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Abstract

A nonlinear system of equations is derived for drift waves in a high beta plasma (8 > 1).
The magnetic field pressure is taken small compared to the particle pressure. Pressure
balance is established by having a uniform particle pressure with the density and temper-
ature gradients in opposite directions. The primary purpose of the magnetic field is to
inhibit radial heat flux. This is the principle of such plasma fusion systems as the wall
sustained multiple mirror, compressed liner, and magnetic-insulated inertial fusion, where
the heat is contaihed over a relatively short radial scale length and a long axial scale length.
The nonlinear equations for the mathematical model contain drift instabilities which give
rise to radial heat and particle fluxes that can enhance the losses expected from classical

collisional ;effects-’. Thé_linéar and nonlinear, eyo}utioh of the model is studied here.
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I. Introduction

In most controlled fusion concepts, one attempts to use the pressure of magnetic fields to

’

confine hot plasma. However, there exist some concepts®?3

where cold plasma pressure
is used to confine hotter plasma. In such a system the plasma is cold and dense on the
outside, and hotter but less dense on the inside. The pressure equilibrium is characterized
by nT = constant in space, where n is the density, and T the temperature. The role of
magnetic field is not to supply confining pressure, but only to provide thermal insulation
across field lines. Thus, such a system can be short radially (perpendicular to the magnetic
field) where thermal conduction is relatively low, and long axially where conduction is
larger.

One of the problems of such confinement concepts is the likelihood of instabilities
arising because of density and temperature gradients. Linear drift wave instabilities have
been reported for such systems.*%:¢ It is the purpose of this paper to study linear high beta
drift wave theory and to make a preliminary nonlinear investigation of the effect of such
drift wave instabilities. In our nonlinear model the instability does cause a deterioration
of thermal confinement, but at some parameter regimes close enough to marginal stability,
the saturation level may be low enough to maintain good thermal insulation.

In Sec. II, we develop a linear theory for high beta drift wave instabilities based on
. kinetic theory. In Secl fIfI, we show how fluid eq..ll"a,fioné-' can be posed that qualitatively
reproduces the linear igsﬁability predictions of »kinetic‘theio.ry. To investigate the nonlinear
behavior, we consider a sirripliﬁeﬂ fluid model that has a simple equation of state based
on the ion population having a conserved magnetic moment that depends only on r. The
linear theory of the simpler model is qualitatively similar to that of the original fluid
model, and we expect qualitatively similar nonlinear behavior. In Sec. IV, we present
. numerical results. Close to inafginal stability these results show quasilinear saturation,
with appreciable temperature gradients remaining. However, more unstable regimes cause

flattening of most of the temperature profile. In Sec. V, conclusions are presented.




II. Linear Theory

We consider a system where

87p,
B = 320 > 1. (1)

Then, in equilibrium, the perpendicular pressure balance equation is
2

Pi+pet g & pi pe = mol2) [T(2) + Tia)] = po, )

and po is independent of space. For simplicity we also take T.(z)/Ti(z) to be space
independent. The equilibrium density and temperature profiles are shown in Fig. 1. The
magnetic field is present only to inhibit heat conduction which arises if we; / vi > 1,
where w,; is the cyclotron frequency of species j, and v; is its collision frequency. We
use the kinetic equation in the low-frequency eikonal approximation. The perturbed field

amplitudes are taken as,

18A
B=-Ve-Cor
B]_:VXA,
_BOXVA AB
A="5  TH

are their spatial variation is taken as exp(ik-r). The linearized form of the kinetic equetion_
for'the perturbed distribution fj j, with the equilibrium distribution Maxwellian (i.e., fo; = o
(27 T; / mj)l-/ 2 exp (—E / Tj) with E the particle energy, and T; and m; the temperature

and mass of species ), is”

; ; VA -Vio;
—i(w—wp; = kyyy) (fu + %séfoj -~ B, f”)

.9 o é_mjvz ‘ tkxv-b
- [w %’(2 2T )]fOJeXP.[ wej - )

[+ (22) ki 2)

c Wej kivigj Wej ’
where B = —k2 A is the perturbed parallel magnetic field, b = Bo/|Bo| and wp; =
cv?k x VB /quBo = grad B drift. Note that in Ref. 7 the term VA - Vfoj/Bo does not

appear as it is of higher order in the eikonal approximation. However, keeping this term
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in linear theory does not add additional complexity to the analysis. Also, if we define

kxv-b==k v, siny, we have

éxp[zkxv b} ZJ (

) exp(iny).

