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Abstract

The effect of frequency modulation during stochastic ion heating
induced by lower hybrid waves is examined. The modulation occurs
either in the ion cyclotron frequency due to the wvariation of the
magnetic field in toroidal devices, or it can be externally imposed on
the frquency of the lower hybrid waves. It has already been observed
-numerically .[Phys..Fluids”gZ,H184(1984)].that ausméllrvariation in the
ion cyclotron frequency can induce velocity diffusion for‘ wa#é
amplitude well below the stochasticity threshold in a uniform magnetic
field. Here a detailed study reveals that to the iowest order in the
small parameters, the modulational effecfs can be incorporated in a
~ two—dimensional Hamiltonian.jfThisjallows the' defivafion “of  the  new
stochasticity thresholds. It ‘is found that a small amount of
modulation, %? < 1%, produces an order of magnitude reduction in the
stochasticity threshold relative to the constant frequency case. The
stochastic regime in velocity space also grows in size, resulting in a

considerable increase of the number of heated particles in the case of

devices with modest ™ aspect ratio. Both ion cyclotron and wave

frequency modulation. lead to similar results. The modulation of the
wave frequency offers 'the ability to control and optimize the
modulation parameters and is proposed as a method to enhance RF

heating.




—2—
I. INTRODUCTION
The interaction of a charged particle with a coherent
electrostatic wave propagating perpendicularly +to a static magnetic
field has been éxtensivély studied in a number of papers. Karney1 has
considered this problem for the case of a uniform B-field. He has
shown that under certain conditions the equations of motion of the

particle are well—-approximated by a discrete two—dimensional map of the

form
uj+1 = uj + 276 — RmnA cosyj
(1)
vj+1 = vj + 2né + 2mA cosuj+1
with
b s TS B Bl S NS

where Pj and ¥, specify the particle speed perpendicular to B and its

]

gyrophase. .The . index j signifies ihat these quantities are evaluated
at the j—th cyclotroh period. The quantities A and 6 are parameters of
the system; A is the normalized wave amplitude and 6 the normalized
wave frequency; 6 = w/wc mod 1, where w and Wg are\the wave frequency

and the particle gyrofrequency. Karney finds that when A exceeds a

critical value, A  ~ 0.25, widespread diffusive behavior ‘of the-

particle energy vresults. Thus, if the amplitude of the wave is large

enough, energy transfer from the wave to the particles becomes possible

and heating of the plasma results.l’z

In particular, this picture has
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been invoked with reference ito ion heating .in lower hybrid heating
experiments.3

Karney’'s map was modified in Ref. 4 to include the effect of the
nonuniformity in the mégnetiq field, a familiar situation in many cases
of interest. As the magnetic field strength changes, ion cylcotrbn
frequency W chénges as well and the frequency mismatéh 6, defined in
thev previous paragraph, is modulated in time instead of being a
constant. It was argued that for sinusoidally varying magnetic field
strength and free streaming particles along the magnetic iines

B = Bo(l + & sinkz)_lvﬁ, v, = const. ,

the autonomous map (1) valid in the uniform B-field case evolves into a

‘§imilar nonautonomous -map, by replacing 6 = const. with

dj = 6y + evsindmjQ , 0 = kvz/wc , (2)

an explicit function of time tj = 2mj. Numerical results4

iterating Eq. (1) with modulated dj, Eq. (2), showed that relatively

obtained by

small size ripple in the magnetic field (551%) can completely change
the behavior of the syétém,'inducing diffusion of the particle velocity
for values. of the wave amplitude A much lower than the homogeneous
magnetic field stochasticity threshold AS. The observed thresholds for
fast diffusion were much lower than the un?form field stochasticity

threshold As, while slow diffusion persisted for very small wave

amplitudes. An analytic derivation of the fast 'diffusion thresholds

was not possible through the framework of Ref. 4, and remains {o be

considered. The effect of the inhomogeneity on the boundaries of the




stochastic regime in veloéity space also needs to be examined since,

after all, it will determine the percentage of particles that absorb
energy from the wave. Finally, the approximétions made dufing the
introduction of the nonautonomous map, considering the variation of |§|

along magnetic ljnes as the main effect (i.e.,-ignoring perpendicular
gradients) énd assuming the ions free streaming in the same. direction,

need to 5e justified in a more systematic way. Note that the time
variation of the mismatch dj betweep the cyclotron frequency We and the
wave frequency w can be produced by thé modulation of either one of the
above two characteristic frequencies. Although variation of We is
inherent in toroidal devices due to variation of the ﬁagnetic field
strength, it can be advantageous to externally modulate the wave
.frequency w, . offering the possibility .of optimizing the modulatiop;
parameters.

In this paper the emphasis will be given initially to the detailed
study of the case when the cyclotron frequency QC is modulated due to
toroidal effects. The Hamiltonian formalism will be used to show that,
for small size ripple ¢ in the magnetic field; the éystem behaves as a
two—dimensional system and this behavior determines the fast scale
diffusion. Proper action angle variables will be introduced for the
study of the surfaces of section and the transition to chaos. Lower
thresholds compared to the uniform maénetic field case are expected as
the modulation frequency 0 introduces a new family of resonances in the
system. This indeed turns out to be the case, when an appropriate
condition is satisfied: Turning Back to thé map representation, this
condition simply means that &, can go through one of the principﬁl

]

resonances 6=0 or 6=1/2 of the uniform field case. The nonautonomous
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map will be derived from the Hemiltonian of the system, justifying the
use of Egs. (1) and (2) to approximate the pafticle motion. Next the
attention will "be turned to the case when the wave frequency w is
modulated externally while We remains constant. It will be proved that
this process is .physically equivalent tq that of the We modulation,
leading to similar conclusiqns. The picture will be completed with the
study qf the'enlargement of the stochastic regime in velocity space due
to the modulation,»préducing enhancéd power absorption from the wave.

