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Abstract .
Kiﬁetic,equations for the electromagnetic drift modes are derived and
analyzed for. the stability of tokamaks in the local approximation. In the

‘dissipationless, hydrodynamic limit the fifth order polynomial dispersion

relation previously studied is recovered. The kinetic velocity space

integrals in the ion dynamics are shown to modify the five principal modes

of oscillation and their polarizations. It is shown that in kinetic-

stability theory the pritical plasma pressure defined in magnetohydrodynamic

theory determines a transition from microinstability t6~macroinstability.




I. Introduction

In the low pressure plasma where beta is less than the square of the
inverse aspect ratio of the system, the drift wave dispersion relation is a
cubic polynomial describing the coupling of the electrostatic ion—acoustic
oscillations with the EXB convection of the density and the ion pressure.
For moderate to high plasma pressures these oscillations develop an
eléctromagnetic component which couples them to the twq low frequenéy
magnetohfdrodynamic (E”=O) branches of oscillations. The fuil linear
electromagnetic description of the smail amplitude oscillations of the
system 1is given by a fiflh order polynomial dispersiqn relation. An
analysis of the five brances of oscillations wa(k) with @=1,2,...5 and their

polarization is given by Horton et al.1 as a function of plasma pressure

ﬁ=8ﬂp/B2.and the inverse aspect ratio parameter an=rn/R. Here ry is thew.

radial scale length of fhe_density gradient and R is the major radius of the.
toroidal plasma. In thé work of Horton et al.1 the two component:
hydrodynamic'approximation is used for the plasma dynamics.

Here we derive and analyze the kinetic electromagnetic drift wave
"equations in the local approximation. The 3x3 matrix for the coupling of
the elecfrostatic field, the inductivevparallel vector polential and thé
parallel component of the magnetic field is derived with fully kinetic ion
response functions. The 3x3 matrix is symmetric with complex elements
involving generalized plasma dispersion functions. |

From numericai studies and analytic approximations the problem of the
transition from small scale electrostatic—like instability bélow 60 to
. MHD-like global instability above B is analyzed. In this study we mneglect
the effects of the dissipative electron response and the details of_the

toroidal mode ballooning structure. Dropping electron dissipation implies
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that the instabilities are driven purely by the ion and electron pressure
gradients in the locally unfavorable magnetic curvature on the outside of
the torus. The studies of Cheng® and Itoh et al.S include the solution of
the surface eigenvalue problém. in the ballooning epproximation and the
effect of trapped particles. Their studies neglect the important role in
the pressure gradient driven modes of the perturbation in -the strength of
the magnetic field. The studies by Rewoldt et al.% include the perturbation
to the strength of the magnetic field in a complicated numerical analysis of
tﬁe stability problem. The high beta universal drift wave branch is studied
by Hastingé and McCune5 for arbilrary [ including the shear Alfven wave and
the compressional component of 6B. For ne;O they report stability for

~

g 2 7%, but for Ne>0 the system remains unstable to § of order unity.

The kinetic theory stability analysis presented here extends thes

previous results of Ref. 1 giving the correct Vlasov response functions for

modes with perpendicular wavelengths comparable to the ion gyroradius while.

including +the complete description 6f ‘the grad-B and curvature drift
velocity resonance with the phase velocity. The {fluid description is
recovereda by .a double expansion in small ion gyroradius and small drift
velocity: From the expansions given here and from . the numeﬁhéal éxamplés
the domain of validity of the fluid theory is clarified. Even in the regime
of fluid theofy.£he kinetic description removes the complex conjugate pair
symmetry of the unstable fluid roots due to the analytic continuation of the
response functions and the influence of their branch cut in the 1lower half
w—blane. The mathematical properties and algorithms for evaluating the

guiding center response functions are given in Ref. 6.




I1. Formulation

1

We use a representation” of the electric field

A, . ‘
—3 (1)

- )
E = -Vp — Vx(ab) - =
E @ (ab) - Bt

where (w,a;A”) are the three components of potential and b is the local unit

vector along B, b = B/B. From the Faraday's law of é% 6B = —cVxE we have

6B = b —— V%a + VA xb = 6Bb + 6B ", (2)
- iw -l

where the time dependence of the perturbétions is exp(—iwt).

Introducing the local coordinate system with the unit vectors of (éx,

éﬂ' ﬁ) where é is the local radial unit vector and -éﬁ = Bxéx, we obtainu

X

from the Ampere’s law of 4n 6J = Vx6B, the parallel component Ampere’s law
e - 2

ooy =20
(o] C

6J+b = — VSA : (3)

and the radial component Ampere’s law .

(4)

In the reductions leading to Egs. (R)—(4), subdominant contributions are
dropped.

