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Abstract

Turbulence associated with sheared'radial electric fields such as
those arising in vtokaﬁak edge plasmas is investigated analytically.
Two driving mechanisms are considered: in the regién of maximum
vorticity (maximum electric field shear), the electric field is the

dominant driving mechanism. - Away from the maximum, turbulence is

' driven by the density gradient. In the latter case, previous work'is -

extended to include the effects of the electric field on the spatial
scales of density correlation in the frequency-Doppler—shifted
density—gradient—driven turbulence. qu radial electric field driven
_tqrbulence, the effects of magnetic shear on linear instability and om
fully developed turbﬁlenée arevexamined, Iq the case. of weak magnetic
.shear, saturation occurs through an enétrophy cascade procéss which
couples regions of driving and dissipation in wavenumber space. For
stronger magnetic shear, such that the resistive layer is comparable to
‘the radial electric field scale 1length, saturation occurs through
nonlinear broadening of the mode structure, which pushes enstrophy into
the region of dissipation. Estimates of mode widths, fluctuétion
levels andA scalings are obtained for both mechanisms. Comparison is

made with -the results of fluctuation measurements in the TEXT tqkamak.




I. Introduction
Recent measurements of-—turbulence in the edge region of ‘tokamaks
indicate the existence of a time—independent radial electric

field.1'® This field is large (50 volﬁ/cm), has a very steep gradient

(Lp =.1 cm) - -and reverses .sign near the limiter.  Its scale length is
7 .

LE/pi =~ 10. Fluctuation measurements in the region of maximum gradient

show an isotropic spectrum with widths in frequency and wavenumber
which exceed by a factor of two the anisotropic spectra measured away
from the maximum (Fig. 1);1' These ﬁeasurgments are corroborated by
flow visualizations, assembled from probe array data which suggest the
presence of vortex—like motion in this region.3

The radial variation of the electric field implies rotation in the

ion diamagnetic direction outside +the limiter end rotation in the

electron direction further in (radially). It is thus possible, on the-

basis of an electric field dependent Doppler shift in frequency, to
reconcile theories which predict phase velocities 1in the electron

direction4’5

with measuremgnts made at.the extreme edge which indicate
phase' velocities in the ion direction.®7 However it also becomes
necessafy to determine the effects of a ;adial eleqtfic field .on
turbulence in the edge region. The fact that'broadeﬁed spectra are
observed\bdth away from and near a strong vorticity maximum and have a
character which changes noticibly near the maximumlsuggest that both
“"standard” depsity or temperature—gradient—driven turbulence and
electric—field-gradient—driven turbulence play a role in determining
edge turbulence spectra. Furthermore, monambipolar transport processes
q8:9

have recently been propose as relevant to understanding -the

separatrix region of diverted H-mode discharges. The shear flow
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stability properties of plasmas, which support the electric fields that
“result, is thérefore also important- for-understanding - H-mode profiles
and confinement.

In this paper we explore the effects of a radial electric field on
edge -turbulence models. A sheared radial.electric field is included in
a two—point theory of density—gradient—driven turbulence developed
previously. It is found that the correlation decay rate dﬁe to
(velocity) shear induced relative drift is greater than that due to the
ambient turbulence. The extent to which this ephanced decay affects
the scale size is calculated quantitatively wusing the theory of
two—point correlations. On the basis of these results, we conclude

that the electric field shear alone is strong enough to determine the

radial density correlation length at the maximum (velocity) shear

" region. Thus, the strength of ‘the shear suggests that its role  as a -

free energy source for instabiltiy should also be examined.

For turbulence driven by the gradient of +the radial electric
field, we study the shear flow (Rayleigh) instability and consider
additional (stabilizing) effect of magngtic shear. The linear growth
rate and eigenfunction structure are obtained using.the reduced MHD
eéuations in the electrostatic limit,V‘énd ‘an: approximate radial
electric field profile. In the 1limit of vahishing magnetic shear
damping, this instability reduces to the familiar Rayleigh instability,
where flow shear relaxes by an interchange of vortex tubes around a
vorticity maximum, in which case restorihg forces vanish. Moreover, as
the linear mode structure 1is broad and has approximately the same
length scales in the radial and poloidal directions, an isotropic

spectrum is expected.
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Two possible nonlinear saturation mechanisms are proposed, and the

---saturation -level-corresponding to each -is estimated. The strength of

the magnetic shear damping relative to that of the destabilizing source
determines which mechanism is operative. When magnetic shear is weak,
saturation of unstable modes relies " on an enstrophy-cascade which

transfers mode energy from unstable modes to high k stable modes.

When magnetic shear is moderate or strong, fewer modes are

destabilized. For those remdining unstable, éaturétibn results from
nonlinear mode broaaening (Fig.46) which effectively transfers energy
from the source (vorticity gradient) to the sink. For parameters
consistent with the TEXT tokamek, magnetic shear dampiné is moderately
strong in the edge, and the latter mechanism is expected to determine

saturation.

" For a model shear—flow profile, VE(X) =V, tanh ig , the .
: E

saturation level of the root-mean—square potential fluctuations is

v
eQrm: - 1 0
T 4%3(k0LE) p<CskMIN
in the case where saturation arises from a cascade process. This

result is eésily recognized as the femiliar ﬁixing-length fluctuation
level. At such levels, the coupling to the higher k stable modes is
equal to . input from the gradient source. For saturation due to
nonlinear Broadening of mode structure, the rms potential fluctuation

level at saturation is
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where ko and kMIN are the average and minimum wavenumbers respectively,
C. is sound speed, Py is the ion gyroradius with electron - temperature,
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characterizing the strength of magnetic shear, VA is Alfvén speed, 7 is

the resistivity and Ls is the magnetic shear length. At such levels,

convection to dissipation at finite 5'30 equals input from the gradient .

source. We find that when R = 2.6(kMINLE)1/2, transition from one
regime to the other occurs.

