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The dynamics of a time—dependent quantum system can

be qualitatively different from those of its classical

counterpart when the latter is chaotic. It is shown that

small noise can strongly alter this situation.

What is the nature of a quantum system whose classical counterpart
exhibits chaotic dynamics? The subfield dealing with this question has

been called quantum stochasticity. A very striking result in quantum

stochasticity has been obtained by Casati et al.l These authors
considered a particular Hamiltonian with ome space dimené;on and a
potential representing periodic impulses kicking the syskem. If the
strength of the impulse kicks is large enough, then, in the classical
description the motion is chaotic, and the momentum variable, p, behaves
diffusively. That is, the average value of p2 apparently increases
linearly with time. Casati et al. considered numerically the quantum
mechanical version of the same problem with 4 small. They found that for
early times, the average value of p2 increased linearly with time at{
roughly the classical diffusive rate, but that for long time this linear
increase slowed and eventually appeared to cease. Thus, there is

apparently no diffusion in the quantum case. The observed saturation of




the growth of <p2> is understandable if the Schroedinger operator for
this problem has a discrete quasi-energy level spectrﬁm.1_4 Recently,
Fishman, Grempel, and Prange4 have presented strong arguments supporting
the idea that the quasi-energy spectra for systems of the type studied by
Casati et al. are discrete. These arguments are based on an analogy with
Anderson localization of an electron in a solid with a random lattice.
Furthermore, it has been pointed out that these results have implications
for other physical systemsS_7 and experiments have been proposed. In
this paper we consider the effect of adding a small amount of mnoise to
the quantum kicked rotator problem (see also Shepelyanski3). We find
that the quantum interference leading to localization of p-2 is a delicate
effect that is strongly effected by small noise. For finite noise, there
is always diffusion.8 It is the goal of this paper to investigate the
mechanisms by which small noise leads to diffusion, as well as the
regimes of dependence of the quantum momentum diffusion coefficient on
the noise and kicking strength.

We consider a Hamiltonian

. +ow
H = P2/(2I) + [eReos8 + vo(0,t)] ) &(t-nT) , (1)

n=-—o
where © is an angle with period 2%, P is the angular momentum, I is the

' moment of inertia, € is the strength of a periodically applied ﬂperiod T)
horizontal impulsive force, R is the radius at which the force is
applied, and the term ¢(0,t) is a random function of time representing a
noise component in the kicking with v a parameter governing the strength

of this noise.

The classical problem corresponding to the Hamiltonian (1) yields




the well-known standard mapping9 (including noise),
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P pn €S n9n+
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¢; = d¢n/d6, (pn,en) denote the values of (p(t),0(t)) just after the nt

), 8.4 = 0 TP where ¢n(e) = ¢(0,nT),
h

kick (at t = nT), and we have introduced normalizations & = ERT/I,
p = PT/I, and v = VI/I. One possible choice for ¢n that we will use in
all of our subsequent calculations is ¢n(e) =2 Ancos(e + an), where An
is a Gaussian random variable <A A ,> =68 ,, and ¢ is random with a

nn nn n
uniform distribution in [0,27]. For the case where ¢ is large most
initial conditions for the classical map generate orbits which are diffu-

sive with a momentum diffusion coefficient given approximately by9’10

Dcl = 52/4 + v2/2. Thus, if v2‘<< 52 (which applies to all of our

subsequent considerations), the noise has little effect on the value of
Dcl'

Turning now to the quantum version of the problem, we impose
periodic boundary conditions, ¢(8,t) = ¢(6+2w,t). Thus momenta are

quantized at p = i, where R is an integer. Integration of

Schroedinger’s equation with the Hamiltonian (1) through one time

periodl’11 yields
b (0 = exp[(Av/Ade ,  (O)ILL¢ (O] , (2)
274 o 2
LI¢(O)] = ) IT [-ihR°/2 + 12(6-08") + iecos®/M]¢(0’) ,
L0

where b denotes the value of ¢(6,t) just after the kick at t = nT and 4
has been normalized to I/T.
In what follows we shall comsider 82 >> v2 and discuss the parameter

dependence of D on v, &, and i. We distinguish three regimes in terms

q




of which we can state our main results as follows: (a) (sﬁﬁ)z K1
(large ) for which we £ind D_ = v2/2; (b) (e/)? >> 1 and
(v/h)z(s/'ﬁ)2 & 1 (moderate 4) for which we find Dq ~ vz(s/ﬁ)4; and
(e) (vﬁﬁ)z(eﬁﬁ)z >> 1 (small 4) fof which we find Dq = Dcl'

Thus, from our regime (c¢) result, we have that in the "classical

cl

not so for v = 0, since then the quantum diffusion coefficient is

limit" (the limit 4 - 0) D + D , when v > 0 (see also Ref. 3). This is
q

apparently zero for any & > 0 (hence, with v = 0, Lim Dq =0 as A > 0).
Thus we may say that, in the presence of noise, however small, the
classical limit is restored.