In addition to Egqs. (3) and (4) the condition of quasineutrality

Y 6p; =0 , o (5)
J :




5
with dpj the perturbed charge density of j—species, dpj=ej6nj, constitute

the three mode equations of the electromagnetic fields. It is shown to be

convenient to introduce the field ¥ defined through the expression as

&
I

c

QO
4]

so that E, = —ﬁ-V(¢—w). The coupled mode equations are obtained from
Egs. (3), (4) and (5) when we express the perturbed parallel and radial

currents dJ” and GJX and the perturbed charge density épj in terms of - the

field quantities (¢,v, 6B”). The calculations of these perturbed quantities

including the kinetic effects require the solutions of the gyrokinetic
equations. In this respect, we wutilize, with minor changes, the
formulations developed by Antonsen et al.7 and also.by Tang et al.8

The solution of the gyrokinetic.equation fj is written as

e,
.=—-—'Lv . . ilL. : : :
fJ Tj @ FJ + g; eXp(lL]) . | (7)

with

L; = g‘gxﬂ/nj'

where Qj = ejB/mjc.b The nonadiabatic part of the distribution gj satisfies




[V” 535 - i(w"ij)]gj

e, v ‘a. 0B : '
= - iF (w-w,, .\ [ _ i

] J :

with the definitions of (j suppressed)
3 . mv
wp = goﬁx(wmvﬁﬁ.vﬁ)/n
a=%v/0  b=kT/m? w = v? /2B
= — k obe,Q, y = - . o . 9

“r T e 2L ‘ r " 4 (8)

The modes we are interested in are the electromagnetic drift - modes whose

frequencies are bounded between the transit frequencies of the electrons and

the ions. The frequencies are also assumed to be smaller than the electron

bounce frequency to retain the trapped electron effects. That is

Wig = ve/L, > Wpe > @ > Wy; = Vi/Lc

where LC is the connection length and vj is the thermal Velogity of the j—th

species.




1. Electrons
The solutions of Eq. (8) for electrons are obtained in the lowest order
of the parameters ch/ve and klpe‘ Depending on whether we have the passing

electrons or the trapped electrons, we have the following solutions.'
- a. Passing electrons:

Wy _ '
ey + g )R = - P (1 - —2) (10)

where subscripts * indicate the sign of AL and -superscript p indicates the
. passing particles. The field ¥ is the normalized quantity differing from
the ¢ introduced in Eq. (6) by the factor e/T,. Unless indicated otherwise,

the fields of ¢ and v appearing in the following are all normalized to e/TéE;

b. Traepped electrons:

Wite .
S (e el = Tl - )y 4 Y] | (11)

where the bounce average field quantity Y is given by

and X is, in turn, given by




X = [o - (1~ 22y

m<1|<1
W |-

The top bar denotes the bounce average defined as

— . ds . ds
A= TME T

2. lons

\
A

(12)

(13)

For ions we have all passing particles and expanding in powers of

vi/wLc we obtain \_

1 Wy
5 (ep +g); = Fy ‘
. 1 . 1

where 7 = Te/Ti and

ol s
(w—wDi) ds

) (1-0%) '+ [rpsg + > =L

1

TIglvyI® 42

w(w—wp;)  5g° vl
(14)
(15)




3. Quasi-neutrality

From Eqs. (7), (10), and (11) we obtain the electron perturbed density

6ne of

]

w*e . |
o — [(1 - TW + VRe <Y> ] A .(16)

where we defined a trapped particle operator <...>, @as the velocity

integration over the trapped particle region weighted by the normalized

Maxwellian ;L-Fe N

Do

— 1 : S
V2e <g(:{)>tr = {r dy F, g(y) . o (17)
o .

The ion density perturbation 6n; is obtained from Egs. (7) and (14) as

2 2
on. c 2 c AR Qs ¢ 2 6B
oo PR 2 e e S (@ 22 ) (18)
I, w® 3s w ds T w° 3s '

where ¢ is the ion sound veloccity (Te/mi)l/z. The quasi-neutrality of

s
éne = éni then gives one mode equation of
2 2
c 2 Wy c 2
[—1+7(P-1) - —; Py 'a—z]go + (1 = =5) + Py —; a—g]w
w ds ® w® Js

2
Qs c 2 6B :
fq-=S0) U, ee s =0 . (19)

T w2 332 B




The ion kinetic integrals of P and Q's including the 1ion drift resonances

are given as

wJ_l(w—w*ti) m,

W Wx g i
p = <(F1]Jg> ., P =< _ T vﬁ %> (20)
Di (w—-wDi) .
W—Wxy m. 1/2
Q= Ly L 4 v g
w—wp b1 Ti
and
I
g =< j . (EI) v, viTgd > ‘ _ (1)
where (j = 2,3) and < > 1is defined as the average over the Maxwellian
velocity distribution
<> = L [ av F, A . (22)

To
The analytic properties, small and large argument expansions and the
numerical evaluation of the guiding center dispersion functions are given in
FLR - 6 o : . .
terms of Gj (w,a,b) by Similon et al. The guiding center dispersion .

function has a branch cut from w = 0 to w = —i®,




—-11—

4. Parallel Component Ampere’'s Law

The parallel derivative (9/9s) of the perturbed parallel current

61y = ejjdg Vit . (23)

is conveniently computed directly from the kinetic equation (8) by operating

ej] dv exp(iL) and we obtain

3 . 1, -
63, = : = . - .
3s 071 ie; [ dv I 5 (g, + g_)J (w wDJ)
' e. a, 0B
—i _ 1 L ~
ie; | dv Fi Jg (w ey i) (= @I+ "3 O (24)

T. b
J ]

(Here ¢ is not normalized.)

For the electron contribution using Egs. (10) and (11) in Eg. (24) we obtain

3 . Wre - “De
5; 5J”e = iwnge {—(l— —;—)¢ + Ve <(1- _;_)Y>tr
e, e .