The outline of the.reméinder of this pépef is as follows. Imn
Sec. Il a large'aspect ratio, slab geometry model is used to write the
Hamiltoniaﬁ of a particle ih a tokamak static field under the influence
of an. electrostatic wave propagating perpendicularly to the field
lines. ‘Keeping:onlylfirst-ofder.ierms,in the perturbation parameters.
reduces the system into a two—dimensionél one. Then the equations. of
motion in the rippled magnetic field are derived. Resonant
approximation is wused to define the new action—angle variables. In
. Sec. IIl the motion on a surface of section in the phase space is
examined for different parameter values. Existence of invariant KaM
surfaces for wave amplitudes below some threshold is verified by direct
numerical  integration _'of the equations of motion. The island
overlapping technique is applied in‘éec. IV for the evaluation of the
new large scale chaos threshold, and the process is repeated for the
higher order islands. It is found that the maximum reduction of one or
two orders‘of magniiude in the wave amplitude threshold oécuré for such

parameters ¢,v that allow 6. to go through the main resonances (6=0 or

J
6=1/2), of the uniform field case.




In Sec. V the nonautonomous map, Eqs. (1) and (2), is derived from
the Hamiltonian of Sec. II. The addtional validity condition to these
obtained >by Karney for the uniform field case is that the modulation
frequency 0 is slow enough for 6. to be considered constant during one

J

gyroperiod. The quantities P and ﬂj are now computed at the end of

the j—th “reduced” gyroperiod, introduced through the transformations
of Sec. II. In addition, p signifies the square root of the magnetic
moment #1/2 father than perpendicular velocity. Since in normalized
units v, o= (1—5)1/?#1/2, the diffusion coefficients derived

~

4 are still valid for diffusion in velocity space for ¢

elsewhere
small. In the same section ' the apparent contradiction betweeh"the

dimensionality of the nonautonomous map and the time autonomous

Hemiltonien from which it is derived will be resolved. To be' more.

specific, the explicit time dependence in Eq. (2) is mnot generic but
imposed due to an approximation. The fast diffusion above a certain
threshold in A, observed in Ref. 4, is connected with the destruction

of the invariant KAM surfaces, shown in Sec. III. The persisting

extremely slow diffusion below this threshold occurs due to the higher

than 2 dimensionality of the mapl5

In Sec. VI equivalence 1is established bétweeh the modulation in
frequency mismatch 6 due to the B-field ﬁonﬁniformity, and the
modulation of 6 in a uniform g—field due to an external variation of
the driviné wave frequency.» The new stochasticity threshold is
computed numerically as a function of the modulation parameters and the
results are in'good agreement with the theoretical predictions of
Sec. IV. Frequency modulation in the LH waves is proposed as a method

to lower the wave amplitude threshold for effective RF heating.




In Sec. VII the study is extended to include the case of a big
size ripple in the megnetic field, connected with the heating of
«compact tori. When ¢ is a modest fraction of one, the small paremeter
expansion of Sec. II fails, and the full set of equat1ons of motlon in
three dlmen51ons must be solved simultaneously. Numerical integration
shows that the velocity threshold for stochastic ion heating is lowered
considerably, and thus heatlng can become more efficient, as the
bpopulation of the. responding barticles incrgases exponentially with

decreasing velocity. Section VIII is the conclusion.

~
~

IT. DERIVATION OF THE HAMILTONIAN -

Here a Hamiltonian will be derived for a particle gyrating infhfhe
magnetic field of a tokamak, including the effects of the variation of‘
IB| ‘along the magnetic lines. In the large aspect 1limit and using
rectangular coordinates with 2z along the Tfield lines and ¥y along the

dlrectlon of propagation of the electrostatic wave,
E = ﬁEOcos(kly—wi)’,
B can be modeled by
(Bx'By’Bz) = BOKO, ecosk ‘zsink 'y, 1 — esink ‘zcosk ‘y) ',

where




€ = inverse aspect ratio = r/R ,
k' = (Rq)™!,
q = safety factor >1 ,

r = minor and R = major radius of the torus ,

and the condition Y‘E =0 is satisfied. g can be derived from a vector
potential A through B = VxA with A given by

~

A= (AX,O,O) = -By(y — ¢/k’sink’zsink’y, 0, 0)

Larmor radius £j is considered small compared with the magnetic ripple

wavelength 2n/k”° but large compared tb the electrostatic wavelength;_

27r/k~L according to
v-k’pi << 1 << K p;

This situation is different from the one examined by Gell and
Nakach;6 they ¢onsidered the finite Larmor radius:5effect§ of a
magnetic gradient perpendicular to both the field lines and the
direction of propagation of the wave with constanf B along 1z, while
here finite Larmor radius effedts in assbciatién with the perpendicular
gradient are éhown to be less important, and the dynamics is determined
by the variation of the magnetic field strength along the field lines.
Since the motion perpendicular to B is to remain bounded for long
peribds, k'y ~ k’,oi << 1, and an expansion of the sin k’y term in the

vector potential yields




. : ’ L2 ’
A, = —yB0(1—881nk z) + 0[’1;_, (k pi)s]