We also estimate the density and magnetic field fluctuation
levels. In an incompressible fluid, density fluctuations arise_ from
the convection of fluid elements along the density gradient by the
fluctuating velocity field; magnetic field fluctuations result from the
- coupling of the electric an& magnetic fields via Ohm’s law. When the
cascade process is responsible for saturation, the saturated density

and magnetic field fluctuations are
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When the mechanism of nonlinearly mode—structures broadening dominates

saturation, they are
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where Ln is the density scale length.

Y

For the parameters 'in the tokamek edge of TEXT, Te

2x101%em3, T = 3~4 By = 0.7x10% Gauss, vV, = 3x10°cm/sec

IR

)

LE = 0.5cm, Ln = 1.5cm, LS = 200~400cm, we estimaté R=2 for LS = 300cm,

and the root-mean-square fluctuation levels at saturations are

ed . on

—ms . 942 , —™ . 0.35 , and
Te )

B —

—Ims . 5x1070

By

The values for eQ/Te and o are consistent with those measured. .
n
. 0
~The remainder of this paper is organized as follows: In Sec. II,

we extend the previous study of density—gradient driven turbulence to

incorporate ‘the inhomogeneous radial electric field and examine the

20eVs,
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consequences. In Sec. III, we make a preliminary linear analysis of
-~the---fluctuations - --driven . by the.radial electric field gradient. This
analysis reveals a key point for nonlinear saturation, discussed later.
In Sec. IV, we outline the renormalization scheme, and propose two

. competing - saturation.. mechanisms . characterized by the strength of .
magnetic shear. Subsequently, various of relevant quantities are
estimated in Sec. V and compared with those obtained from experiments. -

Finally, conclusions are discussed in Sec. VI.

II. Effect of an Electric Field on the Density Fluctuation Correlation
Function

We first study density gradient—driven turbulgnce and consider the
fluid equations for dissipative drift waves'in a torus. The electrons
are adiabatic and isothermal, [wuei < V%e/(Rq)z] and are collisionalﬁon 
the transit time scale; i.e., v, > wp, = VTe/(Rq). The linear
properties of these equations are discussed in Refs. 5 and 11.

With the inclusion of a radial electric field, a time—independent
ExB drift is added. The convection of density by this drift resuits in

a Doppler—shifted frequency. Thus the equation for the non-—-adiabatic

part of the electron density H is

2
v 1 .
. Te d ile
—1(w—wE]Hn - . H, + N, = T [w—wE—w*e]wn (1)
: w  Vei(RA)® M o w e w

where n 1is the toroidal mode number, 7 is the coordinate along the

magnetic field direction and Nn is the ExB nonlinearity, in the
w
e

ballooning representation. Th symbol w, refers to the diamagnetic
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drift frequency, wi, = (CTe/eB)kﬂ/Ln, where kg = nqg/r. The electric
field induced ' Doppler " 'shift is -represented - by- wg .-where

B % E kg = Vgk,. For edge plasma parameters typical of

wgp =
Text!, Pretext’ and the Caltech tokamakG, w0 (}06 rad/sec) can
exceed Wie (105 rad/sec) by an order of magnitude or more- except in the
close vicinity of the electric field null point. This implies that
measured phase velocities of edge fluctuations are primarily determined
by the electric field, with a shift due to w;e. Hence, the phase
velocities can be in the opposite direction of thé elec@ron drift.

To determine the effect of the radial electric field on density
correlations in the turbulent flow, we study fhe two—point density

correlation <H(i)H(2)>. The equation for two—point density correlation

is readily derived from . the one—point equation.  Standard

renormalization procedures may be epplied to the nonlinearity to obtain- -

an equation with diffusion in the relative variables, (y_,n_,rl) = %

(Yl—YB 21 Mo rl_rg) :

2
E v 2 2
d C 0 3 T
- 2 - oy - Ha)n(R)>
0 E °Y- (Rq) Veji an” Iy=
=s=7y l'Jrﬂ (Y- ) (0 ~wpwig ) <H(1)F(2)> . . . (®)
k’ e ,
k]

where D_(y_,n_,r_) is the renormalized turbulent diffusion éoefficient
for the predominant (y_) diffusion. Accordihg to Eq. (2), the
two-point density correlation is governed by the competitiop of the
driving source on the right-hand side with the decay processes of

relative diffusion and drift on the left-hand side. The driving sourée

P
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is fed by the density gradient and is homogeneous in the relative
“coordinate.” Tt is"the  inhomogeneities associated-with-the decay - which
determine - the spatial dependence of the correlation function.. The

decay processes are 1) the relative drift between fluid elements at

. ‘ - . . c CEj
-~different . points. -on the drift velocity profile VE(r) = — -r(r) s
By By,
L , 2) the relative parallel diffusion due to <collisional viscosity
E

and 3)» the inhomogeneous relative diffusion due to the turbulent ExB
mixing. Note that while the ExB diffusion vanishes as the relative
separaiion goes to zero (a consequence of correlation in the écattering
field at short seﬁaration), the parallel collisional diffusion does
not. Because of this property the density correlation peaks at sméll
scale, but is finite at zero relative separation.

For small relative separation the turbulent diffusion 1is giwven

approximately as

D_ = D(kgyg + n®/mm* + kgszrf) : (3)
" where o(r) =) ™ ¥ el (n-ma)n [ dan o(n) .
m n ,
2 9%
R 9
| c? 272 Tean2 "~ 2 2
and D=7 ki*s“Re[o—wp — =] ¥ (Brm)® <p(n+2mm)®>, . .
32 ‘ MeVej "
0 k m -

The quantities kag, (RgAn)®  and (koé)—2 are the poloidal (k = 23),
: r

parallel and radial scales on which the relativé diffusion begins to

decrease from its asymptotic value D. The poloidal scale corresponds to

a typiéal.wavenumber in the spectrum. The parallel scale_is determined
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by the toroidicity—induced eigenmode structure. The relation
"Af”='(k§)_1 is a consequence™of ballooning representation.