Wy o wK+wVB Wipe Wine GB” .
+ (1= —5) = ( ) (1= —2%) g+ (1- —2%) —) © o (25)

w w w w B
where we intrbduced the definitions of

: . cT. ' . eT. v :
.= . - . J =—’]—A onho =-——"Ll~ Bo

wxpj = wxj (1), wy - B bxbeVook, Wy o5 bxo k) . (26)

For the computation of the ion contribution to the perturbed current, an

identity éan be derived from the solution of the ion kinetic equation,
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Eq. (14). Expanding (1—02)—1 and rearranging it we have an identity in the

form

' ' : . 6B

ie [ dv J L (g, +g):i(w—-wpn) —ie [ dv F. Jo (0 — w« NI + 2y ——ﬂ)

0 2 + i Di i 0 ti 0 b 1 B

2
Wiy s v -1
=ie[dvF, Jy (1~ tl) | (1 - o)
-1 w (w-wp;)
2 2 . 2 AGB :
.(_Jg_@_zT,w_J-o___a_)._)a_z,rgo_Jl% C!) ) 82 B”) ] . (27)
3s " (w-op;) as (o-wpi) s _

The left hand side of Eq. (R7) is éL 6J,; by Eq. (24) and thus we obtain in
N S . . .

the lowest order the ion contribution of

9 6J”i = iwnoe

Js (28)

3 ( 1% of - B

|O
[V kGRS

3° Qg 6By
. —

S

Taking 3/3s of the parallel Ampere's law Eq. (3) and making use of Eq. (6),

we have the parallel Ampere's law in the form of

‘ 2
sy, =2 LgRy = LR

- . o 29
ds I 41 ds L7l 4rw ds L 3s v (29)

and making use of Eqs. (25) and (28) in the left hand side of Eq. (R9) we

obtain
2.2 2 .
PVE 5 2 b W g s 3%+ “pe
— V¢ =y = - 1— + P, — —lg+ V2e <(1- Y>
WR ds L 3s 4 [( w ) 2 R 832]¢ vee ( 1) ) tr




2
W w +wVB c a2
+ [(1- —%)-(1- Pe)( ) + P —= =]y
wipe, 9 C5 2 OB
+[(1- —P%) - =2 ] (30)
2 ,.2° B
w T w* 3s ’

where the Alfvén velocity v, = (B2/4ﬂn0mi)1/2 is defined.

5. Radial Component Ampere’s Law

Since the radial component perturbed current GJX can be computed as4’5

=

_ 1 , :
67, = —i 112 e; [ dv 2(g++g_)j v, 1y | v | (31)

we obtain the electron contribution by méking use of Egs. (10) and (11) into

Eq. (31) as
ik ;n.eT W
618 = —20 € (1 Ry 4 2, <v>, ] ' (32)
2 m, Q0 w r o

and also by making use of the ion solution Eq. (14) into Eq. (31),'Wevget

the ion contribution to the perturbed radial current

. ik n~eT. c 2 c 2 Ry ¢ 2 6B
290 : 3 S i
5J;{=——{(TQ—Q3—;%)¢+Q2—;_&‘§'¢+(R“—_za_z) B]~<33>
minl w® 9s - w® .0s T o° 3s

Putting Eqs. (31)-(33) into the radial component Ampere’s laws of Eq. (4),

we obtain




2
6B B w m_v
I € *pe e 1
— == [(1 - + Ve Y
5 =z U w Y ¢ <2Te >tr]
2 2 2
: 2 2 R 2 6B
B g, 3, g S, (T80 %) Py (34)
2 3 2,27 R 2 .2 T 2,2 B
w® 9s w® Jds Jds

We defined ﬁj as ﬁj = 8ﬂnOTj/B2 and other ion kinetic integrals R and R8 as

S Wy 1 Ty ' .
R = <(F1) 2 T—l vi %> , (35)
Di i

and

The three equations, quasi-neutrality Eq. (19), parallel Ampere’'s law
Eq. (30)?.and the radial Ampere’'s law Eag. (34), constitute the :coupled mode -

equations for the fields ¢, ¥ and 6By, -
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III. Kinetic Dispersion Relation of Electromagnetic Drift Waves

The three mode equations derived in Sec. II are in the form of the
coupled differential equations exhibiting the non—-local ballooning nature of
the modes. In fhié section we assume that the axial problem of the mode
structure is solved ﬁnd that the modes are localized in the bad ‘'curvature
region as the reéult‘ We also neglect the trapped electron effect, not
because it is unimportant but rather for the purpose of the simplification

and the additional effect can be studied in a separate study. Thus we

obtain the local dispersion relation by letting 3/ds = ik” and Vi - —ki in .

~

the three mode equations of the quasineutrality Eq. (19), parallel Ampere’s

law Eq. (30) and the radial Ampere’s law‘Eq. (34)

ap + by + c6B = 0 ' , (38)
by + dy + e6B = 0 (37)
cp + ey +f6B = O : (38)

or in the matrix form

MX = 0 (39)
with the coﬁplex symmetric matrix
a b c
M= b d e | : : (40)
c e f

@
X= v . o (41)
5 .
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Here we have introduced a short hand notation for the mnormalized parallel

magnetic field fluctuation 6B = GB"/B. With the definitions of w_ = k”c

s S

and Wy = k”vA; we have the formulas for the matrix elements of M in terms of

the kinetic integrals as

wg ‘ Wi g wg
a=-1+7(P-1)+—Pyg, b=1-" - — Ps .
w2 _ w w2
2 2 2 2
N7 Q kTp"w * w W twy w
c=q+—= 2, a=AA_ (-8 - BB, 2p
wB T Vw2 W w2
2 2 p ,
Wy W Q WS Rq o
e =— (1 - __EE) __s _§’ f = 2 + 1 (R + S _§) , (42)
wz T ﬁe T w2 T