The Hamiltonian H is given by

lelEg .
H=H, - » 81n(kly—wt) ,
L
1 g : 2 2 2

HO = a {[PX + mwcoy(l—as1nkz)] + Py + PZ) )
where Weo = eBO/mic. Renbrmalizing lengths to kIl and time to wgé , .we
obtain H in a dimensionless form

H= % (yz(l—asinxi)z + P;‘; + Pi} - o sin(y-vt) (3&)"’

where
IeIEOk
L .
a = 2 ,zz—oo/a)co,K—k/k_L
mwg,
and

% = y(l-esinkz) .

The purpose now 1is to introduce an epproximate Hamiltonian linear in
the small parameters &, k, a~O(A) with A<<l. This is done by applying

successively the canonical transformations
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- rat 1/2 - s -1/2
qy (1-esinkz)*/*y | Qy (1-esinkz) Py ,
(3b)
EKCOSKZ
=z, =p, ~ -SLCOSKZ 5
4z R 2z l-esinkz ¥
and
4y = (211)1/2 sint®;
(3c)
Q = (21)1/% cosy, |

and discarding terms of order Az or higher. The mathematical details
of the derivation are giveh in Appendix A. The new approximate

‘Hamiltonian is

. . 1 . . '
K(ﬂl,z,II,Pz;t) = (1—831nxz)11 + > P? - a51n[(211)1/zs1nﬂ1—ut] . (4)

The energy of the particle in the magnetic field .is given by

Ky = (l—asinxz)I1 +_% Pg .

Here I1 is the normalized magnetic moment -

1_ 2
2 = mv
Mo, —1 2 1
I = 2 Bn(l1—esinkz) = sl
leO 0




and ¥, is the reduced gyroangle expressed through Egqs. (3b) and (3c) as

¥y = tan~1{(1-zsinkz) ﬁL)
y

In the absence of the wave interaction giﬁen by the term
o sin[(ZIi)l/zsinﬂl—ut] in Eq. (4) the - magnetic ‘moment I; is an

invariant of the motion according to

» aKl . . h
I, =« 55; , &1 = (1-esinkz) , (5a)
Pz = Ilsxcoskz , | z = P, . » (5b)

One can now obtain the first—order solutions z(t), P,(t) from Egs. (56

applying perturbation theory. The details of the derivation are given
again in Appendix A. Replacing z and P, in (4) with their approximate
selutions z(t) and Pz(t) leads to the new one—dimensional,

time—dependent Hamiltonian

K = (1~-asith)I1 - o sin[(ZIl)l/zsinﬁl—ut] : (6)
Finally, introducing (-t,E) as a pair of canonical variables, where E
is the total energy, we obtain the foilow&ng two—dimensional,

autonomous Hamiltonian

K = [1—asin(% 95)]1;, + vIy - o sin[(zll)l/gsiml—%] . (7)

where




It represents two harmonic oscillators, coupled through the ﬁonlinear

wave term, with‘one of their fundamental frequenéies being slowly
' 0 ; - :
modulated according to 1 — asin(; 02)- In the limit of either 20, or

=0,

K> 1, +vly—a sin[(zll)l/zsinal—ﬁz] ,

‘while

2 ' 2. 2

P Pty 1/2
oy Rl s 1/2 Yy -
Il - (2 [l—asith Y (1 as1th]]) i { 2 }

and we recover the uniform g—field results, discussed in Ref. 1.
The equations of motion, dérived from (5) are expressed in the

velocity-like variables Qy, qy,'defined through Eq. (3b) and (3c¢) as

0
I

4. = Qy(l—asith) ,

Oe
I

—(l—asith)qy + acos(qy—ut) . v (8a)

The above Egs. (8a) are combined into

eQlcost

. . 2 '
+ (1—esint = o cos -vt) . 8b
% * I esinnt by (1 )%ay (gyvt) (8b)

Note that if‘ one neglects the second order term « sQQy, the LHS of

Eq. (8b) is the equation of motion for an harmonic oscillator with a




time modulated characteristic frequency. As we should expect, at the

limit £40 or (-0 both [Qy,qy] > (Py,y) and also
Eq. (8b) » y+y = acos(y-vt), i.e., we recover the uniform B-field
results.

Expression (7) for the Hamiltonian will be used later in Sec. V
for the derivaiion of the nonautonomous map (1) used to model the
behavior iﬁ a nonuniform B-field, thus establishing the validity of the
finite difference approach. We proceed.now in order to define proper

action—angle varﬁablesh Hamiltonian (7) can be written as

K = Ko + K1 )
where KO is the integrable part

KO = (1—asin % 02)11 + VIz R

since it possesses a second integral of motion, I1 = C. . Therefore, the

angle dependence in KO can be éliminated by introducing proper

1 =1 =0,

—ile

action—angle variables such that, to zeroth order in "«

51 = const., @2 = const., This is done using the generating function

~

gV 0 ~
Ie¥g = 7y cos(Z 95)T]

