears for an integer p satisfying

A" = pv - (mytmgtmg) — (44+25+23)0 = 0

Following the same line of thought as earlier in this section, one
expects that the island chain corresponding to the above resonance will

dominate the evolution of the system if

L < EyE ;M = Int (pv), Ly = Int(Ef:yn) . | (25)

p 0 Q

going through the 1/p

This is equivalent to léj - ll < gy or dj
p

resonance of the uniform B-field case. The stochasticity threshold
induced by these higher order islands overlapping is expected to be

higher than o, a“s but it may still be lower than « However, it has

=
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been established4 that the resulting diffusion is much slower and of
no practical importance for LH heating.

The connection between the results obtained here using Hamilton's

equations, and these obtained in Ref. 4 using Egqs. (1) and (2) as a-

simple model should be clear now. The passage of dj through the 6=0
resonance of the uniform B-field case coincides with the emergence of
finite amplitude first order resonant terms in the new Hamiltonian for
the non—uniform B-field. When 6j can not go through 0, the parameters
are such 'thgt the amplitudes of the fifst order resonant terms in
Hamiltonian (9b) become négligibly smali.‘ However, the second order
resonant terms in Eq. (21) will grow to significant amplitudeé iffdj

can go through 1/2. Resonances of even higher order are déminant if"éj

.can go ‘through a q/p resonance, q,p /integers. When ev ~ 1, all kinds::

of resonant terms are important since 6. sweeps all values between O

J

and 1. Then the thresholds aé, ag derived for small ¢ and the one
resonance approximation can only serve as upper bounds for the new

threshold.

V. DERIVATION OF THE NONAUTONOMOUS MAP
The nonautonomous map Egs. (1) and (2) used in earlier work t§
model the system and study the diffusion induced by the inhomogeneity
of the magnetic field will be derived here from the two-dimensional
autonomous Hamiltonian (7) derived in Section II.
The reader may be alerted at this point by an apparent
contradiction stemming from the fact that a two-dimensional

nonautonomous map is derived from a two—dimensional autonomous
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Hamiltonian system. It will become clear, though, that the explicit
time dependence of the map is not generic but a result of an
approximation. A two—dimensional autonomous map will be derived
initially, yielding the ponautonamous term by keeping only linear terms
in the small parameters. |

The method of the derivation is similar to the one applied for the
derivation of the uniform B-field map.2 The procedure .is reviewéd in

detail in Appendix C. As a result, the auxiliary variables

u = 9—p , v = U+p

are introduced where .

= (21))Y® + (nt1/4)m

o =
(26)

Theée variables obey the following equations of motion

o0 B
4= 6(t) — 2ﬂAcos[v—(ﬂ—$)6o] Y §(t—¢-2mj)
j=—oo

(27)

¥ = 6(t) + RnAcos[u+(m—¢)6,]  } 8(t—¢—=nj) |

j ==—00

with

6(t) = 65 + ensinQt = 65 + evsinOt
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Let tj be the time a particle crosses for the jth time the qy = 0 plane
with velocity Qy < 0, i.e., the reduced gyroangle ﬁl = (Rj+1)n plane..

Then from Eqs. (26)

9() = om - w8y (j) + 95(J) = 95(i) — 2mm(j+1) |

thus 9(j) = ﬁj coincides with the phase ¥, of the wave at the surface
of section. From Eq. (7), tj = ﬁj/u = (vj+uj)/2y, i.e., the time tj at
the surface of section can be expressed implicitly. Integration of

Egs. (27) over the time interval tj#l'_ tj yields

tite
j+1 T Yy = / dt 6(t) — BmAcosv;
t n

. - V. =
j+1 j ft dt 6(t) - 27rAcosuj+1

The integral in the right—hand side of Eqs. (28) can be approximated by

a linear expansion as

t

j+1 :
I et s(t) = sp(tyqmty) + evsin(at)) (bt
]
+ 4 eveos(Qt;)(t. —t-)2 +...
2 ISR TR
Using
B £ St
j+1 j v

we obtain




u.+v.