where the cross—field ion inertial scale radius p is defined by
1/2 ‘
o = c(miTe) /eB.
We now eliminate 6B in favor of ¢ and ¥ from Eq. (39) to reduce the

system to a 2x2 matrix. solving for 6B from the radial component of Amperes

law Eq. (38) and substituting into the quasineutrality Eq. (36) and the

parallel Ampere’s law Eq. (37), we have 6B = — (co + ey)/f or
2 2
wS Q w wg Q
s 3 *pe s 2
5B [~ @+ — Do+ (1 - =22+ = =)y
I ﬁe w2 T w w2 T
B 2 2 (43)
ﬁi Ws RS

[1+—= R+——)]
2 w2 T




and substituting Eq. (43) into Eq. (36) we get the new form for

quasi—neutrality as
c? ce
(a =)o+ (b -y =0

or

A = B}y | (a9

where the A and B are given by

2
wg Qg 2
2 (Q+—s—8)
3 Wy ﬁe w2 T o
A(w) = o*{[1-m(P-1) - — Pg] + —* > }
‘ 3 i wg Rg
[1+— (Re — )]
2 T
w
and
2 2 4
ws Q ) ws Q:
5 (Q + == 3y(q - e, 87
3 Wx g og ﬁe w2 T wZ T
B(w) = 0”{(1 -~ — = — Py) + —
w 2 2 2
) B84 W R3
[1+— (R+— —)]
2 w2 T

Similarly, we obtain for the parallel component of Ampere’s law the formulas

2
(b -5+ (@~ =0




or
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B(w)e = K(w)y (45)
where K is given by
2
K(w) = w° (eT - d)
2 2 2 e, e
Wx g klp wy Wene WetOYR wg
= o[(1- —=5) - =5 - (1- =B (—=)- 2 p,]
w @ @ w
“rpe '“2 Q. 2
(1- —B2 4+ 2 & ,
ﬁe w w2 T
+ —= (46)
2 2

Note that the reduced 2x2 matrix from Egs. (44) and (45) is also symmetric.

As will be discussed below, it turns out to be'moré corivenient to use an

alternative form of Eq. (45).

Eqs. (44) and (45) we obtain

C(w)e = D(w)y

with

C(w) = (A-B)/w

Nemely, by taking the difference between

(47)




2
2 o* Ys
= 0%{ | - 7(P-1) + > (P5—Pg)]
w
2 2
w Q3 Wy w
@+ — )= (1= =F%) + — (95795)]
+ ﬁe . W T _ w TW )
2 2
g w> R
[1+ == (Rt = 2]
2 w2 T
and
D(w) = (B-K)/w
2 2 2 e, e :
kTp™w w W, +w w
R 1P %A _ “*pe k" “VB, | “s B
—w([w + (1= =) (— )+w2(P1P2)]
w*Ee 'wg w*pe g
g (1- S Q) [a-(1- )+ —5 (Q3793) ]
n 7§ TW ‘ .9 TW } ] - (48)
’ By ws B3, '
(1 +— (BR+ — )]
R wz T

Any two of the three equations thus formed from the quasineutrality equation
(44), the parallel Ampere’s law equation (45) or the combined equation (47)
can be taken as the fundamental two coupled equations for‘determining the
two fields ¢ and ¥. However, it is demonstrated in Ref. 1 that Eq. (47) is
convenient  and useful in analytic studieé-of the fields and, in particular,

the polarizations and the case of the magnetohydrohynamics (MHD) like modes




_2 0-
are readily obtained using Ce¢=Dy. To derive the analytic approximations to
the dispersion relations we first consider the various ion kinetic integrals
in the fluid 1limit. Using the superscript f to denote the fluid limit of

the kinetic response functions, we find that

2

(The Bi here is kiTi/miQ. kzp defined in Eq. (9) and not to be . confused

with b defined in Eq. (42).)

! > (49)

5%
I
&2
I
|
0
I
-
|

0 |

In the fluid limit Eqs. (48) and (49) reduce to

, Wy ol tw . A
of = lr(i- =By, - 2 B Fe | Wupiy “rperpi
w w 2 w w

- (o - w*p1>(w p + 2w )

and
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e 2 2
k¥o0%w w t+ w 9 w w Wi s
f 2r1F %A *pe K VB e *pe *De *pi
DT = W[ + (1= —> )+ (1 - =) () ]
2 w 2 w w
w
2 22
= k{p wy + 2w§ (w—w*pe) (50)

where we made use of the identities derived in Ref. 1 in the form of

B |

5 »(w*pe - w*pi) + wSB =_wi

and

Pe i i S
Y (w*pe - w*pi) - TOyg = ~Tw, (51)

to eliminate the wSB and w%B drifts. With the introduction of the
polarization as a = ¥/, we have from Eqs. (44) and (47) the polarization

relation

_Aa) _ clo)
““) = 50) T D) - o2

which can be viewed as the kinetic dispersion relationship. In the fluid
limit of C and D of Eq. (50) together with the MHD-1like fequirement of E, =

0 or ¢ = 9, that is o« = 1, we obtain

2
(w—w*pi)(wkfp +2w§) = kipzwi+2weK(w—w*pe)




or

’ 20w

2 K : 2
w” - “’*piw + TZ— (w*pe-_—w*pi)—wA =0 (53)

k7p
L
giving the two MHD modes
2 » .
2w® wi,; 1/2

-1 ; K , 2, _Tpi

W =S Wspg + 1{k2 5 (w*Pe—w*pi)—wA+- 2 ) (54)
k“p :
il
which in the dimensionless variables defined in Ref. 1 becomes
2 2 1/2
k .1 k 2 k 2_ 2
== 5(1"'771) ] = Tm T T(l‘*"’)i) _WA]
k
1.

for the well known MHD branch modes: Following Ref. 1, we define the

dimensionless MHD growth rate vy, by

147,
2 i
Tm = Ban[1+ne+

]

in terms of e, 7g, 0y, 7.