The 'spatial dependence of the steady state solution of Egq. () 1is
obtained by the inversion of the operator on the left—hand side of
Eqi’(Z)‘which-yields Tcl(Y¥’n—’r—)’ the - two—point correlation time..
The correlation time is calculated by taking moments of the L.H.S. of
Eq. (2), which yields differential equations governing the evolution of
neighboring fluid element posiiions.5’12 For the opérator in Eq. (2)

the correlation time is

2y — 2(.2 2, 22
oy (v_m_or_) = (kED)TY an{[k(¥2 + n°/60"k]

—1 2ne -1
R c®E ,
~ 1 0 1 .
* _e_2 + (3%« 2 2.2 4_2)’”3” ) ()
ko BOLE kDD

where R, = Dkg(Rq)gAnzuei/vge is the Reynolds number and pérametérizes
the relative strengths of the linear (parallel»collisional.viscosity)
and nonlinear (ExB diffusion) processes. For Reynolds numbers
exceeding order unity, Eq. (4) exhibits logarithmic peaking inside the
correlation scale. The correlation scales are determined by the
coefficients of the relative .coordinates. The scale of radial

correlation is thus

2ne
.5 1 CE “1/2
o= (B o) K
BOLE kOD
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where Te = "5 o the correlation time, and TR = —735—— , the dynamical
ksD : 0
0

time - scale of -~ the poloidal flow. - For parameters consistent with the

edge plasmas already referred to,1’6’7

TR is comparable to Te and the
correlation scale determined from Eq. (5) is of the order of 1 em. For

k_l

o ~ 10pg this is qualitative agreement with the radial correlation

scale measured in the TEXT1 and Caltech tokamak.lD However, at the

region of maximum flow shear,

T/Tp > s = 1

This observation that 7y is the shortest dyneamicelly relevant time-
scale suggests that effects of the electric field gradient on edge
turbulence may be more involved than a simple Doppler shift. Thus, in
the next section, we shall thus examine the'eleétric field gra&ient as

a driving mechanism for turbulence.

III. Radial—-Electric-Field-Driven Turbulence: Basic Analysis

We now examine electric—field driven fluctuations. In a
magnetized plasma, the radial electric field, —Vr@(r), causes a
poloidal drift Vg = (C/Bg) By x V.2. Since this radial electric field
has spatial dependence, the resulting plasma flow is a source of free
energy and can potentially drive instabilities. In the case of strong
toroidal magnetic fields, plasma motion is quasi—two—dimensional; the

electric potential ® can be looked upon as the flow stream function,
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and Vf@ as the vorticity. Suitable equations for description of the

-~ vorticity evolution in “the "tokamak " edge are -~ the -"reduced  -MHD

equations,15
L gR, BV S 4V A XD . V] . ' (8)
Pgy 18T Foluty T ANy
B
d 0
at M= o2 Vig = ndy o (M)

where ¢ = @CB/BO, b = Bér)/Bér>, and A, and J, are the vector potential

I I

and current along the field line, respectively.

Here, the dynamical time and length scales are approximately

a. Yo 1
determined by the shear flow, i.e., |—| ~— , and |V

l] ~ —— . When
dAdt . LE LE

comparing the'electromagnetic piece,'iﬁr, with the current piece, nlﬁﬂéc

2
%f— ViA”), - of the parallel Ohm’ s law, Eq. (7), we find
3
: dA
n02/4ﬂV0LE >> 1, and the electromagnetic piece, Tﬁ} , can be dropped.
Hence, using the electrostatic limit of Ohm’'s law, reduced MHD yields

the vorticity equation,

Be
vy = —i% o o (8)
7nC

In the limit of vanishing magnetic shear (V,=0), Eq. (8) gives

d 2
— V =0,
dt v
which 1is a statement of conservation of vorticity. It is

well-established that a mnecessary condition for instability in this
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equation is the existence of a vorticity maximum at the point of

(r).ls’14 In view of this

~inflection...of...the equilibrium.. flow b
criterion,the profiles of Ritz et al. clearly point to the possibility

of shear flow driven turbulence in the tokamak edge.

« .- -~ Shear- -flow . instability .is. . associated .with the interchange of.

vortex tubes at the vorticity maximum, where the restoring force
vanisﬁes. Any localized perturbed ﬁotion around this point cannot be
étopped, thﬁs iﬁstability arises.

When magnetic shear is considered, free energy provided by the
vorticity gradient can be dissipated by the resistive dissipation.
Thus instébilitf can be effectivel§ suppressed unless the vorticity
maximum. coincides with the location of the magnetic resonance surface.
There, the dissipation _associated with V”J“ is minimfzed, and
instability can be locally excited for the longest wavelepgth modes
bTo simplify the analysis, we will use slgb - geometry, with x and ¥y
representing the radial and poloidal directions respectively: We then
Fourier transform Eq. (8) with fespect to 'y and the parallel variable

and obtain

, 2
acv
3 : 2 . E Rp2 2
[St'+ ikVp(x)]V]e, — ik - o — K°R®(xx() 0y
© deyn
. o2 k" . d 2
.._‘1 E/[k Vl¢k/ dx k qok/ dx Vl (Dkn] N (9)

where k = ky’ velocity, length and time variables are normalized to the

characteristic shear flow velocity VD’ the width of shear flow LE and

their ratio LE/VO respectively, and ¢ is mnormalized to LpV,. 1In




addition, we have used kﬁ = kg(xéxo)g/Lg to.account for the magnetic
i a R 4. uRT & 2: 8 . _ .
:~:shear, - hence R% = 4ﬂVALE/nVOC Lé, where VA is the Alfvéen speed. Note

that the magnitude of the sink term relative to that of the source term
is kR®. This defines a length LE/(kRg)l/2 for the dissipation—free
- region where the .source is much stronger thaﬁ the sink.