Ujpp — Yy = 2ﬂ[60 — gvsin —%arl Q] - ZﬂAcosvj + 0(2ﬂ28UQA) ,
(29)
Vigr T Yy = 2ﬂ[50 — evsin E%g;l Q] + RmAcosu; g + O(BﬁzauQA)v.
The last term on the right ié negligible.if
zﬁeaun «< 1. " (30)

This is an extra validity condition for the nonuniform B-field map, in

addition to the validity conditions for the uniform B-field map

r-v > (v/2)1/3 , v>> 1,

and (31)

2—v2)3/2/r2 .

A << (r

(the lést one meaning thét the <change in A during - a cycloperiod,

1/4 dA/dp, is very small). Equation (30) guarantees that the

~modulation frequéncy 1 is so slow that 6(t) can be considered qonstant
during one cycloperiod.

Observe that Eq. (29) is a two—dimensional autonomous map which is

naturally expected from a two—dimensional Hamiltonian. A further

approximation

@j = 2nvj + 0(4)




and a linear expansion of the sine term into the brackets in Eq. (29)

leads, after dropping terms of order £0A, to

j+1_uj 2ﬂ6j - BﬂAcosvj s

u
(32)

Vit1™Vy = Bﬂdj + BﬂAcosuj+1 )

"where

6; = 6q + evsinlmjn

. The above form is bidentical to the nonautonomous approxim&ti?pgf.
Egs. (1),(2). Compérison between the diffusion coefficients calculated
by numerically iterating (R9) and (32) subject to the same initial
conditions showed &a good agreement, for values of A above the new

stochasticity threshold

1/2 2 2 1/4 -1 | '
AL = o (g) / ﬂr_sz = AS[JL(%M]] Q . (33)
: r

It must not escape our attention though that, for A smaller than Aé,
there is a fundameﬁtal difference; expression (R9) admits AJ as a
threshold below which no diffusion éccurs and the derived diffusion
coefficient is zerd, while map (32), due to higher dimensionality
exhibits a very slow diffusive behavior below AJ, similar in spirit to

the so—called Arnold diffusion.5
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VI. MODULATION OF DRIVING FREQUENCY v

The modulation of the frequency mismatch § due to tﬁe variation of
the particle gyroperiod was shown to be the main mechanism for low
amplitude, wave induced diffusion. It is obvious that 6 can also be
modulated by externally varying the frequency of the driving
electrostatic wave. Here, it will ©be proven that exactly the same
sitﬁatiﬁn arises in the case of a.particle in a uniform magnetic field
ﬁnder the influence of an externaily imposed wave with modulated
freguehéz. Consequently; it can be argued that, in a system of two
coupled oscillators subject \to frequency modulgtion, it is the
variation in the mismafch between the oscillator’s fundamental
“frequencies that determines the diffusive behavior of the system.

Consider the Hamiltonien Eq. (7) with ¢=0 (i.e., uniform B-field)..

and introduce a variation in the driving wave frequency,
v > v(t) = v(l—-¢’cos t)
The phase of the wave will be given by

e(t) = vt — ¢’v/0 sin Ot

"and the Hamiltonian K(Il, vy, Ig, ﬂz) by

’

R=1,+1,- q.sin{(zil)l/zsinﬁl - v[B, - & sinady]) (34)

with T,, T,, &1, ¥, obtained by setting e=0 in Egs. (9a), Sec. II,

i.e.,
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12 = V12 ’ 19‘2 = V'ty'z !
~ 1 ~ -
=1y =5 (Fjw®) . sy =% = tan '(Z5) .
' y
It is expanded according to
R=T1,+T,-a73 7 Jm[(efl)l/z] I, (%]'_Sin[m&'l - (v-20)8p] . (85)
m £ :

Expression (35) is the same &s expression (9), the only difference
being that m in the argument of the Bessel functions .Jl(am/ﬂ)' in
Eq. (9) has been replaced by v in Egq. (35); Nevertheless, it was

already explained that the essential contribution for diffﬁsion comes

from the resonant term M=yr. Thus, the resonant form of Hamiltonian'