All irequ

and the cross—field wavenumber k

“_j_.

dimensionless frequencies are, then,

wre =k, Oupe = k(14n,),

encles are measured in units of cs/r

n
in units of p = c(miTe)l/Z/eB. The
given by
k(1+ni) , ke

w*Pi = -

T K n’ K T




wyg = ke, — > (w*pe_w*pi)’ méB = —wSB/T
€ 1/2 ¢
2
wg = = Wy = (=) = (55)
q Be q :

- , - 2 o 32
and e, = r /R with ﬁj = BﬂPj/B , and b = Tb,=k".

IV. Comparison with the Fluid Limit and the Numerical Solutions
Here we present some of the results of our numerical solutions of the

kinetic dispersion relation for-wa(k) and give approximate analytic formulas

that explain several features of the numerical results. The dnalytic:.

results are obtained from the fluid limits of the response functions.

A. Analytic Results

The compressional component of the magnetic fluctuation in the regime

w2>>w§ and §;<<1 reduces from Egq. (43) to

ﬁe Yrpe
5B(w) = - — [Q(k,0) - a(1 ~ —25)]y
2 ' w
where a = ¢/ is given by Eq. (52). In the fluid 1limit with Q*Qf the

compressional component reduces ‘to

g W s ©s
5Bf - _ _& [1__*El_ak(1 ___*_EE)]w
2 w W




= - < (56)

where the last formula follows from EQS. (17) and (18) of Ref. 1.
Although small in absolute magnitude, the role of 6B is essential in

the stability analysis since taken with idehtities (51) the contributions of

w%ée cancel from the dispersion relation. From Eq. (56) and the
quasineutrality equation we find that the reduction of +the dispersion
relation to the 'pressure gradient driven modes introduces the effective

growth rate parameter

14 : :
M oc(1+'r;e)]}1/2 (57)

7(e) = {2ep[ —

where o describes the electroétatic to MHD transition of the modes. "For the

electrostatic and MHD limits we have, respectively,

1/2 -
7o = v(e=0) = [Re  (14n;)/7] (58)

as defined in the electrostatic studies of Refs.‘ 9—-11 and

, B 147, 1/2 .
o = 7(e=1) = (2eg] (2] + (1im)]) (59)

which is the MHD growth rate as defined after Eq. (54).
The kinetic formula for o is given in Eq. (52) and the fluid limit
follows from formula (50). An alternative fluid limit follows from Eq. (45)

with w>§ws, wp and f<<1. We obtain from Egs. (44), (45) and (46)
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1

222

w(w'w*e)

(60)

o (@) =

Along the unsteble branch with w = iym>>k the polarization is approximately

1 1 .
oy = = (61)

2 2, 2 2
14k wA/ym_ 1+k ﬁc/ﬁ

~

~

where 73/w§ = B/B, with

£ : ‘
B = = -2 | (62)

as given in Eq. (43) of Ref. 1. Formula (61) shows that there is a beta
dependent transitional wavelength for the change from electrostatic -to
MHD-1ike polarization of the preséure gradient'driven modes.
For short wavelengths such that
/2

1 1
k >k, = (8/8.) => 'O<cxk<§

the polarization is electrostatic, and for long wavelengths

' 1/2 1
k <k, = (8/8.) => E<o<k<1
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the polarization is MHD-like. This variation of the polarization with k and
B/B, is verified by the numerical studies.
Following‘hefs. 1 and 9-11 we define the phase velocity of the toroidal

electron drift wave as

1-2e, (1-a)—k* (140, ) /T _
U, = (63)
2
1+k

From the fluid 1limits derived in Sec. III we derive the transitional

~

dispersion relation

S : 2.2
w(w—w*e)[w(w—w*pi)+yz(a)] - w§(1+k2)[w(w—kuk) + k%i;é?l ] =0 (64)

where y(«) is given by Eq. (57) and u, by Eq. (63). Equation (64) may also
R . : . . 2,2 1/2
be derived from Eq. (35) in Ref. (1) with wg/w"~p<<1 and k ~ e, )

Equation (64) does not apply for w ~ wg mor k > 0.

(i) Low Beta Regime

2

For low plasma pressure f ~ £n the unstable mode is approximately
electrostatic (a<<1). Teking into account the electromagnetic correction
2, R . P
7m/wA in Eq. (64) we obtain
2
wo - wkly + ky{a =0 - (85)
14k 2/w2
Tm/ ®a

where
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1+n,
2 1 2,82
l—an(l—a)—k _:?_—7m/wA

Tk T 2_ 2,2
2 : . 2 2.2 2 _
For f < e the unstable roots are given by w“-wku +k®yg/(1+kg) = 0 as

derived in Horton, Choi and Tang10 and studied with a nonlinear simulation
by Brock and Horton.11 The coupling to the Alfven wave lowers the phase

velocity ﬁk of the drift wave.