Linearly unstable modes can be locally ¢xcited within the
.dissipation—free region if the energy source (with a width of the shear
layer LE) decouple from the linear dissipation. Stability is crucially
dependent on the degree of overlap ﬁetween the energy source and
dissipation region. Long wavelength  modes have a largéf
dissipation—free region, and thus are'easier to excite. In the limit
of large R, the unstable wavenumber k must be be sufficiently small
in order for the energy source to overcome dissipation. Consequently,
kRz for the unstable modes will approach a constant of order unity, aé
R becomes much larger than uﬁity. Fur@her increase in R can force
the wavenumber k to be smaller than the system allows, kMIN’ and
yields stability. |

In order to discuss stebility and describe turbulence properties,

it is necessary to specify profiles for VE(X). VE(X) is measured in-

TEXT and appears to be essentially linear in the region of interest.
Outside the linear region, the velocity profile is  flat. . For

simplicity, we model this observed profile with a hyperbolic tangent,

X
VE(X) = VO tanh —L; .

We solve the linearized eigenvalue problem of Eq. (9) numerically to

determine the frequency. The eigenfunctions, which are purely growing




and excited around the central region, are shown in Fig. 2. It is

~~noted-that the length scale of-a linear mode in the -dissipation—free

region is different from that of the dissipation region. The former

can be estimated by comparing the linear convective term with the

- gradient..source and is approximately,

- | | S
Ay = Lp , | (10)

the latter by balancing the inertia term with the sink and is

approximately,

. v
Al —F , (11)
(sz2)1/4

The relevance. of these two length scales will be discussed in the mnext

section.

In Fig. 3, we show the growth rate 7y Versus the wavenumber k
for various values of R. In the abovg, we have chosen Xg = 0, i.é., the
vorticity maximum 1is .centered at the K‘BD = 0 surface. As R
increasing, unstable modes are confined to those of increasingly longer
wavelengths, and the maximum growth rates decrease. When the vorticity
maximum is not centered at the K'Bb = 0 -surface, XO # 0, the modes
become more stabl?, as shown in Fig. 4, because greater overlap occurs
between the energy source and the dissipation region (Fig. 5). This
damping .is a sort of dissipative line—tying. In the more unstable
Xg = 0 case, we find tihat kR2 for the most unstable modeé

asymptotically approaches 0.5 from below, as R becomes very large.




For TEXT parameters, R is of order unity, hence magnetic shear,

o ce=though-significant ;"is -not-=sufficient- ..to ..suppress . . the..hydrodynamic-

shear—flow instability. To study turbulence caused by this

instability, a nonlinear analysis is then necessary.

IV. Nonlinear Analysis and Séturation Mechanisﬁs
In this section, we investigate. possible saturation mechanisms.
In the present case, two processes compete to drain wave energy from
the.unstgble modes. Both rely on parallel dissipation and turbulent
diffusion; however, the role of turbulent.diffusion in each of these
two processes is distinct. In the first process, turbulent diffusion
nonlinearly couples different modes, permitting energy flow in .k
space which reaches thé high—k energy sink. In the second proceés,
turbulent diffusion broadens the mode structures, allowing energy to
reach regions in x séace with strong dissipatjon (Fig. 8).
To renormalize Eq. (9}, a sténdard iterative method is used to
Aapproximate its convective nonlinearity. The nonlinear vorticity

evolution equation can be expressed as (with Xq = 0},

S 2 1,4 iy 2 — 2
TN AR =D W (6 S U R C O LA NS
w’ ' '

2 2
do. . - advVie. . a®v.
. kK", w0’ g2 1"k w o E _1.RnRu2 -
~ik E/ [ dx Vl(pk”,w”_gak”,&)” dx ]} = ik 1 5 g{?k’w k~R™X (pk,w . (12)
. X

This equation can be renormalized by substituting Pr @ and Viwk",w“
for ¢£%)w“ and Vﬁ¢§§>w” respectively, where the latter quantities are

driven by the direct beating of a test (k,w) mode and background




(k",w’) modes (detailed derivation of local and nonlocal renormalized
- terms, DR;G“and Gﬁ;by¢respectively,-is-Showniin Appendix (A)).

In the present analysis, we shall neglect {he ponlocal. Ck,w and
retain only the more familiar Dk,w’ local operators of diffusion type,
- to model the effects-of<rahdom.convection by the turbulent velocity
field. It is evident, from Eq. (A—4>, that Dk,w is composed of tﬁe
‘diffusion of both vorticity Vi¢k;w and field % in the x and y
directions. That is,

d d

p, = [Z D = - xfp_]vP

d 4a 2
dx X dx y] l¢k,w—[ d — kvd

dx X dx y]¢k,w ‘ (13)
The linear convection together with diffusion of vorticity describe the
perturbed orbit of a vorticity elemenf, while the .diffuéion of the
field describes modifications of the equilibrium profiles. As pointed
out by Dupree, these two effects cancel in the total energy (not emergy

16 In the present case of spatially

per mode) evolution equation.
inhomogeneous profiles, . they combine to form a term of a total
derivative with respect to x, representing the divergence of energy

flux: Hence, these two groups of terms in Dk w account for the

nonlinear spatial rearrangement of the kinetic energy.
2
d

In the region where |¢k w|2 is large, we have |—| >> k°. Hence:
d. 4 o T dx .
we retain only E; DX E; vlwk,w to represent the locally renormalized
nonlinearity. The nonlinear evolution equation for vorticity can thus
be approximated by
2
2 d®v
2+ ievd 2)v3p = [ik —= + k*R%%P)p, (14)
9t E 2l 17k k
dx dx




and that of the vorticity spectrum by

3 w2 (R 4 .2 " 4 o2 2
Jax{Zr 1Viepl + 201 Vgl - B(E, I Tioe 190y)
2
acv. :
- E 2 * R 2 * ‘
=2 [ dx{-x d—g— Im<p, Vg > + K°R°X Re<¢kvl¢k>} : (15)
X

where the third term on the left of Eq. (15) 1is the nonlinear
incoherent source. Together with the diffusion term, these two
nonlinear - terms are responsible for enstrophy cascade. Here, D is

givén explicitly by

D=7 D - - (16)

ISP

R

and D, (17)

. - d2
(w+ikVE(X) + D ——)
dX2

In the remainder of this section, we separately present the
details of the two nonlinear saturation processes previously mentioned.
As the parameter R effectively determines which of the processes

dominates, we consider the limits R << 1 and R = 0(1) respectively.