-~ ~

~ ~ - . _ —_ 1
F[1,, 1,, Yy, 5] = Ly + v

Then
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I2 = u12 sllsin 02 s 02 = vﬂz .
(9a)
~ _ ) _ o= & L~
I1 I1 R 01 = ﬁl + q cos 902 ,
and K is transformed into K = Ky + Kl ,
K\O = I]. + 12 ’
~ . X ' ~ . . ~ 'g ~ ~
K, = —a sin [(211)1/231n(ﬂ1 + 0 cosnﬂz) - V@z]
Expansion of the perturbation in a series yields
v o~ v 11/2 £m o~ ~ . Am
K=T1+1« mZ;z 3, [(RT)) ./ ]Jk[?] x sin[md; — (v-20)3, + ?] . (gb)

Hemiltonian K = KO + ﬁl is generally nonperiodic in 52 unless v and Q

are commesurable: v/ p/q, p,q integers. 1If, however, v is close
enough to a resonance we can reduce ﬁ‘to‘an approximate form periodic
in 52 by keeping the dominant terms in the perturbation, i.e., tefms
with 'the phase varying slowly with time. Ogserving that to zeroth

order ¥; = 52 = 1, the closest to resonance terms in the expansion (9b)

involve combinations of (m,%) that satisfy

[A(m,2)] < 0 with A{m,%) = v-m—40
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Given that M = Int(v), L = Int(zgm], all the (m,4%) combinations that

satisfy the above can be expressed as either

(Mfs, L¥sq) or (Mts, (L+1)%Fsq)

with s=0,1,2, ... aﬁd q = Int(%). When o < 1, according to the
standard guidelines of Lee fransforms.(Deprit7_8), an infinitesimal
transformation is possible that kills all other terms in the expanded
Hamiltonian Eq. (9b), exéept the two closest to resonance families of

terms. This is done by introdﬁcing

me(r)J‘Q[%—m)

m—(v—20Q)

Sin[m.&1 - (v—lQ)@z + %?)

—_ >
s

"

—
o

jod
B~1

m#Mts 2£LFsq

(=) ()3, (28 |
: - ! sin(my, - (v-20)8y + %?]

—
D
I
-
sy
+
3

m—(v—-40)

Jm(r)Jl(%n)

an
m—{(v—20) ]

cos[mﬂ1 = (v=20)9, +

The above transformation changes the values of the variables very
slightly; one finds, keeping the most important terms with (m,%) in the

vicinity of (M,L), that
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T,-1
2171 ..%M , T >M>> 1,

and so to avoid further complication in the notation, one may ;ﬁgke

il = Tl’ &1 = 51 etc.  The amplitudes corresponding to the surviving

terms in the perturbation are given by

aJMis(r)JLisq(XMis)

where
1/2 £ (Mts
For 0 small q is large and one can ignore terms :with s#0. The new

transformed K is given by

v o~ | My e ~ . L
R=T1,+1, - aJM(r)JL(%-)mn[Mﬂl - (v-L)3, + ?"]
My o ~ . (L+1)my.
- aJM(r)JLH(%)sm[w1 - (v=(L+1)Q)3, + > s (10)

O(az)‘

+

One can assume that v is much closer to the (M,L) than to'(M,L+1)

resonance, expressed by the condition

1806L) | << |AOLL1) |




Keeping only the (M,L) resonant

transformation

K" =17+ {v-L0)I3

The structure of the

resonant Hamiltonian in

-17—

term in K and performing a final
T, = (v-L0)15 ,
(11)
Iy =17
- o1 V1/25 . , . Lm
— a’dy((21]) / )sin[Ms] - v5 + =] (12)

2

ebove Hamiltonian is identical with that of the

the ﬁniform.g—field case,

K=1, +vlp -« JM[(EII)I/B]sin[Mﬁl—ﬁz} .

with

,

v replaced by v
frequency mismatch

’

« replaced by «

v-L1

v-M replaced by A = v=LO-M ,

(13)

The resonant amplitude o’ is significant as long és JL(%¥) remains -

finite, hence the condition %% > L must hold. Physical interpretation

of the above will be given in the next section.

In the special case
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when %? approaches a zero X, of JL(X), the next closest to resonance
term, namely JL+1(%¥)’ must be kept in (10), and the same procedure as

in Egs. (11), (12) is repeated.

ITI. SURFACES OF SECTION

Hamiltonian Eq. (9b), or the resonant part of it, Eq. (11) are

two—dimensional. Existence of invariant KXaAM surfacess is expected,

bounding the motion in phase space when the perturbation size o is

below some threshold. In case when v is close to a resonance, the

. proper action—aﬁgle_variables can be chosen, as in Sec. II, so that the

coherent periodic structure of the phase space in the nonstechastic

10 are constructedﬁbﬁ."