Regimes (a) and (b) may be treated by random phase approximation
perturbation theory considering the effect of finite noise (v > 0) as the
perturbation. For v = 0, we assume that (2) has an essentially discrete

254 Thus ¢n(9) may be expanded as

quasi-energy spectrum.
¢n(6) =) Amgxp(— 1uﬁp)um(e), where from Eq. (2) the um(e) and exp(lgm)
are the eigenfunctions and eigenvalues of the unitary operator L,

L[um] = eXP[_l%n]um'

Since v/ << 1 for both regimes (a) and (b), the factor
exp[iv¢;(9)/ﬁ] =1+ iv¢;(e)ﬁh in Eq. (2), and, assuming perturbation
theory is valid, the probability per kick of a transition from u, to
u, is o, = (v/ﬁ)2|<u AL >|2 , where the subscript ave. indicates

m mm m’ ' "'n' m” 'ave, —_—

an average over the ensemble of random ¢n. Using the transition

probability @ s the diffusion coefficient is

2 , 2 2
Dq(m) = (véﬁ) %' |<um'|¢n|um>|ave.(pm' - pm) s (3)

where p, is the momentum expectation value for the state u . Note that,




whenever Eq. (3) applies, we can immediately conclude that Dq is

2
proportional to v .

We now consider regime (a). In this case the term exp[i(e/i)cos6]

in L may be neglected to lowest order; thus the um(x) are as in the

/2

freely rotating (unkicked) rotator, um(x) = (27(:)—l exp(im@). For

_ , ~ 2
= /2 Ancos(9+an), we obtain o ., = (v/%) [ém,m,+1 + 6m,m’-1]/2°

¢

Since, in this approximation, u, is an eigenfunction of the momentum

n

operator corresponding to a momentum p = mh, we may readily evaluate the
diffusion to obtain from (3) Dq = v2/2. This result is the same as the
diffusion one would obtain for the classical map with noise if & were set
equal to zero.

We now consider regimes (b) and (c). 1In these cases, (s/ﬁ)z > 1,
and the eigenvalue problem for um(e) is not analytically soluable. Thus

we shall only be able to obtain estimates for D To do this we require

q°
some qualitative information concerning the uy. First, we note that, on
the basis of Anderson localization, Fishman et al.4 have shown that, in
the momentum representation, the eigenfunctions are eprnentially
localized about the "lattice points" p = . The localization length in
p (which we denote A) is large compared to i, Furthermore, one can
readily argue from the momentum representation version of the eigenvalue
problem for uy that, for (sﬁﬁ)z >> 1, the momentum eigenfunctions

[Gm(l) = (Zn)_lfznéxp(— ile)um(e)de] are not smoothly varying on the
lattice. That ig, although on average there is a slow exponential
decrease of |£m(2)| with R away from the center of localization of Gm(l),
there are also typically ~100% variations of Gm(X) on the lattice spacing

scale (i.e., typically Ium(X) - um(ﬁil)l ~ |um(l)|)-

We now obtain an estimate of A. To do this we utilize the arguments




of Chirikov, Izrailev, and Shepelyanski.2 We observe numerically, for
the case with no noise, that <p2>-increases with time initially at
roughly the classical rate, but then turns over at some time n ~ ng.

This is interpreted as being due to the excitation of many Anderson
localized modes by the initial condition (which is localized near p = 0).
Furthermore, those modes most strongly excited are those Whiéh are
localized around momenta within A of p = O. Hence the effective number
of modes excited by an initial condition with p = 0 is of the order of
AM. Each mode has an associated eigenvalue exp(—iuh). Thus the W may '
be taken to lie in the interval [0,2%]. Since there are A/ modes, the
typical spacing between modes with adjacent frequencies is dw ~ 27/ (A/R).
" For n < 1/6w, the system does not yet "know" that the quasi-energy
spectrum is discrete. Thus we expect that <p2> increases with time (n)
until 1/8w, at which time the turnover in <p2> should occur. Thus

n, ~ 1/6w ~ A%. In addifion, at the turnover the characteristic spread
in momentum will be the localization width of the modes, i.e., <p2> ~ AZ.