For higher g > aﬁ we see from Eq. (65) that the fastest growing

wavenumber k=k (B,n;,c¢,) is given by

o (1Re-8/B8.) 1/ \
R e

(66)

- 2 o
e, (1+1/7)/q and - (2 )1/2.
Hn+(1+n,) /7 max n : o

It is useful to exptrapolate the low beta formulas (65)—(66) to p=p, to

where ﬁc =

compare with the high beta formulas. For § < §, and k<kc=(ﬁ/ﬁc)1/2 the

polarization is-a = 1 giving y(«)=y, and k (f.,m,e,) » 0. For k = k= 0 the

unstable root of Eq. (65) is

k ,
7e(6) = . | S (67)

. 1/2
( 1+kf~ B/8,)

where ﬁ/ﬁc = yg/w§4 "Thus, we find that from the low beta side

lim gy = = 7, (68)
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which agrees with the MHD formula (54) valid for the high beta plasma.

(ii) Trensitional Plasma Beta

In the transitional regime we may view Eq. (64) as giving the drift
wave coupling correciions to the MHD dispersion relation (53). There are
two principal physical effects modifying the MHD equations. There is the
reduction in the electron pressure gradient contribution Aue to o<1l and the
modification of the line-bending stabilization due to the coupling of the
shear Alfvén wave ©, With the drift wave o,

For the effect of ¢ < 1 we find that the modification to the MHD growth

rate is given by

147 1+n 1/2 : : ‘
T = (Bep[— + ———1) o (69)
1+k%8 /8 .

obtained from Egs. (57) and (61).

The modifiéd’growth rate 7m reduces to the classical result'ym'given in

Eq. (54) for k<(ﬁ/ﬁc)1/2, For shorter wavelengths only the ion pressure

gradient 1s effective in driving the instabiliiy.

The modification of the line—bending stabilization wi due to the

shear—Alfven—drift wave coupling is found from Eq. (é4)~to be given by
2

wy wi/F(k,B,niym) (70)

where

2,2
wAk

F(k:ﬁ:"?l’)’m) = 1 + 2

2

2
’ym—

‘ ) : 2 1/2
(1+Wi)(2+ni)+ik(2+ni)[737 %: (1+ni)2] /
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For long wavelengths k(1+ﬁi)<<27m, F(k) reduces to

2
F(k) = 1+o5k%/y2

. L e - 1/2 2, 2
Again the kinetic modification is small for k<(ﬁ/ﬁc) and wA*wA/B for
1/2 ' 1/2 ) . . . )
k=kc=(ﬁ/ﬁc) < 1. For k >> k_ = (ﬁ/ﬁc) the line bending contribution is

negligible.

(iii) High Plasma Beta

For 6>>6c where éA<<7m the dispersiqn relation factors into . two
quadratic equations: One quadratic is Eq. (53) giving the MHD oscillations
with o=1, aﬁd the other quadratic is w(w—k)—kzwi = 0 with the foots w = -

wik and w = k(1+w§) with o>>1.

B. Numerical Results

The electromagnetic dispersion relation from system (36)-(38) is

det M = D(w.k.¢,,m;.7,.8.T./T;.q) =0

= adf+2bce—ae—b~

f—c®d | (71)

and contains more physical processes than usually analyzed in low frequency

stability theory. We attempt to describe the physics contained in Eq. (71)

by first analyzing the limiting cases of electrostatic modes a(k,w) = 0,
electrostatic—compressional mode coupling af=02, and then the fully

electromagnetic modes. The six dimensionless.pafameters that determine the

dispersion curve wazwa(k) are defined in Eq. (55). Clearly omnly a ‘small
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range of variations around a set of reference values for these six

parameters can be discussed. For reference values we take an=0.25, q=2,
N;=Ng=R, ,Te/Ti=1 and ﬁe=0.01. Some characteristic values defined in
"Secs. III and IV.B are 0 =0.185, w,=1.77, vy, =1.2, vy, ,=1.7, $,=0.021 and

ap=0.08. |

In the following nﬁmerical analysis we neglect the coupling to the

sound waves. Thus the roots that tend to w = 0 as k » 0 become invalid for

lw| € W -

(i) Electrostatic Modes

The electrostatic modes are given by
a(k,w) = —1~T+TP(k,w,8n,ﬂi,ﬁ)|ﬁ=o =0

for w2>}w§, and are shown in Fig. 1 for 7=1 and an=0.25. The modes have a

threshold in e¢_ and ﬂi'WhiCh is analyzed in Terry et al.12 The threshold for

n

instability in the ni £n plane is shown in Fig. 2 which gives the maximum

y(k)=y, as a function of e, and 7, . Near threshold only the range of
wavenumbers salis{ving ?ﬂljiyo is unstable as given by Eq. (85) with «=0.

For ni>2 all k are unstable with the maximuﬁ.vgrowth rate occurring near
k=0.5. | |

The azimuthal phase velocity of the unstable electrostatic modes is
small w/k:uk/z compared with the ion diamagnetic drift velocity
_ w/k=—(1+ni)/7. The low phase velocity leads to stochastic mixing of the ion
trajectories at a small amplitude of the drift w_aves‘.l3 -

Now, we consider the effect of increasing f within the context of the

electrostatic polarization a(k,w)e=0. The effect Qf increasing g is .to
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decrease the ion grad-B drift velocity as given by Eq. (51). For
Be 2 Zan/{1+ne+(1+ni)/7] the ion grad-B reverses the direction of the drift
velocity from the ion diamagnetic direction to the electron diamagnetic
direction. |

The stabilizing effect on 7§S of increasing f is shown in Fig. 3 where
we see that for f > 0.25 the system is essentially stable to all k due to
the large favorable VB drift.