case is .revealed. . The surfaces .of section
numerically integrating Eq. (Ba) and then recording the values of
either (Qy,qy) or kli,ﬁi) évery'time the particle trajectory crosses
the plane ¥5 = 8m. Figures (1a) ana (1b) show such surfaces for
o = 0.0498, ¢ = 0.0055, v = 20.10023. Figﬁre (1a) clearly shows'the
bounded character of the motion when o is . small, as'bparticles are

confined in a bounded regime in the Qy’qy plane. To see the periodic

structure, we have to switch into the action-angle variables 17,9

obtained from Qy’ 4y through the successive transformations Egs. (3b),
(9a), (11) yielding
1{ =5 (f +af) .
‘= -1 _ EcosOt
3] = tan"'(q,/ay) - 2
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Figure (1b) shows periodic coherent behavior demonstrating that
although Hamiltonian (9b) is not exactly periodic in ¥5, the behavior
of the system is dominated by the resonant part of (9b) Hamiltonian
(1), which is periodic in s Half of the total number of the
stability islandé are actually plotted, due to the initial conditions.
Aithough the néw freqﬁencyﬂﬂ, introduced through the modulation of the
magnetic field strength, is small, it produces large' changes in the
behavior of the system. It adds new resonances and at the same time it
lowers the threshold in the perturbaiion amplitude o for the &ppearance
in phase ‘spgce of the stability islands that correspond tojéach
resonancé. This can be seen by comparing Figs. 2 and 3, the first
representing motion in a rippled and the second in a uniform (&=0)
magneiic field. Every other parameter being the same, islands appgaﬁg
only in (2b) where the modulation has been turned on.

The set of resonant values for v becomes denser‘as nearby frrét
order resonances (M,L) and (M,L+1), occuring whenevér the new frequency

mismatch becomes zero, i.e.,

[AM,L)| = |v — M - L0| =0,

are separated by 6v = (1 << 1, while in the uniform g—fieid case we have -
6v=1 betiween successive resonances. For example, in Figs. 2 and 4 we
have two different chains of islands corresponding to resonant values_
of v ='20;10 and v = 20.09 respectively. Iﬁ addition, when A is not
exactly 0O, the threshold in « fof the emergence of a stability islands

chain is proportional to A, (see Séc, IV) which satisfies
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A~ 0() << 6 ~ 0(1) .

Large scale chaos results through the formation and overlapping of

11,12,13

islands in phase space, so both of the modulation effects tend

to lower the threshold for stochasticity.
IV. NEW STOCHASTICITY THRESHOLD

IVA. First Order Islands

~

~

TQ illustrate how island chains appear for lower values of «a due

to the modulation Q, Hamiltonian K’(Ii,Ié,@{,ﬂé) is' reduced to a

two—dimensional form that describes the motion on a given surface  of

-section. First notice that K’ possesses one more integral of motiom;:..

Letting MI¢ =17, I¢ =1, o= M@i —ﬁé} ¢ = 95 be the new caponical
variables, the trajectories on a given surface of section ¥5 = C are

derived from the Hamiltonian

=K'— —
h | (v LQ)I¢

or

(M+Ln—u)1w - ocJM(r)JL(%M) .sin['g// + M') ' (14)

=
Il

2

The stationary elliptic points at the surface of section are given by
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2k+1 L '
= —nn~-—=—17n , k=0,1,...,2M-1 . 15a
e =75 > (152)
. eM A
Iy root of |ady(r)Jdy, (F)l =y (15b)
- _ 1/2 N . 1 3 ’ i .
with r = (211) , (7) = 3 According to (15b) when A is small,
r dr . :

but not exactly zero, the threshold for the appearance of the chain of

first order islands is given by

K 1 A
o > lJM(rm&x) 5 (EM]

| = o . . .(16)

and r is the value that maximizes.[Jﬂ(r)l. Since A is of order: if

max

oq is lower than the limit for primary island chain appearance in the
uniform-B case by a factor A/J;(eM/Q) which, depending on the
parameters, can be much less thaﬁ 1.

One can now try an evaluation of the new:stochasticity threshold
due to the interaction between the two close to resonance terms (M,L)
andv(M,L+1) in the spirit of the approximation Eq. (10)5 Assuming that

the condition

IAM,L)| < a” < |AM,L+1) ]

holds, only the (M,L) chain of islands appears initially. It is
observed numerically that chaotic behavior sets in as a result of the

bIOW'up of the stochastic layer arouna the primary islands. An

14,15

analytic method developed lately for the evaluatibn of the




stochasticity threshold in systems demonstrating one primary resonance
is used here. The method is described in Appendix B. The result for
the new stochasticity threshold is

’

O(S—

. 0 . (17)
MTL (E5) ] oy () By (ry) 1 1/2

o
18
The accepted wvalue for the stochasticity threshold in the uniform

B-field case A = L can also be written as

~ -

D~ 1 " —1/2
g = ZﬁIJM(rK)JM(rK)I

Consequently the ratio ' of the new threshold to the old one- is

approximately equal to

0 4n
o, E e« — | 18
ag/ o ¥ (EM)| 18 _ | (18)
L 0 '
In case 'thﬁt %% = x, with X, @& zero of »JL(X), JL+1(%¥) must be

substituted in the denominator of Eq. (17), in place of JL(%¥),

according to the paragraph after Eq. (13). The ratio aé/as can be much

less then 1 if the denominator J;(eM/N) is not very smali, i.e.,

L <eM/Q or [u-Ml =z [65] < eM'= ev . (19)

Recalling the notation used in Sec. I, namely
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6j = 60 + ev sin 2mjQ

the condition ey > Idol simply means that 6j, the modulated frequency
mismatch, . can go through Zero. A big reduction in stochasticity
threshold and diffusion _occufs due to -dj =0 resonance, thus
reaffirming one of the conclusions in Ref. 4.