(A) R< 1
In this regime, the linear sink is very weak for a broad range of
low—k modes. - The dissipation region 1is spatially remote from the

region, where unstable modes are located, because the width of the
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dissipation—-free region scales as LE (kRz) . Thus, the linearly

cermiunstablesmodes-do.not::sense-the-rmagnetic shear. Only those modes with

sufficiently large wavenumbers experience appreciable linear
dissipation. As a result, the only significant way available for " the
removal of -wave energy from unstable modes is by a nonlinear coupling
-between low—k and high~k modes. This‘coupling}allbws an energy flow in
k space toward the high-k dissipation range exactly as in the
conventional picture of cascading. In the fenormglized theory this
nonlinear coupling is represented by turbulént diffusion which removes
energy from the low—k linearly unstable modes.

Ignoring magnetic shear, we have an equation for low-k linearly

unstable modes,

: 2
. 2 a~v.
C d 2 o E
[_1w+1kVE—D -—5] 9% o = ik —— %0 (18)
dx dx

This is the Orr—Sommerfeld equation, and the stability boundary has
been tabulated. For the hyperbolic—tangent floW’ﬁrofile, the longest
wavelength modes are always unstable in spite of a large value of D.
Hence fhe cémplete stebilization of all modes must rely on the

existence of a lower bound of k, which may be imposed by finite

system size or by other effects not contained in this model. For small -

. VAL
kLE, the Reynolds number, R A = 0 satisfies

e D

R, = 4V3 kip . (19)
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at the stability boundary. Thus the diffusion coefficient 1is
'“appf&&imately
V,L
Dz —WUJOFE (20)
4v/3 kyinke .

+ . at saturation, where kMIN is the .lower bound of the range of

wavenumbers.

(B) R~ 0(1)

In this regime, magnetic shear very effectiveiy governs the
stability of 1low-k modes. The stability is determined by the -
competition of vortex interchange and magnetic shear. Spatially, the
dissipation region lies in close proximity to the free energy source
(Fig. 2), thus stability is crucially dependent on the degree to which
these two regions overlap. Nonlinearly, it is more effécti?e for the
linear sink to .couple to. the source, through real space by spatial
broadening, than through k space és. in the previous case. Here,
turbulent diffusion creates a mode structure which extends\into’the
dissipative region (Fig. 6), through which energy flows to parallel
resistive sink. Thus, turbulent diffusion nonlinearly éouples source
and sink.

Let A; and A be  the characterisiic lengths. of the nonlinearly
broadened mode in the innér. (source) and outer (sink) regions,
respectively. To determine them at saturation, one can use Eg. (14)
and balance the diffusion of vorticity with the source in the inner

region, and the sink in the outer region, respectively. That is,




R~ .
a~v. A :

D E 0
_4<Pkg | k< 2>|¢kgk_3<'ok
A dx L
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Here, we have ignored the convection in the presence of diffusion of
vorticity. In addition, we have approximated the avéréged dZVE/dXZ in

the inner region wﬁth a value VO/LE. Hence it follows that

1/4
85 = (D) / (21)
. (_D_\1/6 iy
by = (szz) - : | (22)

To determine D, we need to use Eq. (15), the vorticity spectrum

equation. At steady state,

3 2
[ ax o= 1%, 1" =0,

and the remaining pieces of Eq. (15) are the nonlinear enstrophy
coupling te;ms on the left-hand side and the competition between
driving and dissipation terms on the right. In this regime, nonlinear
cascade of ensfrophy is less effective and can be neglected.

Saturation occurs when the source balances the linear sink.

Substituting Viwk from Eq. (14) in Eq. (15), one obtains




2
d VE 2 dz)

0 = f dx [kz( - ) (D a

' 2
k2V§+(D 4°e dx

2

dx

where D dz/dxg operates only on P - Since ¢ is a localized  function

in x (Fig. 2), peaked at the inner region and evanescent in the

I

dissipation region, dz/dxg —I/A? for the source term and

dz/dxz'e I/Ag for the sink term. As a result, it follows that

AR = k2R4Ag , . : (23)

where the convection term in the denominator has been ignored,'and
|d®Vg/dx®| ~ V,/LZ has been used. In addition, the integral [dx has
beeh evaluated with the values Lp (because of the localization of the
source, dZVE/dXZ) in £h¢ inner regions, and A, in the outer region.

i

D, A, and Ag can  now be straightforwardly determined using

- Egqs. (R1), (R22) and (23). Thus,

5/186
Ay = (~lg / Ly (24)
kR
3/8 ' : .
bg = (;ég) / Lg - (25)
_ Volg
D= m . (26).

Comparing the mnonlinear scale lengths (Egs. (R4) and (25)) with the




linear ones (Egqs. (10) and (11)), we find that the nonlinear scale

lengths are broadened (kR2S1).

V. Estimate of Fluctuation Levels at Saturation

Having ' obtained the vorticity diffusion coefficients D for both
saturation mechanisms, we are now able to estimate several relevant
quantities for comparison with‘experiments. The‘quant;ties include the
root-mean—square potential, density and magnetic field fluctuations.
These quantities will be estimated separately, for each saturation
mechanism.