We have also used

_1_%_ 1 3TOJ CkyToj %—

no Oz T()] Oz’ Waj = g;Bong Oz

We define wy = wy,, and 7 = T/T We assume (T /m,) < w/k” < (T /me) as the
drift instabilities are likely to occur in this parameter range. [Analysis when w / kjve > 1
s given in Ref. 6.] Under this assumption, the parallel current due to ions is negligible
compared to the electron current, since the appropriate moment of Eq. (3) yields I ~
(k”'u,~/w)2 Jlle- We also assume ky < k1. The field equations for ¢, A), By are determined

from the first three moment equations, which in our limit take on the form,

gini1 + gene1 =0+ O (kl/\ ) (quasi— neutrality), (4)
Jlea =040 (Fyir/djer) + O (K2L2/B) (parallel Ampere's law), (5)
k-(ple1+piia)-k= 0 + 0(1/B) (pressure balance), (6)

where A\p = Debye length and L;! = dlnny / dz, and P1; is a pressure tensor defined
below. The densities and parallel current are evaluated from the moments J&Bvfij=mn; i
and g, [ d3vv” fie = jjje- We need to be somewhat careful in the definition of ion pressure,
which is a tensor with finite Larmor radius (FLR) effects. Assuming the perturbed ion
pressure is diagonal, althoﬁgh not scalar (which is confirmed by explicitly showing [ d®vk -

vk x v-bfy; = 0), we need to evaluate
ik-pyr;, k= miZ/dav(kJ_ -v)* faj. (7)
J

One can observe that if the first charge moment is taken of Eq. (3), the use of
Eqgs. (4)~(6) will allow a degenerate relationship to be satisfied to lowest order in Lar-

mor radius for any choice of field amplitudes. This enables us to obtain the effects of the




finite Larmor radius terms relatively simply. We multiply Eq. (3) by g¢;, integrate over
velocity space and sum over species. We then find that on the left-hand side the terms
containing f;; nearly vanish by the use of the linearized forms of Eqs. (4)~(6). The only
term that survives on the left-hand side is from the ion finite Larmor radius effects on the

perturbed pressure. Using Eq. (7), we have

BB
Z/q,wBJfld v= Bz ky 3; Z/d3 mj7f1:
= mizz ¢ aB"k /d3 (———(k v) >f1,,

where we have taken only zeroth order electron Larmor radius effects and k=k /%]

(8)

Now solving Eq. (3) for fi:, to second order in Larmor radius terms, yields

& [w“w* (%— %‘T‘“)] (1 kyvs >
1: — Tt(w_sz) fOl + W — wa;
r 2 . 3
-1 - ik'!‘v'l' sint — l (k_;_v_;_) sin? 9 + z (k'l‘v'l'> sin® 1/;:|
Wei 2 ci 8 Wei
[ k3ol v | vi By ( k.LvJ_>]
.(l dw; ) (¢ ¢ )72 Bua 1_ 8uwg
VA Vi kivg\? ki |
—%¢Tf0i+—?f—+0[<—££> } +O[(""—> :|, (9)
1 Wei w

Then substituting Eq. (9) into the left-hand side of Eq. (8), yields

o= v (2- )]
Z/g;ijfljd V=BT 167, / dv, o= w5 exp (—m,-vﬁ_/T,-)

(10)

k_LUJ_ Bll”i
=3 [¢ + 2‘]:'30

ct

with wp = —I'-Egi%, and note that only finite Larmor radius terms remain on the right-
hand side. .

We also find that the zero-order Larmor radius terms on the right-hand side of Eq. (8)
(i.e., to the extent Jo (%ﬁ-‘-—) =1 and w¢;J1 ( ) /k_]_'UJ_ = 1/2) automatically vanish,
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and to have the right-hand side nonzero we need to use Jo(z) — 1 = —z?/4 + O(z*),
Ji(z) —x/2 = —2% /16 + O(z%). As a result the charge density moment of Eq. (3) has the

form

pE [7  poyZt Tl o Dlen() gy AT

w— OpT Boyg; m;
3 wer\ I;B
—(kpa;)? d k) ke
(”)[‘Hz( w)q,-BJ’
where

az _ Ti LTJB _ CkyTi dBo .
Pomws qiB2 dz

We now use the solution of Eq. (3) to evaluate Egs. (5) and (6). We find to lowest