(35) is identical to that of Eq. (9) and so the analysis ‘and the
thresholds derived in Sec. IV are still holding. In order to see that

the map (29) is applicable in the case of the wave frequency modulation

one can reintroduce a finite &€ by setting
¥ 1/2 = 1/2 _ .
21,(0))"
T = ¢ ( (0)) = ¢ (2D)77 + O(kz), and treating ¢ as comnstant
14 14 .

over a small range of Tl‘ Substituting the above in Eq. (34) and then

inverting the transformations Eq. (9a),

a v e A1
v12 = 12 + 811s1n0ﬂ2 , 02 = 5 02 ,
A—~ ~—A £ QA
I1 = I1 , ﬂl = ﬂl - q cos y 02 R

expression (34) takes the form of Hamiltonian (7) with (il’iz’&1'&2) in

place of (Il,Iz,ﬁl,ﬂB). Then, according to Sec. V, the same autonomous
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map (29) derived from Hamiltonian (7) can be wused to study the
properties of motion irrelevantly to whether the modulation dj comes
from the toroidal ripple or theA external frequency modulation.
However, the physipal meaning of pj,ﬂj calculated at the end of the
j—th "reduced” gyroperiod ¥;(j) = (2j+1)ﬂ, as well as the reduced

gyroangle itself, are slightly different in each case, according to the

following
cyclotron frequency modulation wave frequency modulation
cw, = (1-¢ sinQt) o v(t) = v(1-¢' cosOt)
, Vv
€ ge=¢g’' —
r
= 1~ i 1/2 = .
pj = vlj(l € 31thj) Pj = Vi
0j = th = phase of the wave ' ﬁj = vtj = phase of the wave +
— cos Qtj
reduced gyroangle
-1 ; Yy S -1 1y €
%, = tan 1—-¢ sinQt %, = tan + — cost
, ¢ ) 2 , () + £

y y
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To illustrate the potentialv benefits of frequency modulation
during heating, the new. stochasticity thresholds ére calculated
numerically here, using the map (29) and their values are compared with
the analytic prediction, Eq. (17). To estimate the new thresholds 10%
particles are initially distributed inside a regime bounded by adjacent
separatrices (trajectories that connect unstable fixed points). The
particles are followed for about 40,000 cycloperiods. Parameters ¢ and
v are kept constant and Q is changing, allowing a more thorough test of
Eq. (17), since ﬁot only the argument but also the order L of the

KZM]. It is always

Bessel function in the denominator is changing [L =
arranged that A = v-M-L0O = 0. In that case the form of separatrices is

simple; they are ~the curves connecting the unstable fixed points of

Hemiltonian Eq. (14) and they are given, using the large argument:

approximation of the Bessel functions, by rectangles with sides

»/ﬁ = \/2n11//

(R9) the separatrices are formed by the intersecting set of lines

= (p+1/2)m + f; ¥ = qn. In the variables of the map

v—u :
S = A= (p+1/R)m
XEE =49 = qrn — (Bn+l)w ,

pP,g,n integers. Here, the particles are initially distributed inside

the bénd - g <p < g. For each set of parameters ¢,Q and v the value
Aé is taken as the minimum tested value of A before diffusion of
particles out of the band ceases. The minimum initial distance from

the p-boundaries is such that crossing of the sepafatrices corresponds

to a growth of the stochastic layer around the separatrices to a half




width h = n/20. In Fig. (7) the numerical results AJ/Aj = o’ /oy are

plotted against the theoretical predictions of Eq. (17). Good
agreement is shown. Lower thresholds occur for small Q, however the
diffusion rate4 is higher with modest Q. In conclusion, externally

varying the frequency of thé launched LH waves appears to be a
promising method to lower the wave amplitude threéhold for effective
ion enérgy absorption, with the additional advantége of making it
possiBle to control the modulation parameters ¢ and Q. Sincé typical
values of () and ¢ of order ~'10_2 will ‘be sufficient, the change in the
due to\the change of v = wiy/w,,

position of the resonant layer dRres

according to'

will also be small.