In the following subsection (ii) we see how this stabilizing effect is

cancelled by the compressional coupling of 6B to ¢.

(ii) Eleptrostatic—Cbmpressional Coupling

Now we consider the effects of the coupling of +the compressional

component 6B to the electrostatic componént, Physically, the coupling-

arjses from the convection of the preséure.dp/dt‘e 0 producing a change in B
due to the plasma diamagnetism as given in Eq. (56).

In Fig. 4 we show the growth rate 7k(6) obtained from the dispersion
relation af=c® (Egs. (36) and (38) with ¥=0) for the same parameters taken
in Fig. 3. The stabilizing effect of § given by electrostatic polarization
model, 1s weakened by oB. The system remains unstable for essentially all
g. The maximum.growth rate is slowly decreasing with increasing beta. The
fluid expansion.of the drift frequency denominators shows that the apparent
stabilization due to wyp in the electrostatic'dispersion is cancelled by the
6B coupling when the equilibrium conditions (51) are taken intq account.

2

The dispersion relation af=c” neglects the coupling to the Alfven wave

wzswi. For sufficiently large q (flute—like modes) this epproximation is

valid. For typical high § tokamak parameters, however, the coupling of w(k)

to Wy is important.
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(iii) Electrostatic—Shear Alfven Coupling
In the model often used for electromagnetic corrections to drift modes
the coupling to the compressional mode is neglected, 6B=0. The dispersion
relation then reduces to ad=b2. The stability for the references parameters
is shown in Fig. S5a. We see the rapid increase of the growth fate with
increasing 8. For ”i=né;o the y(k,ﬁ/ﬁc)is shown in Fig. 5b where now the

system is stable for B<B, and MHD-1ike unsiable for g>B.. For nizl there is

no stable region as shown in Fig. 5a.

(iv) Full Electromagnetic Dispersion Relation
The electromagnetic dispersion relation det(M)=0 adds the coupling to
the shear Alfven wave w;=k v, = (B/ﬁe)l/z(en/q). For <<, given in

"Eq. (62) the frequency w, is well above the frequencies of the unstable

pressure gradient driven modes, and the effect of the‘coupling is weak with

a=¢/¢=—b/d<<1‘ The small value of o« prevenits the convection of the electron

pressure Sso that the growth rate varies with 7O=[25n(1+ni)]1/2 as shown in
Figs. 1 and 2, where Y is independent of Mg

For g < f. the 9y polarization becomes important. As § approaches 60
i yréuriza’:uﬁ becomes MHD-I:3:¢ wilh w1 as given . P (31). | In the

o<1 regime  the electron pres§ure is alsolconvected by the plasma motion,
and the growth ratg becoméé 7m;{25n[(1+ni)/T+(1+ne)])1/2

For small k the polarization a, Eq. (61), remains MHD-like even for
6<ﬁc and for these long wavelength modes the stabilization from line
bending, Eq. (70), is effective and gives rise to the classical FLR
dispersion relation, Eq. (54). For k>kd=(ﬁ/ﬁc)l/2’ as discussed following

Eq. (62), the field line bending effect is weak.

In Fig. 6 we show the results comparable to those in Figs. 3,4 and 5
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now derived for the full electromagnetic dispersion relation. Introducing
the coupling to the shear Alfven waves adds two branches to the dispersion
rélation. The eappropriate fluid 1limit of the dispersion relation is the
fourth order polynomial in w derived in Ref. 1 and given appropriately in
Eq. (64).

In Fig. 7 we show the results given by the fluid approximation as 5/[3c
increases through unity. In Fig. 8 we show for the same parameters as 1in
Fig. 7 the results obtained from the kinetic‘dispersion relation. Both the
fluid and fhe kinetic theory show the traﬁgition from microturbulenqe. to

macroturbulence, as reported by Horton et al.1 from fluid theory. The

transition occurs with the shift of the maximum growth rate from k=kwp~% to.

kﬁp=0 as ﬁ/ﬁc increases through unity. The magnitude of the maximum growth
rate 7m.increases modestly during the transition. | |

The principal kinetic effects on.the pressﬁre gradient driven modes aré
seen by comparing Figs. 7 and 8. With kinetic theory the unstable spectrum
of k is broader, and the maximum growth rate is significantly reduced. The
strength of this reduction in Ty is @ strong function of gn. The fluid

growth rate arises from an asymptotic expansion of (w—wD)—l in powers of

)
;<

1%1 7, .dlld thus the

kan/w. For a lypical - pressurc gradient mode w/k~¢

asymptotic expansion parameter Varies as ai/g. For an$0.05 the fluid
expansion becomes quantitatively accuraté as.shown invFig. (4) of Terry et
a].lz For enzO.l, however, the {fluid expénsion ié only in qualitative
agreement with the kinetic growth rate as evident from comparing Fig. 7 with