At steady—state, the vorticity diffusion cogfficient D, arising

from the random convection of velocity field, cén be expressed as

ISP

R RB_aR
. k0<¢ >0
a® D

. 1

2 D
('E)

2 a8

ikVE(X)—D
dx

hence the rms potential fluctuation level is approximately

.eQrmq ~ ‘D 1

Te pscs kOAi

, ’ (28)

where C, is the ion sound speed and pg is the ion gyroradius with
electron temperature. In the above expression (and hereafater), the
original unit of @ as the electric potential has been (and will be)

retained.

§k2|¢k|2 _—, (27)
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The magnetic field fluctuation is related to the current
“fluctuation J, by Ampere’'s law,

[V x B

and the current fluctuation couples to the electric pdtential

fluctuation through the electrostatic Ohm’s law, —V”Q = nJ”. Hence the

rms magnetic field is approximately

~ 2 2
Byms = 4ﬂkOAi C_S e_q).nms) . (29)
BO anwc. C2 Te '

1

"To estimate the density fluctuation, it is noted'that in this

model of electric—field—driven tUrbulenceithe density gradient has been
ignored, and so has the densit& fluctuation. Obviously, demnsity
gradient effects and density fluctuations significently complicate this
simple model, making analysis difficult. However, because the density
gradient is smaller than that of the équilibrium flow in the region of
interest, the effects of density gradient and density fluctuations on

the evolution of vorticity are probably small in this case. We can

estimate the saturation level of demnsity fluctuations by consideration

of a model, where density evolves by convection of the velocity field

as a passive scalar. That is,

dn
— =0 . : 30
dt - (30)




Fourier—transforming Eq. (30) in the y-direction and renormalizing its
- nenl inear-terms, .we have
3 2

d c
[Z= + ixV,(x)-D —]6n, = ikd, (=) -
3t 2 ix? ¥ kB, dx

dnO

(31)

At saturation, we again neglect the convection of denéity fiuctuations
by the equilibrium flow in compérison with the diffusion term.
Balancing the latter with the density fluctuation caused by fluctuating
velocity fields randomly oscillating across the density gradient, we

then obtain the rms density fluctuation level

>

6n i , ’ (32)
ng Ly '

Substituting 4;, Ay and D from Egs. (10), (11) and (20) into
Egs. (R8), (29) and (32), we obtain the fluctuation levels at

saturation due to the nonlinear cascade process,

T 4/3k, L., T o
e 07E  0sCskyin
:Lms ~ (__jjiﬁl__) 345
B, V3 2 (
én L :
—ms . E (35)
i) Ly '




Substituting A;, Aj and D from Egs. (24), (25) and (6) into
“Eq.-«28), —(29) -and (32);:-we.obtain the. fluctuation:levels due to the

nonlinearly broadened—-mode—structure mechanism,

. V,.L ‘
e@rmq - ( 1 15/16 0 E) . (.36)
T 2 o :
e kOLER Pstg
nLEM, n 15/16 7/8
~ & 7873170 (_CL y31/16,-29/16 (36a)
Tr b kL 5 ) 0 E a
e 0"E 0
~ V2L
B‘r‘mq 1 9/16 ots
s = >) (=) (37)
0 koLgR Vilg :
' 2 9/18 _ N
4rkqLp s A E
on L 5/16
and . EE (——;L—E] . (38)
n N
0 n  kylgR
202
nVaLleC™ 5/16
= Li —0s LI}:/16 (38a)

2
n 47rkOLEVA

Notice that for R much greater than unity, kOLE is forced to be
smalli and asymptotically approaches the value 1/2R from below. Hence
the expressions EQs. (36), (37) and (38) should be wused to aetermine
scalings. For R mnot too much greater than unity, kOLE is relatively
insensitive to the value of R and the expressions Eqs. (36a), (37a) and

(38a) should be used for scaling laws. In the large R limit, we also




notice that by 2 LE’ provided that kMIN is small enough so that there

- .:is avrange-of-small k-satisfying this-asymptotic limit.

As R decreases from unity the results predicted by the
broadened-mode-structure processed do not approach those of the cascade

processes. The reason is' obvious, for they correspond to ‘two

different, competing physical processes. The critical value of R at’

Which transition from one process to the otﬁer occurs can be estimated
in the following way. Iptuitively one expgcts that the saturation
levels for. the cascade process should be greater than those of the
broadened-mode-~structure processes, since the latter involves coupling
to linear damping that can directly draw energy from the source and
inhibit large fluctuation amplitudes. In this case, the critical value
of R occurs when the diffusion coefficients of both processes are
equal. That is, R, = 2.8(kylg) /> |

For paramgters consistent with those of the TEXT tokamak in the

édge, R=2 and R % = 0.4, hence the bfoadened—mode—structure mechanism

cri

prevails. The estimated saturation levels are

e«]I‘IIIS

= 0.42
Te
6n
g
B -
Zrms & 5x1070
By

These values of fluctuation levels do. not dramatically differ from

those of density—gradient—driven turbulence. This is because the
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correlation time scales of both types of turbulence (Eq. 5) are

-~comparable-- for--the--parameters- --of TEXT experiments; hence.- comparable

spectral amplitudes are expected.

VI. - Summary and Conclusion

An analytical theory 1is developed to describe tokamak edge
turbulence associated with the presence of a sheared radial electric
field. Turbulence in this region can be driven by the density gradient

and radial-electric—field gradient. Near the region where the maximum

~velocity shear of fhe equilibrium E5 X By, poloidal flow is located, the

flow shear alone is strong enough to drive fluctuation. In the linear
phaée, energy provided by sources is partially dissipated.by ihe 'sink,
i.e., electron collisionality along field lines; the remainder is used
to excite fluctuations. If thé coupling of the sink to the source is
ﬁade very effectiye through nonlinear modifications of the basic modes,
fluctuations can be stabiiized‘ For steédy—state turbulence, energy
provided by the source is then totally absorbed by the sink.