VII. LARGE SIZE RIPPLE IN THE MAGNETIC FIELD
Here, the particle motion in an elecirostatic wave is examined in
the case when there is a large size ripple in the externally applied
magnetic field. The above sitﬁation can arise during LH heating in
compact tori, such as spheromaks, or in the new generation of tokamaks
with moderate aspect ratios, such as TFTR,‘JET or INTOR. When ¢ is a
modest fraction of 1, the small parameter expansion performed in-

Sec. II that reduced the Hamiltonian in a two—dimensional form, is not




valid. More analytically, the variation in PZ becomes significant and
the modulation frequency 0 = kPZ changes considerably with time. The
full set of the equations of motion in three dimensions must be‘
retained. The vector potential A and the Hamiltonian Eq. (3a),
introduced in Sec. II for ¢ small, can still provide a reasonable
approximation under the following simplifyihg assumptions:

(i) Toroidal effects, such as the grad-B and the curvature drifts,
are neglected and parﬁicles remain confined on a given flux su;face for
a-long time compared to the timé to go around the torus; .

(ii) The reéonant‘ layer is localizeg around a flux surface, and
the wave amplitude is constant ﬁhere.

(iii) B is a periodic function of the length z .along a magnetic
‘line on a given flux surface, and has a dominant Fourier component: . ...

The equations of motion, derived from Hamiltonian (3a) are

y =Py

i, =P,

Py = —y(1 - ésin/cz)2 + acos(y—ﬁt) ) - (36)
Pz = excosxz(l—asinxz)yz .

This system of four coupled first order nonautonomous differential
equgtioné is solved numerically. Here I will confine myself to
reviewing some . numerical results. The trajectory of the system is
confined on a 5—-dimensional surface of the six—dimensional phase space
(Il,Iz,Pz,ﬂl,ﬁz,z), obtained from (PX,Py,PZ,X,y,z) through the
transformations Egs. (3b), (3c). We can consider the 4—dimensional

surface of section of the above surface with the plane Ty = 2n and then




take the projections of the above surface of section (Il,Pz,ﬁl,z) into
the (Qy’qy)’ (Il,ﬂl) and (Pz,z) planes respectively. [(Qy,qy) and
(11,01) are not independent pairs of variabies but simply a coordinate
transformation on the same plane.] This is achieved by integrating
Egs. (836) nuﬁerically for ten ions stgrting with initial conditions (in
< 30, and v

normalized units) 15 € v = 20, the other pérameters being

1 I

o = 3.832 v = 30.243. Figures (8a) and (8b) represent the uniform
field results (&=0) while the noﬁfuniform.field.results are plotted in
Figs. (9a)-(9c) for ¢ = 0.3. The majof observed change 'in behavior due
to the ripple in the B-field is that heating of ions with initial
perpendicular velocity vl(O) < Vies z'coLH/k_L, (r(0) < v) occurs. In
otper words, the lower limit of the stochastic regime in the A space
is pushed below the resonant velocity Vyes' resulting in heatingy: off
slower ions. For the case under considerationL teking into account the
finite wave amplitude <correction to include ions +trapped in the

electrostatic potential,” the uniform B-field velocity threshold, is

given by

as seen in Fig. (8b). For the non-uniform field case, we observe from
Fig. (9b) that
=19 = 2/3 r

Tmin

corresponding to ions with about half the perpendicular thermal energy

of the resonant ions. [Note also that the perpendicular energy of some
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N int L -1/2 _
lons 1ncreases above the point - > = 2, thus they become trapped
in the magnetic ripple, Fig. (902.]

A rough explanation for the new lower threshold can be attempted
as follows. Assume an ion that has an iﬁitial speed vl(O) at the
bottom of the magnetic ripple «xz = n/2. For short time periods, the
zeroth order trajectory conservesAthe adiaba£ic invariant u (expressed
in normalized units as Il), and the total energy is also approximately
conserved. Then A véries roqghly as

_ i 1/2
v, (2) = v, (0) v(11+‘:n"z] : (37)

Energy absorption from the wave occurs at these points of the cyclotron
orbit where the ion resonates with the wave.1 If the wave amplitudetis
above the stochasticity threshold then the_ kicks in A bécome‘
uncorrelated and energy diffusion occurs. The‘ resonant AconditionA in
the non—uniform B-field case involves both the gyroangle ﬂl and thg

z—position,

. 01 H Ie,EO 1/2
vl(z)51nﬂ1 = E;: -2 _EIH_)

and is written in normalized units as

r(z)sind; = v - 2 «1/R ' (38)