(11)

order in Larmor radius

j||e = qe/ds’l)’U”fe

BQZH Hia wT ’"%E”] (1 +0 (kuve)) = -

—TNeoWqe

A X E
ky - (p_Le+p.Li)‘- k, = Z/d3v7’njf1jv_21_/2 = QeneOEC'llll— [1 +0 (kl‘:l )]
- | e

gl [" D o g*;@_x)] 1o (2)]
QanT/O dz 2% exp(—z) [ _x)] [1+0 (k” ,)] o (9

B Q—z
where ) = w/LDB, QL = B)+ky (dBo/d:c) (A”/k”Bo) (the perturbed Lagrangian magnetic
field), and By = —iky¢ + 24 (parallel electric field).
One observes that Eqs. (12) and (13) only depend on two field amplitudes, Ey and

Qr, and hence describe a closed system, independent of a third amplitude. Thus, these
two equations, which describe arbitrary excitations, are independent of the finite Larmor
radius condition given in Eq. (11). If desired, the third polarization amplitude can be

obtained from Eq. (4). Even more important, we note that there is one special non-trivial
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degree of freedom where @ = Ej = 0, but with the field amplitudes nonzero. This arises

if

(14)

Substituting this relation into Eq. (11) allows for an additional mode of oscillation. The

dispersion relation is found to be
w? — wwp + weTp = 0. (15)

This dispersion relation is the usual magnetohydrodynamic (MHD)-like finite Larmor ra-
dius result in the limit in which the ion pressure gradient vanishes.® In the general FLR
theory the term T@pw, is due to a fourth moment of the distribution function. Thus,

stability is guaranteed if @p / wy < 0, while if it is greater than zero, stability requires

wer  OInT;
wpB - Oln By

1 1
— - 1
5 <7 (16)

We now solve Egs. (12) and (13) when Ey and Qy are finite. From Eq. (12) and the
« equilibrium quasineutrality condition, we find

iqﬂ — QLTew .
"k Bo(w—wx)

Then substitution into Eq. (13) yields the dispersion relation

D(Q):—_-1+/000d:C—SX—E(T_:Q[:v62.+£-(2—4:z:)+:c_2 (r—;%) <Q+(2~$))] =0, (17)

a

where ) = w/GJB.
To determine the marginal stability conditions of Eq. (17), we first rewrite the disper-
sion relation in the form
©  z?exp(—z) .
D) = G(Q) + H(®) / e 22(T) _ g (18)
‘ 0 Q — T
where

2 2 1

2 Q 1 1 1 2
H(”>=E—;(T—5a>““;+("‘—n—a) (‘”5)-




If at marginal stability > 0, then the real and imaginary parts of Eq. (18) must vanish
separately, which implies that both H(Q) = 0 (from the imaginary part vanishing) and
hence, G(2) = 0. We then find that at marginal stability,

= Qerl

Q
=3
&
. o
—

(19)

One can readily show that stability requires a > ocr1.
If at marginal stability < 0, then marginal stability requires
8D(Q, a)

D(Q,a)=0 d =0. 20
@a)=0 emd 2 (20)
In general, the marginal condition must be found numerically for the roots a = acr2,
Q) = Q.o for a given 7. In Fig. 2 we graph 7 and Qo vs. —aerg = — :1111:11% . These solutions

can be understood analytically at @ = 0 and near @ = 1. At a = 0, the dispersion relation
is » ‘
W (1 +27) = 2wewr(l +7) + 27%w2 =0, (21)

with the root,
WeT

“E=T+on
This root has been obtained by Mikhailovsky?* for 7 = 1. Stability requires 7 > 1+ V2, and

[1 + 7+ (7'2 -1 —27')1/2}.

the important case of 7 = 1 is always unstable. If 7 > 1 + V2, one can readily show that
if ‘o is small and positive, @ > 0 and ion Landau damping destabilizes the lower frequency
solution, while if & is small and negative, < 0 and there is no Landau damping. Stability
will then exist as long as —a is less than —ag¢rp. For —a > —acrg, instability is present.