In this paper, we have separately studied turbulence driven by the
density gradient in the presence of radial electric field and that by
the eléctric field gradientt For the former, effects of radial
electric field do not drastically change the basic characteristics of
turbulence, bDut simply modify them. Results of this stud& on the
modifications of density—gradiegt—driven turbulence in the presence of

the radial electric field can be summarized as follows:




1)

29~

The phase velocities of fluctuations are locally

-#Doppler—shifted: by:--the -mass- flow of. EO x.BO convection

2)

force

(BEq. (1)). This is indeed what has been observed at the
region away from the vorticity maximum in the edge of TEXT

tokamak.

Inhomogeneity of -the radial electric field 1leads to an
additional decay mechanism (Eq. (2)) for density correlation
arising from shear in the poloidal velocity field. As a
result, the gradient of the radial electric field reduces the
radial correlation length (Eq. (5)), and thus enhanceé
spectral anisotropy. 'At the region of maximum electric field
gradient, the effects of flow shear are too large to be

treated perturbatively.

Near the region of the equilibrium vortiéity maximum, the -driving

of flow shear walone 1is strong enough to yield hydrodynamic

instability. The density gradient in this region 1is ignored.

principal results for electric—field—gradient—driven turbulence are:

1)

2y 3

4ﬂVALE]
7V LECR

larger than unity, as typically occurs in the tokamak edge,

For- relatively strong collisionality, R(= not much

the mode structures are spatially broad: the length scales

in the poloidal and radial directions are comparable. This:
indicates that the fluctuation spectrum of
electric—field—gradient—driven turbulence is nearly

isotropic.

The




2)
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Linear growth rates have been obtained. They indicate that

~-=ainstabilities are-dependent. sensitively on - the - degree of

3)

overlap between the regions of the energy source (vorticity
gradient) and sink (parallel resistive dissipation).
Furthermore, it~ is found that - the long wavelength linear

modes can be unstable due to a lack of sufficient overlap.

Nonlinearity 1is approximated by turbulent diffusion of

vorticity for linearly unstable modes. Two types of

nonlinear processes are simultaneously present governing the

evolution of turbulence. They are the nonlinear cascade and

qnonlinear broadening of mode structure. The former process

produces coupling between modes of different wavenumbers,

whereby wave energy of unstable modes can be extracted by the
short-wavelength, .iinearly stable modes. The latter process
radially broadens mode structures, which pérmits the sink to
directly extract energy from the source and stabilize linear
instabilities. A dimensionless quantity R, characterizing
the strength of maénetic shear , determines which of these
two mechanisms is dominant. When R << 1, the region of
magnetic shear demping 1is separated from that of energy
input. The latter mechaenism is not effective and the
nonlinear cascade then provides saturation. When R é‘O(l),
the location of the sink is not far from that of the sourée

and slight‘ broadening of mode width can effectively yield

saturation.
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4) Diffusion coefficients and the rms potential, magnetic field
--and --density.-i:fluctuations rat'=saturation:have .separately been
estim&tea for each regime. For paramaters of the TEXT
tokamak in the edge, we have estimated R=2, hence turbulence
--1s- governed by the mechanism of nonlinear broadening of mode
structure. The saturation levels of potentiél, density and
magnetic field fluctuations estimated by this theory are

consistent with those observed in experiments.

It is interesting to note that, in the limit of small R, the long
wavelength modes cannot be saturated by finite turbulen£ diffusion, and
hence the complete saturation necessitates a lower bound for
‘wavenumbers, i.e.} kMIN' which is usually determined by system sizes.
The inability of - turbulent diffusion to saturate the low—k modes
actually lies in the fact that there is no characteristic length in the
region away from the shear blayer, thus the Spétial derivative d/dx

2
ii—l = k2D) can

2
dx"”.
only offset the growth rate (7 = k) if D « k™! (thus D>« as k»0). By

scales as k1. Hence the rate of decorrelation (ID

contrast, saturation mechanism in the strong magnetic shear limit
introduces another length scale LE/(szB)l/B in addition to the length
scale LE of the source. This extra degree of freedom allows turbulent
diffusion . to regulate the mode width so as to defeat the linear growth
rate to a considerable extent (D « k_1/4).

Saturation mechanisms of this type represent a departure from the
conventional the mixing length theory. It is instructive to contrast
this theory with mixing—-length theory and speculate as to its

generality. In this model, instead of using the width and e—folding




—32~
time of linear modes as the correlation length and decorrelation time,
-the.~ latter: ..quantities..~ haver~ been. -self-consistently determined.
Moreover, as the sink (parallel dissipation) is located at a certain
disfance from the source, an additional length scale is introduced.
This extra degree of freedom allows. turbulent diffusion to adjust and
yields a’éompletely differént correlation length and time from those of
linear theory.17

This fype of noﬁlinear mechénismi may have a Wide range of
geﬁerality, particularly for turbuience in. the | vicinity of
single-helicity magnetic resonance surface, gogo = 0. For the case
where magnetic field fluctuations are as important as electric field
fluctuations (see Sec. III), i.e., nC2/4ﬂVOLE <1, shéarfflowhdriven
magnetic reconnection may occur. We expect‘that a similar, but more
involved, analysis éhould apply.