It is easily seen that the minimum value rpin = '(0) the ion must have,




so that r(z) resonates with the wave at some z, is given cbmbining (37)

and (38) by
L~ (e G172y (1ze)1/2
rmin = (VR %) (T20) 0~ (1-e)rp, (39)
If Em = % mvﬁin is the energy of the slowest 1ion accelerated in the

uniform field situation, the corresponding lowest energy due to the

effect of the ripple is

Assuming a maxwellian distribution, the number of heated particles

increases by a factor of

q = 1(BY)/f(E,) = e*Bn/KT | | (40)
. 2
Vres -
Typically the ratio Em/kT = ——— >> 1, thus the resulting increase is
v
th
quite significant. For example, in the Alcator A heating
. 19 ~ : : ~ 1
experiment, Vres/vth = 5.2, e = .06 yielding g = 2.5x10". In
Fig. 10 numerical results for rp;, = v, as a function of the. ripple

size ¢ are plotted against the theoretical prediction of Eq. (39)
(solid line) for a fixed wave amplitude well above the stochasticity

threshold. Good agreement is observed.
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VIII. CONCLUSION
The presence of a ripple in the magnetic field due to toroidal
effects was found to enhance RF power absorption by lowering the wave
amplitude thresholds and enlarging the stochastic regime in the
velocity space. Results obtained during a series of Alcator A lower
hybrid heating experiments have been analyzed in Ref.-19. It wasb
pointed out there that fhe launched wave amplitude remained well below
the_u#iform B-field stochasticity threshold, due to the distribution of
the wave energy over a wide regime in the torus. However, the observed
heating can be accounted for if the reduction in thé th;eshold due to
fhe magnetic field ripple is taken into account.4 A frequency
modulation of the lauhchedlwaveS‘will have equivalent effects and is
proposed as a method of improving energy absorption. Some otheth

effects such as non-monochromatic wave spectra, incoherency,

20,21 22,23

propagation effects and scattering need to be considered
for a full bicture of the.iower hybrid heating situation. From the
theoretical standpoint the effect of a slow modulation omn an
intrinsically degenerate Hamiltonian was considered and found to have

more pronounced effects than in the case of the "modulational

instability” in non—degenerate Hamiltonians.

ACKNOWLEDGMENTS
I would like to thank H. Varvoglis for many fruitful discussions.
Useful discussions with D. F. Escande and E. Ott "are also gratefully
acknowledged.
Work on this paper was supported by the U. S. Department of Energy

grant no. DE-FGO5-80ET-53088.




Appendix A
(a) Derivation of Hamiltonian Eq. (4) from Eq. (3a)

Let

Y 1/2 — (1t -1/2
a4y (1~esinkz)'/*y | Qy (1-esinkz) Py ,
(A1)
- EKCOSKZ
=gz , N =p - =L=P=rZ ,
Az % Z  i-esinkz Y
& canonical transformation introduced by the generating function
$(Q,.Q, .,y.2) = (l—esinxz)l/zQ/y + Q.z
y’ Z’ ! - y Z
The transformed Hamiltonian becomes
1 - 2 o 1 ' gkcoskq, 5
H== (1-esink + + = +
5 ( 2, ) (95+Q5) > (9, esinrq, ay)
(Az)

- sin[qy/(l—asinxqz)1/2 -vt]

Under a new canomnical transformation given by the generating function

y2 cot191 R

[

so that




= (212 sine,

qy' =
(A3)
Qy = (2I1)1/2 cosd; ,
the new Hamiltonian is
1 EKCOSKQ 5
H, = (1—as1nxqz)11 + > (QZ + I—esinra, 1181n2ﬂ1)
(A4)

- asin{[21,/(1-esincq,)] Y/ Bsins,-vt) .