Let n, ~denote the time to classically diffuse the distance

d
A, ng o~ AZ/Dcl ~ Az/az. Since the initial increase is at the classical
rate, we have n, ~n, or A/h ~ Az/sz, which yields the result® A ~ sz%ﬁ.

d

Before calculating the diffusion coefficient in regime (b), we ask
what is the limit for the validity of perturbation theory, Eq. (3). The

localization of the modes, u_, is dependent on the maintenance of phase

m
coherence of a wavepacket as it diffuses over the distance A in p. Thus,
if noise destroys this phase coherence in the time N4, then the localized
modes will also be destroyed. With localization no longer operable we

expect a return to the classical result Dq = Dcl' To see how much noise

is needed to do this, we recall that an eigenstate in the momentum




representation has ~100% variations down to momentum separations of A
(the lattice spacing). Thus, if the cumulative effect of the noise
scatters p by an amount equal to A, then the phases have been randomized.
Noting that v2/2 is the component of momentum diffusion due to the noise,
the time n, for the noise to scatter p by A is nc(vz/z) ~-h2 or
n, ~‘h2/v2. Thus, if n, < ng, or (v/ﬁ)z(eﬁﬁ)z > 1, then we expect that
Dq = Dcl' This defines the boundary between regimes (b) and (c).
To estimate Dq when (v/ﬁ)z(gﬁh)z <1 and (g/ﬁ)z >1 (i.e., regime
(b)), we note that the phase coherence of the waves is maintained for a
time nc. Thus we expect transitions between localiéed modes on this time
scale. Since transitions are appreciable only for modes within a
localization length of each other, Dq ~ Az/nc, or Dq ~ vz(aﬁﬁ)4.

12 who

The above arguments are similar to those-of Thouless
considered the effect of finite temperature on localization in a solid.
Thus our numerical experiments testing the above arguments (described
below) may also be viewed as a test of Thouless’s heuristic treatment of
the low femperature conductivity of disordered soli&s. To our knowledge
no other numerical experiments testipg Thouless’s arguments presently
exist.

The estimate Dq ~ Vz(g/ﬁ)4 can also be obtained directly from (3) as
follows. um(e) =7 Gm(x)exp(ile). From the fact that the Gm are
localized, there are effectively of the order of A/ appreciable terms in
the sum over 2. Thus, using the Gm(x) representation, the quantity
<um,|¢é|um?, with ¢, = /2 Ancos(e + an), will involve a sum over roughly
A/ appreciable terms. Since <um|um? =1, |£m(£)|2 ~ (A/ﬁ)—l. Now
assuming that the Gm(x) are pseudorandom in %, we see that the sum

involved in calculating <um,|¢£|um> will be of the order of (A/ﬁ)—l/z.




Thus (3) yields Dq ~ (v/'ﬁ)zA2 which again gives Dé ~ vz(s/ﬁ)A.

As a test of these arguments, Fig. 1 shows numerical results
obtained from long time evolutions of Eq. (2). (Values of & chosen avoid
accelerator modes,g‘while values of A/4y are irrational to avoid quantum
resonances.lB) The dots show results for Dq versus /A with & = 5.0,

v = 0,0354, and & varying (horizontal axis). TFor (aﬁﬁ)z << 1 (regime a)

apparently asymptotes to

there is good agreement with Dq = v2/2, and Dq

D.; for large (e/f) appropriate to regime (c).

Figure 1 also shows other data (circles and crosses) for regime
(b). The circles and dots have v and e fixed and % varying, while the
crosses correspond to v and h fixed and £ varying. The three sets of
data fall close to each other and are consistent with an approximate

proportionality of D_ to the fourth power of (e/h) in regime (b), as

q
predicted theoretically (solid line on Fig. 1).

In addition, we have obtained extensive data on the variation of Dq
with v (¢ and A held fixed). Excellent agreement is found with the
theoretically predicted proportionality to v2 in regimes (a) and (b) (cf.

Eq. (3)).

In conclusion, we have found that the presence of a small amount of
noise can greatly modify the behavior of a quantum mechanical system
which is classically chaotic, particularly for systems in the

semiclassical regime.
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Figure 1

Dq/(1/2 v2) versus g/f with v = 0.0354 in regime (b). Solid line
corresponds to Dq « (sﬁﬁ)a. Dots: g = 5.0, i varies. Crosses:
A = 5.0, ¢ varies. Triangles: ¢ = 55.26, #i varies. The iteration method

is discussed in Hanson et al.11
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