For large |a| one can show the mode frequency is given by

Q272 2me
0= 75 -] =

so that if —a > 1 we have instability, and if & 3> 1 we have stability.
One can solve Eqs. (18) and (20) as 7 — co. Assuming Q%7 = O(1) and y =~ —1, the

dispersion relation becomes

D(Q) = Q%1 (1-%) + Qr <1+%> —-57+2%1 (ln (-%) —7> (23)
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with v = 0.635 being Euler’s constant. Setting acre = —1 + bacra leads to the rough
marginal stability condition
§a?

8
—Ter2
In[facra7/2] T (24)

Combining the results of these analyses we conclude that if 7 = T; / T, <1+ /2 the

stability criteria to zero-order FLR and finite-FLR modes are respectively

BlnBo 1

BT, ~ 2(1+7) (25)
and
O1ln By 0ln By :
T, <0 or 51T, > 4. | (26)

If 7 > 1+ /2, an additional stability band appears for the zero-order FLR modes given

by
6111 Bo

BT <0, (27)

acr2(7-) <

where a.r2 is negative and is given in Fig. 2. It is significant this stability band is com-
patible with stability criteria to the FLR mode given in Eq. (26). Note that we have not

considered stabilization or destabilization by parallel Landau damping.




III. Nonlinear Equations
We have constructed a model set of equations to describe the nonlinear properties of the
zero-order FLR mode.

To model the ion motion we note that ky = 0 and the flow velocity is

ExB __c
B? nle|B

vi=c¢ =(Vp: x B). (28)

If we substitute this form into the continuity equation, we find after using %% =—2z-VXE

and some additional straight forward manipulation,

L)+ (v5 - 9)n0) = 0, (29)

where N = n,-/B, o= T,'/B, and

d 0
EZ:5%--|-(v¢,+vza-f-\f)\)-V- (30)

‘The drift velocities appearing above are given by:

zX V¢ o 1 _0A (31)

Vg =g vB=|e|sz1n(B), vi=—=V—

B ot

To close the system we choose an ion model distribution with a single magnetic moment
at each point of space. This model allows for an exact fluid description of the ions. With
magnetic moment conservation, the equation of motion is simply

do

— =0 32

dt ? ( )
with o = T; / B. For the electron density, we have noted that the linear response is close
to a Maxwell-Boltzman response. Hence we model the nonlinear electron density as,

Ne = Ng €XP (l;{q&) . (33)

The final equation is the pressure balance equation, which at high beta has the form

nil; + nele = Do, (34)
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where we somewhat arbitrarily set T, = Tp(z), with ng, and Tp determined by Eq. (36)

below. The final set of nonlinear equations then has the form

%m(N) + (v - V)In(o) = 0,

£0=0,
d 0
== E+(V¢+VA+VB)'V
el ( B)
—=In{N—],
To o
B?No + B]ZT" = po, (35)

and

a) Tp= / Tidy / / dy, D) no:‘:-i.,-o(%[_—;)-. (36)

Equation (33) is of course only a crude approximation to the electron response which is to
a considerable extent determined by 3-dimensional flow along field lines, beyond the scope
of this paper. However, using the moment equations, we estimate B / By ~ %kuf , or the
field flutter amplitude Ar ~ 3¢ with &€ ~ (k 16/wB), the displacement in the plane. In

this connection we may estimate the stochastic field thermal transport
P ! 2
Xe = veDmag ~~ Ek”veg .

Since kjve > w, depending on the dominant longitudinal structure of the modes, these
neglected processes may be important and our results are a lower limit on transport.
Equation (36a), together with Eq. (33), is equivalent to the condition 8 (¢) /0z ~ 0,
imposed by the constraint that there is no mechanism present for developing macroscopic
fluid velocities (rotation in the cylindrical case).
For simplicity, our simulations neglect the vy term in Eq. (35). Including vy in a few
check runs did not alter the results.

To examine the linear stability of our nonlinear model we have for 8 — oo,

n = ng(z) + n1,
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T; = To(z) + Tn,
B = By(z) + By,
T, = To(z) /7. (37)

The pressure balance equation and the linearized Boltzman law then give

 Tv  ny Plelr
(1+T) Tg o Ng - To ) (38)

The linearization of the form (dg/dt), with g = go + ¢1, is

dg o ick,T; [n1  B1] dgo
a (w=-ws) g le|B [TTL B ] dz’ (39)
with wp = (ckyTo/|e|B3) (dBo/dz). Using Eq. (39) and the equations in (35) yield
L ] P S
[(14+1/7)wp + wy — W] o +(.‘JB0 +wBT0 =0, (40)
Tl B” 1 wpg _
(wB—w)T—0+(w—Tw*)B—o+;—z—(-)-(—7-_——w*)—0 (41)
With (n1 / no) = —71T} / (1 + 7), the dispersion relation becomes
W2+ 7)—ww(l+ 7+ 7%) +@pT] —wir® = 0. (42)