Fig. 8. (or Fig. 3 of Terry et al.lz).
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V. Summary and Conclusions
The full kinetic eléctromagnetic dispersion relation 1is derived and
analyzed for density-temperature gradient driven instabilities in regions of
unfavorable magnetic curvature. Instabilities due to diséipative trapped
electrons and passing electfon Landau resonances are eliminated by taking
the electron response as real in fhe limit W<<Wy o - All finite Larmor radius
effects from the ion Bessel funétions and the full ion drift resonance
effects are retained in the ion response functibns. The response fungtiops
are computed by using the guiding center dispgrsion functioﬁ (GCDF) £outines
given by Similon et al.6 )

The electrostatic limit (ES) and the MHD limit of the dispersion

relation det(M)=0 are well known. In the fluid limit both the ES and MHD

mode equations are quadratic equations in w with sharp thresholds of.

instability given by the vanishing of their discriminants. The growth rate
in the ES limit varies with 70=[28n(1+ni)]1/2 arising from the ion ‘pressure
gradient and in the MHb, limit varies ﬁith ym;{zan[(l+ne)+(1+ni)/7]}1/2
arising froﬁ the total pressuré gradient. In the ES 1limit the electron
fluctuation is ~not ExB convected but given by dpe=Te6neépe(e¢/Te) from the
parallel eleciron momentum valance.

In Sec. IV we der?ve formulas for the tranSitionai dispersion relation
’er the vériation of ¥ and the critical wavenumber km(an,ni,ﬁ,q) that
maximizes the growih Y over k. We show that as f approaches the critical
‘beta B, from below, the maximum of the growth rate shiffs from kﬂp finite to
kwp+0. Forvﬁgﬁc the long wavelepgth part of the unstable spectrum ‘is MHD
polarized while  the shor£ wavelength  part kﬂp>(ﬁ/ﬁc)1/2 remains
electrostatic. ‘

The 'same qualitative features of the transition in the form of
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instabiltiy with B/ﬁc are given by the fluid 1limit of the dispersion
relation as reported by Horton et al.1 The kinetic theory spreads out the
transitional behavior from that predicted by the fluid approximation. The
adaitional dispersion in the stability criterion arise from . strong
Broadening of the guiding center.response functions at finite Eq - The fluid
limit is an asymptotic expansion in small wD/w~ken/w~aé/2 which is
"quantitatively accurate onlf for ahS0.0S.

The physical picture of instability given = by the
kinetic—electromagnetié theory is tﬂdt for typical tokamak parameters the
plasma is wunstable at all values of §. For 16w~_ﬁ/6c the dominant
instability is confined to short wavelengths that scale with the ion
gyroradius or the ion inertial scale length p=c(miTe)1/2/§Bf The measure of
particle diffusion is the drift wave diffﬁsion coefficient

. cT . .
de=7m/k§§(p/rn)[:§§). As p/B, increases there is a continuous change in

the stability parameters and a weaker enhancement of the growth rate. The

scale of the dominant instebility, however, increases as p/(l—ﬁ/ﬁc)l/2 given

by Eq. (66). For BB, the dominant wavelength diverges on the kinetic scale
of p and 1he dominant wavelengihs become global. Although the stability
parameter Flp varies ventiuously witlhk cn,ﬁ,ni,ne,q,r, Lhe change of scale at

ﬁc appears to produce a discontinuous change in the thermodynamic quantities‘

such as the particle diffusion and the thermal conductivity of the plasma. 

The mnature of this type of effeclive phase transition requires further
study.

From this point of view, derived from the kinetic stability theory, the

MHD stability criterion does not determine the threshold of instability.
The plasma is essentially always unstable even for f§ well below ﬁc‘ Instead

the MHD stability threshold determines the threshold for global -or




macroscopic instability. This interpretation implies a continuous change in
the microscale fluctuations observed, for example, by microwave scattering
experiments, but an abrupt onset of thermal energy loss with the onsetof low

m MHD polarized motions at certain critical values of ﬁ/ﬁc.
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Figure Captions

1.

The unstable modes in the electrostatic approximation a(k,w) = 0
for 7=1 and ¢,=0.25 and varying 7;=1,%,3 with =0.

The electrostatic growth rate maximized over k as a function of M5
and £n at £=0.

The growth rate showing the stabilizing effect of finite f in the
grad B drift within the purély electrostatic'polarizati§n a(k,w)=0
appfoximation, with 7=1, £,=0.25, n,=R.

The growth derived from the ¢—§B coupling neglecting the shear
Alfven coupling. Thelparameters ére the same as in Fig. 3.

The growth rate v as a function of kﬁp and ﬁ/ﬁc for the ¢y
coupling with 6B=0. -Fig. 5a shows instability for ni=ne=2 for all
ﬁ/ﬁc whereas Fig. 5b, with ni=ne=0, shows the instability onl& for

ﬁ?ﬁc giving the MHD threshold condition.'

The growth rate derived from the full electiomagnetic dispersion

‘relation det M=0 for the parameters used in Figs. 3 , 4 and 5. The,

change from Fig. 4 is due to coupling with the shear Alfven waves
which adds two branches to the dispersion relation.

The Lramsition frow micro to macroinsiabiiity with ﬁ/ﬁc passing
thrbugh unity as predicted by the fluid approximation. | |
The same transition given in Fig. 7 éomputed here from the

kinetic—electromagnetic dispersion relation.







Wwrn B

-0.2

ES Polorizoﬁon
 €,20.25




uoIDZID|Od S 3













mmmmmm







L *DId

SO

01

10

"
T

-y
T




8 "DId4