R

An approximate Hamiltonian K

be introduced. Letting

a, €, £k ~0(A) , A< 1

and noticing from Eq. (Sb) that

Q =P, +0(3) =P, , z=gq ,
we obtain Eq. (4)

K(81.2,1;,P it) = (I-esinkz)I, + %,PE — asin[(21,)Y®sins —vt] . (45)

Hl’ linear in the small parameters will
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(b) Derivation of Hamiltonian Eq. (6)

By inspection of Eqs. (5a) and (5b) one sees that resonant terms in the
(Il,ﬂl) plane motion come through the term « 9K,/38; ~ 0(N), while
resonant behavior in (PZ,z) ‘plane comes through terms of order
EK ~ 0(%2), or higher? Consequently‘ a perturbative solution of
Eq. (5b) for P%(t) and z(t) is satisfactory to order A. One then
substitutes into Eq. (5b) to obtain a pair of nonautonomous

differential equations for I;, ¥;. From (5b),

~

P(t) = P,(0) — ¢ 1D Lot
Z - Z € PZ(O) sin ’
Lo o
z(t) = P,(0)t + e[cosAt-1] ———+ z(0) , (K6)
P2 (0)

N = KPZ(O) .

Having expressed z, P as explicit functions of time and initial

4

conditions only, Eq. (5a) describing the motion in"theg'(Il;ﬂl) plane

can be derived from the one-dimensional, nonautonomous Hamiltonian

K(I,,85t) = {1 — ¢ sin[0t + ¢ RIOR ('coth—l)])I1
P2(0)

-« sin{(?ll/(l—a sith))l/Zsinﬂl—ut} .

Dropping the terms of order Az, we obtain Eq. (6)

K= (1-esin0t)I; - « sin[(ZIl)l/Zsinﬁl—vt] . (A7)




Appendix B

The stochasticity threshold, Eq. (17), is evaluated following
Ref. 15. Hamiltonian Eq. (10) is expressed in the (Iw,1¢,w,¢)

variables as

A
= - + =1
K = -AI, ’

—aJM(r)JL‘(EQ—M]Sin(w + Ié—" . | (B1)

~

M L+1

—aJM(r)JL+1(%¥)sin(w - 2

Expanding around the fixed points of Kp, Egs. (15a,b) in the new

t one

2>

canonical variables y = w—wK, lw = I¢_IK and solving for ¢ =

obtains

0 =

" i. A
h aLMgJM<rK)13 - aLJM(rK)cosy - aLHJM(rK)cos[y -t + E)

renormalized to

g 12 _ _ - B |
h = 5 lw Qcosy Pcos[g(y at) + 2] (B2)

with




_ g (M
ap, = JL(Q )
Q = «fMAa(r) Jja(rye) (B3)

— 2 n
P = opop M JM(rK)JM(rK) .

This 1is the standard form wused in Ref. 15 to obtain the following

criterion:

o 2 [2 - 2(01) /B /2R : (B4)

with

o = 2/Tal/ng . | e o
s defined by P/Q ~ 0(p°)

A = R2g+l-s
Here g=1, s=0 yielding A=3 and by combining (B3) and (B4)

LT # 0 ' _ (B5)
ML (E5) () By(rg) 11/2
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Appendix C

Hamiltonian (7) can be transformed into

. s . k k
-[6y+ensin % X5 h +vho—a E Jn+k[(nh1)1/2]s1n[(1 + ;)X1+; X,]  (c1)

", through ' ;fégs‘ ‘

- (c2)

Xg =793 . Ig = hp=hy
derived from the generating function -

Here 63 = v—n, n being the closest integer to v ='w/wco. The essential
contribution comes from k << n. Performing a large argument expansion
of Jm(r), valid if r > m + (m./2)1/3 = (n+k) + (n/2)1/3, . approximating
(rz—mz)—‘l/4 as (rz—uz)_1/4, valid if ro—n® >> kn, and Tﬁylor expanding

the cosine term, derived from the Bessel function expansion, we may set
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1/2 -1/4 :
ey = (8) / (r?-%) / cos[g(r)-(k-6)¢] ,

where

r= (2o )%, ¢ = cosTly/r)

(c3)