The instability regime is then found to be

dlnT,-'< (14+7+7*)+272+ 1)/~ (43)

~Q+T+7) =212+ 1)<
An alternate fluid model, which includes heat flux from finite Larmor radius effects,
gives a description of instability quantitatively closer to the kinetic description, especially

when |dIn By /dInT;| < 1. The heat flow equation for ions can be written as

0
-5%+Vi-VP_L+’YoV'Vi+V'q=0, (44)

where 7, is the adiabatic index, taken here as 2 here and ¢ the heat flux. If we neglect
collisional effects and parallel heat flow, the off-diagonal heat flux qr remains, and is given
by?

Yo CPi .
= —1z x VT;. 45
= —TaB" " (45)
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If we use Eq. (31), we find that including the flux causes the evolution equation in Eq. (35)

to be modified to
: ég‘_ + vp: V(O‘2N)
dt oN

This equation is not totally consistent, but it appears to produce favorable properties when

= 0. (46)

its consequences are compared to the linearized kinetic analysis. When we linearize this
equation, it leads to the following form that replaces Eq. (41)

T: B
(Bws =) 70+ B,

ng 2(4)3

(w—2wsr) + — (———— —'—w*> = 0,' - (417

T

‘Equations (40), (41') and the relation ny /ng = —7Ty /(1+7)Tp then leads to the dispersion
relation

W2 (14 27) — w 2w (1 + 7) + wp(1 + 37)] + 2wir? = 0. (47)

For %3— = 0, this is the same dispersion as obtained in kinetic theory for a Maxwellian
plasma. The instability band predicted by Eq. (47) is

dinB, _ 2
dinTy = 1+37

_ 2
- 1437

[1+T+(2+4T)1/2]< [1+T—(2+4T)1/2].

At marginal stability the frequency is given by

L ool _[4r+a(+30)/2). (48)

Qe =
fle= %5 a(l+27)

‘One notes that the stability parameters predicted by one side of this band

dlnBy 2 1/2] —
dinTy, = 1+37 [1+T (2 +47) ]_aﬂc (49)

tracks closely with the marginal stability predictions of kinetic theory. For 7 > 1 -+ V2
the correlation is shown comparing in Fig. 2 the dotted curves, which is for the heat flux
model with the solid curves, which is the result of kinetic theory. For 7 < 1 4 V2, we note
from Egs. (19) and (49) that the ratio of the predicted dlnBy/dInTp, values is given by
Table 1.

Most of our nonlinear numerical investigations ignored the heat term in Eq. (46).
However, as the linear theory, where the heat term is included, seems to track well with
the kinetic theory with thermal effects, we have also implemented a nonlinear code that

includes this heat term. The results are briefly described in the next section.
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IV. Numerical Results

Equations (35) and (36) are numerically integrated in a two-dimensional slab geometry
with periodic boundary conditions assuming T, = T;. For reasons of convenience and
numerical accuracy, a hybrid scheme is used. The quantity N = n; / B is advanced in time
using standard second-order accurate ﬁn’ite-difference schemes. However, convection of the
magnetic moment, o, using such schemes tends to introduce unwanted numerical diffusion,
especially when the equilibrium gradients are large, and the modes are highly unstable.
In order to minimize such numerical effects, a particle-in-cell method!® is adopted for

advancing o. Particles with an initially uniform spatial distribution are assigned magnetic

moments corresponding to the local value of 0 = T; / B. They are then convected with

the local drift velocity. o is interpolated onto the finite-difference mesh from the particle
positions ﬁsing standard techniques when needed. Typically, a 64 by 64 mesh with eight

particles per cell are used in nonlinear calculations.
a) Linear Calculations

The dispersion relation, Eq. (42), and the instability window of Eq. (43) are checked

numerically using a linearized version of Eqgs. (35) and (36). In practice this linearization