Figures (5a)~(5d) illustrate the transition to chaotic behavior
for v = 26.10, 1 = 0.01 as the wave amplitude is gradually increasiné
from o = 0.0995 to o = 0.199 to o = 0.398 and oo = 1.194 respectively.
\Ten particles have been followed for 1t = 2251 gyroperiods, starting
w1th initial pérpendlcular velocities 45. < r < 55, . Ih Fig. (5d) the
motion is chaotic while.a 1s still less than 1/4 of the uniform field
stochgsticity threshold. |

One should not conclude that iﬁ the limit 0 - 0, og > 0 following

(18). When Q is extremely small, Successive resonant values of vy
become so dense that the resonant Hamiltonian Eq. (10) must include
many more terms,thaﬁ one. Then relation (18) does nmot hold. Now, 0
tends to zero When either PZ > O, or when k ripple » 0 meaning that the
scale length of the magnetic field tends to infinity. In either case,
it will take infinite time for the particle to feel the effect of the
inhomogeneity, and the finite—time behavior will be determined by the
uniform field approximation.

Now, , assuming that the wave amplitude is ‘well —above the
stochasticity threshold, an estimate can be given:for the extent of the
stochastic regime AIS in phase space. When the last KaM sﬁrface is

destroyed, the stochastic layers around each island are interconnected;

thus, the ‘extent of the stochastic regime is roughly equal with the
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distance between the imnermost and outermost islands in phase space.
The centers of these islands are given approximately [from Eq. (15b))
by
eM _
dﬂ|JL((7]| 2/3

r, =y ro & {(— v
1 ) (
Aul/g

where the large argument approximation for the Bessel function is used

for ro >> v.- Consequéntly,

Al = {rg—ri) ~ 0(v2)

[SEES

Thus ‘the modulation has a rather global effect spreading stochasticity: -
over an extended regime. On the other hand, the effect of a slow
modulation acting on a non—degenerate Hamiltonian studied by
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Chirikov (1979) and Tennysonl'7 (1979), 1is 1localized, creating a

rather narrow stochastic band of width GIS = 2e0.

IVB. Second Order Islands

So far the analysis has been based on the effect of first order
resonant terms. They dominate the behavior of the system provided that
théir amplitudes are not negligibly small, guaranteed by the condition
(19).‘ In the opposite case, when L = Int(ziM] > eM/Q, the resonant
term coefficients JQ(SM/Q> with 2's close to L are negligibly small,
and the first order islands do not appear for smail values of o and
AF£Q . (Even for A exactly zero, the contribution of the nonresonant

terms becomes dominant and drives the particle out of the first order




resonance.) Then, resonant terms quadratic in o can become the dominant
driving force in Hamiltonian (9). These terms, which are not
explicitly represented in Eqs. (9a) and (9b), are generated by
nonlinear interaction, (i.e., "beating togéther”) between any two terms
linear in o and emerge from the Hamiltonian through the canonical
transformation (Tl, Tz, 51, 52) -+ (Vl’ Vo, 91, @o) derived from the

generating function

cos[mwl—(u—ﬁﬂ)¢2]

v = _ o~ g . ¥ \1/2 em
F(l,,15,04, = -1 -1 -« J Rl J,[—,
(I3 1p.01.00) 19171202 mgz n( (RIS )\. o (—20)
namely,
An
_ cos[mwl—(u—lﬂ)¢2 + =]
B, = ¢, + « J(T) 3 (EE) < !
1 1 m, mto17 %2 g m—(v—20)
- gm
_ me(Il)Jl(?T) . o
Vi=1, -« Y 51n[m¢1—(u—20)¢2 + =],

m, s m(v-20)

. (v=20) 9 (T1)9,(5F)

V2 = I1 + o

L
i - (v-20 + ==
s o (v—20) 51n[m¢1 (v—122)pg 2]

The sums inveolved in Eq. (R0) converge and the transformation is close

to an identity if

« < |AM,L) |

Then K° »+ A, where




—26—

2 _ (@) VA |
=~ _ & 1/2 £m
N EVi+V, 2 ;k ——— mgz I, ((2vy) )JQ(Q )

n

X {COS[(m+n)¢1_(gy_(1+k)g)go2 + % ﬂ}_+ cos [ (m-n)p+(2-k) 00y + % ]}

The above transformation is equivalent to phase averaging out all terms
linear in «a when first—order resonances do not appear. Instead, 2nd
order resonant terms emerge for all these combinations of the four

independent integer parameters m,n,%,k which safisfy

|(m+n) —- (#+k)0-2v| <

D |+

Let My = Int(Rv), L, =_Int((2v—MO)/Q). Using the same kind of
arguments as in the previous subsection to select the dominant terms in

18

the expansion, the approximation for the resonant Hamiltonian is

M ' (Lg-1)m

. _ 0
¢ , ’ o O . , ,
A E V] O+ (2V-LOQ)V2 - C(r)JLO (—5—] 51n[MO¢1 - @5 + > ] (22)

with

and

. (21)
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By (Fg(r)  3g(r)y (6)

MO—(V—LOQ) Y,

c(r) = { }

Figure 6 is a surface of section for v = 15.575 showing the'presence of
end order islands. Note that the number of stability islands is

MO = 31 = Int(2v) showing that the resonant part of the Hamiltonian,

AR, dominates the evolution of the system. The structure of Ag is the

same as Ké. Then we can éasily eétimate a new stochasticity threshold

due to the blow up of the stochastic regime by repeating the same-

_procedure as for the first order islands. It is found that

. i Ml JM(rl) I 1/2 .20 1/2 (2.3%),&.
VT R
9 R 2 IJLO(T“

23

where r;, ry, respectively satisfy Jy(ry) =0, C'(rg) = 0, and af is
the new stochasticity threshold due to secondary island overlapping.
Observe that og/a is roughly equal to (aé/as)l/z,,with ag given by
Eq. (18). Again ag/a can be much lower than 1 if JLO(EMO/Q) is not
_ eM
too small, i.e., Ly < _69 . Then, Ly0 = IzufMol < &My E Rev, or |v -

My/2| < ev. When My = @M+1, the above means |v-M-1/2| < ev or

169 = 51 < ev . | (24)

Recalling the notation in Sec. 1
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6j = 60 + avsinZWjQ R
condition (24) means that, even if the system does not go through the
dj = 0 resonance, a big reduction in stochasticity threshold and
diffusion occur if it can go through the dj = 1/2‘resonance.