) = A e T

and all the validity conditions are built into

v>>1 , r-v>> (u/2)1/3

A new series of transformations, analogous to the ones performed during

the derivation of the map (1) for the uniform B-field case2 leads to
the following Hamiltonian
M= - [60+8nsinQX2]ﬁ2—ﬁ2—A Z cos[ﬁ1 + (6—k)¢]sin[&1 + kﬁg} . (c4)
k : ,
Here -
6g .= v-n , . (C5)
. 1/2 ' :
By = (F=®)" - e - /4 = g[(2on,) /%) (ce)

Fl

hy = hpv 5

r
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XB = S5/v =X /v . (c8)

The equation of motion for Xg reads ﬁg = 1, or equivalently,

Yo = vt . ' (Cc9)

The motion in ﬁl, 41 plane is given by

k

"f.[do + 5nsith] ) sin[ﬁl + (éo—k)¢]sin(ﬁ1 + kt) ,

o ' (c10)
hy = A ) cos[h; + (6-k)p]cos[%; + kt] ,
k
1/4 , _
where A = (Z/ﬂ)l/zau(rz—uz) '/rz is treated as constant over a finite . -

time period. Now the variables p and ¥ are defined through

p = ﬁl + vm ¥ =nm - X, , (c11)

while u and v are introduced as linear combinations of p and ¥

according to

(c12)

e
]
e
|

e
e
Il
e
+

e

Combining Egs. (Cl11) and (C12) and using the identity
o0 B -]

T sin(kt) = 2n Y 8(t-gnj)

where 6 is the Dirac 6—function, we obtain




e
il

s(t) - 2ﬂAcos[v—(ﬂ—$)60] Y. §(t—¢—2mj)

j=—°

(c13)

e
It

6(t) + 2rAcos[u+(n-¢)6,] ¥ 8(t-¢-2nmj)

j =00

-with

5(t) = 6, + ensinOt = 65 + evsin0t . ' (C14)
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FIGURE CAPTIONS

Surface of section with the By = 2n plane expfessed through
(a) velocity-like variables Q , aq, and (b) action—angle

~variables Iy, ®. (c) is a blow~up of the framed area in (b).

Here a = 0.0498, v = 20.10023, 0 = 0.01 and ¢ = 0.055 implying
M =10, L = 10, and A = 0.00023.

Surface -of section (Ii, 9] ) with o = 0.0498, v = 20.10, Q =
0.01 and ¢ = 0.0055. Here A 0. Fig. Z(b) is a blow—up of
the framed region in 2(a).

Same as in 1(a), 1(b) but for. a uniform magnetic field (a—O)
Note the absence of islands in phase space.

Surface of section with the same parameters as in 2(a)-2(b),
except here v = 20. 09

Transition to chaotic behavior.v vy = 20.10, O = 0.01,
¢ = 0.0055 and (a) « =.0.0995 (b)_ a=0.199, (c) a = 0.398,
(d) a = 1.194.

Surface of section showing emergence of second order islands.
Here o« = 0.199, v = 15.575, 0 = 0.01, ¢ = 0.0055 implying
My = 31, Ly = 15.

Ratio of the stochasticity threshold with frequency modulation
Aé to the constant frequency threshold As. N is the
modulation frequency, v =21.1, & = .01. Bars represent
numerical and squares theoretical results respectively.

Limits of the stochastic regime in the perpendicular velocity
space in a uniform magnetic field with a = 3.382, v = 30.243.

Stochastic regime in the perpendicular velocity space for a

large size ripple in the magnetic field. The wave amplitude
is the same as in- Fig. 8; v = 30.243, ¢ = 0.3, 0 = 0.01.

Initially, ions start with v, 2V It is evident from
Figs. 9(a), 9(b), that the stochasklc limits in the velocity
space are extended much lower than in Figs. (8a),(8b). Note

also from Fig. 9(c), the projection of the surface of section
into the P_, z plane, that some ions gain enough perpendicular
velocity to become trapped in the ripple.

Stochasticity threshold 1in velocity as a function of ripple
size ¢. Wave amplitude o = 3.382 is well above o - Solid
line 1is +the theoretical prediction. Velocity v in the
perpendicular axis is normalized according to v = Vlkl/wc
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