~ is accomplished by numerically filtering out the unwanted wavelengths from various quan-

tities at each time-step. The results of this linear code agree quite well with Eqgs. (42) and
(43). Figure 3 shows the growth rate as a function of the wavenumber k, for a uniform
magnetic field case, wp/wy = 0. As we have introduced filtering at short wavelengths,
the numerically calculated growth rates decrease as k, approaches the largest wavenumber
allowed in the system, ky max / 27 = 32 in this case. In Fig. 4, we plot the growth rate for
various values of the instability parameter, « = (d1n By / dInTy). Except for the limit of

wp / wy — —6, which implies large field gradients even for moderate temperature gradients,

‘again the computational results and theory agree quite well. Note that the growth rate

has a maximum at o = wp / wsx = —3. The reduction in growth rates beyond that point,
and the eventual stabilization at o = —6.46 can be attributed to the increasing grad-B

drift as the field becomes more diamagnetic. The stabilizing influence of a large vp can

" be seen in the first two equations of (35) by balancing (8/8t) and (vp - V) terms, which

14




leads to stable oscillations at w = wp / 3.
b) Nonlinear Results

As stated earlier, the primary purpose of the magnetic field in the high-# devices under
consideration here is to inhibit radial heat flux. For this purpose, it is desirable to have
magnetic field act only as a thermal barrier. However, instability can cause deterioration
of this insulation. In this nonlinear study we hope to obtain some insight on whether
thermal insulation can be attained. In order to assess the effects of nonlinear evolution
of these instabilities on transport, various initial conditions corresponding to different
values of the instability parameter wp / we = dlIn By / dInT, are examined. In all cases, the
density and temperature profiles of Fig. 1 are used. The initial Iriagnetic field is given by
By(z) = To(z)%, where @ = wp/wa.

The nonlinear results will be discussed in terms of two typical cases. In the first one,
the magnetic field is uniform (o = 0), which is unstable but not far from the marginal
stability point at & = 0.46 . The instability is observed to saturate through quasilinear-
modification of the equilibrium: the density and temperature gradients are reduced, while
the magnetic field becomes larger in the high temperature region (Figs. 5, 6). The overall
effect is to increase o to approximately 0.5, at which point the instability shuts off. The
modification of the temperature profile associated with the quasilinear saturation is not
very severe; the temperature peak decreases by 15%, but otherwise particle and energy
confinement is maintained. Note that the change of gradient introduced into the magnetic
field will reduce the effectiveness of the thermal barrier, since the field in the cold plasma
region is decreased.

The second case with @ = —1.2 has an initially radially increasing magnetic field.
However, the drift instabilities have a larger growth rate for @ = —1.2, and their non-
linear evolution has a more pronounced effect on confinement. The initial density and
temperature profiles are the same as in the a = 0 case (Fig. 1); the initial magnetic field
profile is shown in Fig. 7. The temperature and the magnetic field at saturation are shown
in Figs. 8, 9, respectively. Note that the y-averaged temperature profile, (T), (z), has

essentially become flat, resulting in loss of confinement. More importantly, the gradients
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for (T), and (B), are no longer in opposite directions. The hot and cold plasma regions
have exchanged places (compare Figs. 1b, and 8b), and the instability parameter o has
become positi\;e. This is in contrast to the previous case which reached quasilinear satura-
tion (o > 0.46) essentially through modification of the magnetic field while approximately
maintaining the initial temperature gradient.

The deterioration of confinement increases as a becomes more negative, which can be
attributed to the increased level of turbulence as the magnetic field is excluded from the

“interior in the equilibrium. Figure 10 shows §B/B at saturation as a function of «, where

8B/B is defined as
2 - [ -r)]" 1m0 e

The brackets denote surface averages, and By is the initial field. Note that a factor of
two increase in 6B/B in going from a = 0 to @ = —1.2 shown in Fig. 10 somewhat
underestimates the increase in the turbulence level. For a = 0, Eq. (50) essentially mea-
sures the coherent modification of the initially uniform magnetic field, not the true level
of turbulence.

A better indication of the loss of confinement is shown in Fig. 11, where a measure
of the residual temperature gradient in the saturated state is plotted. Near the marginal
stability point a = 0.46, the temperature gradient rapidly decreases with a. For oo < —0.5,
the loss of confinement becomes catastrophic, as discussed above for the @ = —1.2 case,
in the sense that the temperature profile basically becomes flat, with the residual gradient
indicating a radial exchange of hot and cold plasma iegions.