A final word must be said for higher order résonances, O(as).

When o is less than a threshold a5 given by

: . 1/2
o < og = | 24 |
(23) /35, (220
M,J ) J _—
0'M, {271 Lo\ q
with |A°]| = |2u—M0—LOQ|, second order stationary points disappear.

Then one must look for resonances of higher order. Assume that v is™

such that a resonance appears for an integer p satisfying

A" = pyv — (m1+m2£m3) - (£1+12+23)Q =0 .

Following the same line of thought as earlier in this section, one
expects that the island chain corresponding to the above resonance will

dominate the evolution of the system if

L < fﬁﬁ , My = Int(pv), Lp'= Int(Ezzyg) . (25)

p 0 Q

This is equivalent to ldj - ll < ey or 6. going through the 1/p
p

]

resonance of the uniform B-field case. The stochasticity threshold

induced by these higher order islands overlapping 1is expected to be

higher than «g, a”g but it may still be lower than « However, it has

s s’




—R29-
been established4 that the resulting diffusion is much slower and of
no practical importance for LH heating.

The connection between the results obtained here using Hamilton's
equations, and these obtained in Ref. 4 using Eqs. (1) and (2) as a -
simple model should be clear now. The passage of 5j through the 6=0
resonance of the uniform B-field case coincides with the emergence of
finite amplitude first order resonant terms in the new Hamiltonian for
the non—uniform g—fiéld. When dj can not go through O, the parameters
are such 'thgt the amplitudes of the fifst order resonant terms in
Hamiltonian (9b) become negligibly small. However, the second order
resonant terms in Eq. (21) wil} grow to significant amplitudeé if Gj

can go through 1/2. Resonances of even higher order are dominant if’dj
.can go through a q/p resonance, q,p integers. When e¢v ~ 1, all kinds
of resonant terms are important since‘éj sweeps all values between. O

and 1. Then the thresholds aé, ag derived for small ¢ and the omne
resonance approximation can only serve as upper bounds for +the new

threshold.

V. DERIVATION OF THE NONAUTONOMOUS MAP
The mnonautonomous map Egs. (1) and (R) used in earlier work to
modellthe system and study the diffusion induced by the inhomogeneity
of the magnetic field will be derived here from the two—dimensional
autonomous Hemiltonian (7) derived in Section II.
The reader may be alerted at this point by an apparent
contradiction stemming from the fact that a two—dimensional

nonautonomous map is derived from a two—dimensional autonomous
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Hamiltonian system. It will become clear, though, that the explicit
time dependence of +the map 1is not generic but a result of an
approximation. A two—-dimensional autonomous map will be derived
initially, yielding the ponautonomous term by keeping only linear terms
in the small parameters.

The method of the derivation is similar to the one applied for the
derivation of the uniform B-field map.2 The procedure is reviewed in

detail in Appendix C. As a result, the auxiliary variables

u = 9%—p ) v = 9+p

are introduced where

z (211)Y% + (n+1/4)m

o =
(26)
Theée variables obey the following equations of motion
4= 6(t) - ZﬂAcos[v—(ﬂ—f)do] Y &(t—g-2amj) |
j:—-oo
(=7)
¥ = 6(t) + 2nAcos[u+(m—¢)6,] Y 8(t—¢—Rmj) ,

j=—c°

with

I

5(t) = 6y + ensinOt 6y + evsinQt
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Let tj be the time a particle crosses for the jth time the qy = 0 plane
with velocity Qy < 0, i.e., the reduced gyroangle 01 = (2j+1)r plane.

Then from Eqs. (26)

8(j) =nm - m8,(j) + 05(i) = 95(j) — 2m(j+1) ,

thus ¥(j) = ﬁj coincides with the phase %, of the wave at the surface

of section. From Eq. (7), t. = 0j/u = (vj+uj)/2y, i.e., the time tj at

i
the surface of section can be expressed implicitly. Integration of

Eqs. (R7) over the time interval t-+1,— t. yields

i i
titt
B4 — Y = / dt 6(t) — BmAcosv
t '
Ny .

j+1 TV = ft dt 6(t) — BmAcosu;

The integral in the right-hand side of Eqs. (28) can be approximated by

a linear expansion as

t

f.j+1 _
tj dt 6(t) = éo(tj+1—tj) + au51n(Qtj)(tj+1—tj)
+ 2 vcos(nt ) (b, -t )% + ...
2 IR b S
Using
R = B |
j+1 j N

we obtain
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u.+v.