In summary, this paper’ has explored | possible méchanisms
responsible for the turbulence observed in the Avicinity of the
equilibrium vorticity maximum in the tokamak edgel The idea of the
nonlinearly broadened mode structures, developed here and elsewhere, is
seen to play an important role in the characterization of steady—State

‘turbulence and should prove to be useful in other contexts.
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Appendix (A)
~--Here-we+-give +the ~detailed---derivation of -:renormalization for
Eq. (12). The nonlinear terms can be renormalized by subs£ituting
P g and V%”k",w” for gol(ﬁ?w,, and Vf‘/’f{%?w“ respectively, where the
latter -quantities are driven by the direct beating of a test (k,w) mode

and background (k’,w’) modes. These driven modes satisfy

> 2 4
—iVSGy 0 (%, x7) de :
g (R) . S TR Wt g2 ¥ k,w . . *
Vlwk”,w“ = f dx [ w”_k”VE(X,) ][lk Vl¢k/’w/ dx’ lk wk,’w,
d *
d o2 - P w’ d o * _
dx Vi%%,0 = Y 9 = oy o dx’ vlwk',w'] - (a-1)
. ' —iG " H(X X,) d¢
() . k", 0"t gl * kw ., ., * :
" I = d . V ’ ’ , - lk_ ’ ¢
oo = [ x| 0"—k"Vp(x") kYo b k0
d *
d 2 gl %’ . d _2 * _
dx Vl¢k w = lkvl¢k,w dx’ * 1k¢k © 4x’ Vlwk”w’] , (A-2)

where Gk” wu(x,x') is a linear propagator satisfying

2
a~v
2 - ‘ _— -1 " E 11 RHRyR ’ S
VG gpul(x,x7) = k(%) [k e ik"“R°X ]Gk”’w“(x,x Y46 (x—x")
E ax
= Lku’wu(x) Gk,.’w,,(x,x') -+ 6<X—xl) . (A“'S)

Together with Eqs. (A-1), (A-2) and (A-3), nonlinear terms become




[NL]y
de
. d 2 * k,w 2. d .2
= E ((———d {((——— k”V ) (k7)? (<o o Y10k > 0 ~ <leg o 1T 5 Vi o))
w' ,
: de, . . de
2 i k' w’ d g2 * k0’
-k 2 \ > - L | V
{(w"-—k”VE)[ o ax L0 ke T I g = 1i,0l))
, i 2 d ' o, 2 * , ,
+ E/fdx (_7—£7§;f_"fj((k ) {[Lh“ “(X)Gk”,w“(x’x )<¢k',w’(x>vi¢k’,w'(x )>
w”’
, e R,F KW
= Gy (x,x ") <vl¢k',w'(x)vl¢k/,w'(x )>] dx
’ * ’
—[Lk",w”(X)Gk“,w“(X’X )<¢k’,w'(x)¢k’,w’(x )>
2
dvie
, 2 * , 17k, w
— Gk”,w”(x’x )e <Vlwk',w'(x)¢k',w’(x )>] ix’ }
‘ -
do, . . dV5¢, . .
2 . k' w 1"k’ w
- X {[Lk”,w“(x)Gk”,w"(X’X )< o T >
, dv2§"k o 50 o
- Gk“,w”(X’X )< = ax >] k,w(x )
: d€o ’ ’ d§0 ’
) k' w k', w
- [Lk",w"(X)Gk“,w"(X’x )< ™ o
2 *
dvSe, . . de, .
. 1"k w k' 0’
p— Gku’wn(x,x )< dX dX, ] l(pk w(X )}} @ + Ck,w (A"'4)
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Terms in the first spectral sum, Dk o> arise from the local response

ol Gl ) ek T e et P ead po ey - o R,(R) ;
(6(x=x*) "&f Eq.-(A=3))-of+thedriven-vorticity Vlwku o'+ -Terms in the

second spectral sum C are due to both the nonlocal response

' k,w’
(Lk”,w“Gk“,w“ of Eq. (A-3)) of the driven vorticity Vi¢£%?w“ and driven

field ¢§?)w”.
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Figure Captions

Fig. 1:
Fig. 2:
Fig. 3:
"Fig. 4:
Fig. 5:

Radial profile of vorticity and fluctuation spectra measured by
Ritz, et al., (C.P. Ritz, et al., Phys. Fluids 27, 2956) (1984)).
The standard deviations of the measured spectra, c(kr) and o(kﬂ),
indicate the change of turbulence characteristics, from an
isotropic spectrum at high velocity shear to anisotropic spectra

at low velocity shear. (Figure used with permission)

Linearly unstable eigenfunction, and locations of the (shear flow)
driving source  and (resistive) sink. The driving source is
centered at the minimum of the magnetic shear of R=2, thus avoids
dissipation. The localized eigenfunction ¢ of k=0.08 is excited.
The source vorticity is indicated by the dotted limne; the sink is
in the shaded region; and the eigenfunction |¢kl2 is indicated by

the solid line.

Growth rate 7, vs. wavenumber k, with x5 =0, i.e., the driving
source centered at the minimum of magneticl shear. Modes of
intermediate values of k have the greatest growth rates. As

magnetic shear R increases, 7 is reduced.

Growth rate Yk VS- wavenumber k, with x5 =1, i.e., the driving
source having a large portion overlapped with the sink. When

compared with Fig. 3, the growth rates are significantly reduced.

Linearly stable eigenfunction, and locations of .the (shear flow)
driving source and (resistive) sink. The driving source is not
centered at the minimum of the magnetic shear of R=2, hence leads
to a large region of overlap. The eigenfunction ¢ of k=0.08 1is

therefore stabilized. The source vorticity is indicated by the

~dotted line; the sink 1is in the shaded region; and the

eigenfunction |¢kl2 is indicated by the solid line.




Fig.

6:
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A comparison of linear and nonlinear eigenfunctions. The nonlinear

mode :jgﬁLI ..is..broader and extends into the dissipation region.
Here, R=2 and k=0.02. The source vorticity is indicated by the
dotted 1line; the sink 1is in the shaded region; the linear
eigenfunction |¢k|2 is indicated by the solid line; and the

nonlinear eigenfunction is indicated by the dash limne.
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