Qualitative differences in confinement between a = 0, and a = —1.2 cases can also
be seen in Fig. 12. Figure 12a shows the position of a “test-particle” (one of the particles
used in o advection) at various points in time for a = 0; in Fig. 12b, the positions of the
same particle are given for « = —1.2 . In the @ = 0 clase, the radial excursions of the
particle are relatively small, while it drifts mainly in the y-direction. In Fig. 12b however,
the drift orbit of the particle indicates no radial confinement at all; it is not lost from the
system only because of the imposed periodic boundary conditions.

Nonlinear calculations near the second marginal stability point at o = —6.4 are diffi-

cult to perform, as the large value of || requires using a very fine mesh, and therefore an
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expensive calculation. Furthermore, in an extensive run with a = —6.0, we found that the
diffusion of the field reduces o and thus pushes the plasma to the unstable regime. Thus,
rather than saturating quasilinearly, the plasma becomes more unstable, again leading to
flattening of the profiles. However, in this case the numerical accuracy of our integration
is suspect, and we are not positive whether our nonlinear instability is physical or just
numerical.

Nonlinear calculations above have ignored the heat flux term (Eq. (45)) in the evo-
lution of o = T; / B. As noted in the previous section, using the more complete heat
flow equation for ions, Eq. (46), gives closer agreement with the kinetic theory results of
Sec. II. Thus, for comparison, we have also performed calculations using Eq. (46) for the
time evolution of o, rather than the simple convection loss, do/dt = 0.

For 7 = T;/T. = 1, the dispersion relation, Eq. (47), predicts the instability band

dlIlBo
dlnTo

-223 < < 0.23.

Our linear calculations exhibit stability for &« = d1n B, / dlnTy > 0.23, and a < —2.23,
in agreement with the linear theory. Moreover, now near both of the marginal points,
the instability achieves quasilinear saturation without serious effects on confinement. This
contrasts with the previously described simulation where we achieved quasilinear saturation
only near the positive marginal point. Away from the marginal points (a ~ —1), however,
confinement degradation is severe. There results are summarized in Fig. 13, which shows

the residual temperature gradient after saturation as a function of (—a).
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V. Summary and Conclusions

Drift instabilities have been examined for high-# systems where the magnetic field pressure
is negligible compared to particle pressure. The primary purpose of the magnetic field,
By, is to inhibit radial heat flux from the region of large temperature, Tj.

A linear theory based on kinetic theory predicts that two types of drift waves are
excited in the limit w / kjve < 1, with ve the electron thermal velocity. One type, with
the perturbed parallel electric field, Ey, finite, can be calculated with zero-Larmor radius
theory, while the second mode, which has Ej = 0, requires finite Larmor radius terms to
obtain an appropriate description. If r = T; / T. < 1++/2, the stability criteria for the two
modes are:

(a) zero-Larmor radius mode

o = BlnBo > 1 .
T 8lnT; T 2(1+41)’

(b) finite-Larmor radius mode

. BInBo <0 or 611130

*= BlnT,- 31nT,-}

> 4.

These criteria make it difficult to find a stable operating range since @ < 0 is unstable
to the zero-Larmor radius mode and achieving @ > 4, where both modes would be stable,
means a rapid radial fall-off of the magnetic field, a condition that may be technologically
difficult. In fact, one usually envisages systems where the magnetic field is larger on the
outside than the inside.r If 7 > 1 4+ /2, it appears possible to find a parameter range
simultaneously stable to the two drift wave modes. If & < 0, the finite-Larmor radius

mode is stable, and there is a band
—|acre| <@ <0

which is stable to the zero-Larmor radius mode, where —a.,s is given in Fig. 2 as a func-
tion of 7. Perhaps this regime is optimum for stable operation of magﬁetically thermally
insulated systems.

A fluid set of equations was formulated to describe the nonlinear evolution of the zero-

Larmor radius mode. If collisionless heat flow is included, the linearized fluid equations
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has quite similar stability properties as the kinetic theory, especially if ‘m’ < 1. Two
self-pon31stent nonlinear set of equations has also been formulated and in this work we
have studied numerically the time evolution of these equations. In one model there is zero
heat flow, which is exact for an ion distribution that is a delta function in the magnetic
moment. The other model includes ion heat flow, based on a somewhat arbitrary truncation
procedure, whose stability boundaries are qualitatively similar to the kinetic theory.

In the numerical simulation where we choose T, = T;, we find that an initially unstable
equilibrium profile close to marginal stability relaxes to a stable profile. However, for initial
profiles significantly different from the marginal one, we find that most of the thermal
insulation is lost, and the final temperature difference between the inside and the outside
becomes quite small. For example, for the zero heat flow model with a = —1.2, we
show that thermal insulation is lost in one drift time of the longest wavelength. Similar
results arise with the heat flow model. For a constant profile, this implies a loss rate,

7';1 R ipes Be 8L where ky L, ~ 1 with L, the macroscopic scale length. This loss is similar

to the Bohm diffusion rate, even perhaps an order of magnitude faster if one takes into
account the numerical factor of 1/16 in Bohm diffusion. Thus, the simulation indicates
that systems with profiles with o = %lll‘—n%?- ~ —1 (which one expects from modeling in
simple magnetic field configurations) and with T, /T; =~ 1 have poor confinement.

Better containment may be obtained if profiles with & > 0 can be formed or if plasmas
with T, / T; < 1 can be established. The simulation indicated that if an equilibrium is
unstable but not too far from the marginal stability profile of the zero Larmor radius
mode, the system relaxes to the marginally stable profile. For the zero-Larmor radius
mode the marginally stable value of ., = %g— is moderate, e.g., in the kinetic theory
acr = 1/4. However, stability to the finite-Larmor radius mode requires a more severe
condition, which is %ll“——"- > 4. Hence, if the nonlinear properties of the finite-Larmor
radius mode is similar to the zero-Larmor radius mode, very rapidly decreasing magnetic
field profiles are needed to maintain stability.

We have already pointed out that if T, / T:<1 / (14++/2), one can find negative values of
81n By/81nT; that are stable to both types of drift waves. In such a region, radial thermal

insulation should be maintained. A lower electron temperature than ion temperatures may
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in fact be physically easy to achieve, as parallel thermal conductivity losses pass primarily

through the electron channel.
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Table I e

T Qer1 Qrlc CVflc/acrl

2.00 | .167 | .046 0.28
1.50 {.200 | .119 0.59
1.00 | .250 | .225 0.90
0.75 | .286 | .30 1.05
0.50 | .333 | .40 1.20
0.25 | .400 | .55 1.37

0 |.500 .83 1.66

Table I: List of critical values for stability of @« = dlnBy/dInT; from
kinetic theory (a,1) and fluid theory (o) with heat flow for various value
of r = T;/T..
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Figure Captions

1.

10.
11.

12.

Equilibrium profiles used in nonlinear calculations: a) Density, b) temperature. For
numerical reasons, the cold plasma region is chosen to be at the center. Since periodic
boundary conditions are employed, the physics of the problem is not altered by this
choice.

Solid curves are the marginal stability parameter —a.r and the marginal frequency
—Qcr2 as function of ion to electron temperature ratio 7. Also included in dotted
curves is the prediction of the stability parameters of the fluid model with heat flow,
Q1. and aje, given in Eqs. (48) and (49). The stable region is on the lower right
part of the graph.

The growth rate as a function of the mode number for a uniform magnetic field case.
The growth rate as a function of the instability parameter o = wp / Wy

Temperature at saturation for @« = 0. a) Contours in the z — y plane with the max-
imum and minimum values of temperature indicated below the graph, b) y-averaged
temperature profile.

Magnetic field at saturation for @ = 0. a) Contours in the z — y plane with the
maximum and minimum values of magnetic field indicated below the graph, b) y-
averaged field profile. Initially field is uniform for this case.

Initial magnetic field profile for & = —1.2: a) Contours in the z — y plane with the
maximum and minimum values of magnetic field indicated below the graph, b) Bg(z).
Temperature at saturation for @ = —1.2: a) Contours with the maximum and mini-
mum values of temperature indicated below the graph, b) y-averaged profile.
Magnetic field at saturation for @ = —1.2: a) Contours with the maximum and
minimum values of magnetic field indicated below the graph, b) y-averaged profile.
6B/B as a function of the instability parameter a = wp /wx.

AT/AT, as a function of the instability parameter a, where AT = {(T)y max —
(T)y min - (T)ly denotes y-average of T', and Tj is the initial temperature.

Test pa,rticlé orbits: a) @ =0., b) @ = —1.2 . The location of the particle at £ = 0 is

circled.
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13. AT/ATp as a function of the instability parameter « for the nonlinear model with

heat flux. See caption of Figure 11 for definition of AT and ATj.
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