Uiy — 9y = Bﬂ[do — evsin _%ifl 0] - ZﬂAcosvj + 0(2w25uQA) ,
(R9)
Viel ~ Y = Bﬂ[éo — evsin E%g;l 0] + 2mAcosu; g + O(ZWZEVQA) .
The last term on the right is negligible if
onfevd << 1 . . : (30)

This is an extra validity condition for the nonuniform B-field map, in

addition to the validity conditions for the uniform B-field map

r-v > (V/2)1/3 , v >> 1,

and (31)

2)3/2/r2 ,

A << (r2—u
(the last one meaning that the change in A during a cycloperiod,
1/A dA/dp, is  very small). Equation (30) guarantees that the
modulation frequéncy 0 is so slow that 6(t) can be considered qonstant
during one cycloperiod.
Observe that Eq. (29) is a two—dimensional autonomous map which is
naturally expected from a two-dimensional Hamiltonian. A further
approximation

@j = 2nvj + 0(4)




and a linear expansion of the sine term into the brackets in Eq. (29)

leads, after dropping terms of order eQA, to

uj+1—uj = 2ﬂ6j - BﬂAcosvj ,
(32)
Vi1V = 2ﬂ6j + 27vAcosuj+1 )
"where
6j =06y * evsinlmjn

The above  form is identical to the nbnautonomous approximation;. .
Egqs. (1),(2). Compérison between the diffusion coefficients calculated
by numerically iterating (29) and (32) subject to the same initial
conditions showed a good agreement, for values of A above the new

stochasticity threshold

A

1/2 2_ % 1/4 i
s = o (3) / ﬂr—ZL— =a i (M) e (33)
: r

It must not escape our attention though that, for A smaller than Aé,
there is a fundamehtal difference; expression (R9) admits A as a
threshold below which no diffusion Qccurs and the derived diffusion
coefficient is zero, while map (32), due to higher dimensionality
exhibits a very SIOW'diffusive behavior below Ag, similar in spirit to

the so—called Arnold diffusion.5
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VI. MODULATION OF DRIVING FREQUENCY v
The modulation of the frequency mismatch § due to the variation of
the particle gyroperiod was shown to be the main mechanism for low
amplitude, wave induced 'diffusion. It is obvious that 6 can also be
modulated by externally varying the frequency of the driving
electrostatic wave. Here, it will be proven that exactly the same

situation arises in the case of a particle in a uniform magnetic field

under the influence of an externaily imposed wave with modulated

frequency. Consequently, it can be argued that, in a system of two

~

coupled oscillators subject to frequency modulation, it 1is the

variation in the mismafch between the oscillator’s fundamental

frequencies that determines the diffusive behavior of the system.

Consider the Hamiltonian Eq. (7) with ¢=0 (i.e., uniform B-field)..

and introduce a variation in the driving wave frequency,

v > v(t) = v(l-¢’cos QIt) .

The phase of the wave will be given by

p(t) = vt — ¢’v/0Q sin 0t

"and the Hamiltonian K(Il, Y91, Ig, ) by

’
r~

K= Tl + Tg - q sin{(BTl)l/zsinﬁl - V[ﬁz - £

sin0B,]) | (34)

with Tl’ TQ, &1, 52, obtained by setting e=0 in Eqgs. (%9a), Sec. II,

i.e.,

44444 _J
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2=V12, 1}2=V'19‘2,

= (P2+y

®) . ey =8 = e ()

1
1 =1 =3

It is expanded according to

R=T, +T,-a )7 i [(eT)V3] 1, (£} sin[ndy - (v-20)F5] - ’-;-"fg_;_-ss>
m :
Expression (35) 1is the same 4&s expression (9), the only difference
being that m in the argument of the Bessel functions Jk(am/ﬂ) in
Eq. (9) has been replaced by v in Eq. (85); Nevertheless, it was
already explained that the essential contribution for diffusion comés
from the resonant term M=y. Thus, the resonant form of Hamilténian'
(35) is identical to that of Eq. (9) and so the analysis ‘and the
thresholds derived in Sec. IV are still holding. In order to see that

the map (29) is applicable in the case of the wave frequency modulation

one can reintroduce a finite £ by setting
£ 1/2 ¥\ 1/2 _ _
21,(0))"
e’ = ¢ ( (0)) = £ (e)77" -+ O(Az), and treating ¢ as constant:
v 1

over a small range of Tl' Substituting the above in Eq. (34) and then

inverting the transformations Eq. (9a),

A ~

~ . . o~ 1o~
V12 = I2 + 81151n002 , 02 = , 02 ,

~ £ Q ~
ﬂl = 01 - a cos ; ﬂz ,

expression (34) takes the form of Hamiltonian (7) with (fl,fz,&l,&z) in

place of (Il,Iz,ﬂl,ﬂz). Then, according to Sec. V, the same autonomous
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map (29) derived from Hamiltonian (7) can be used to study the
properties of motion irrelevantly to whether the modulation dj comes
from the toroidal ripple or the. external frequency modulation.
However, the physipal meaning of pj,ﬁjvcalculated at the end of the
j—th "reduced” gyroperiod ®,(j) = (2j+1)ﬂ, as weli as the reduced

gyroangle itself, are slightly different in each case, according to the

following
cyclotron frequency modulation . wave frequency modulation
w, = (1-¢ sin0t) ov(t) = v(1-g’' cos0t)

™
™
Il
™

I

- C 1/2
Vij(l £ s1nﬂtj)

©
I
Re)
tase
IR

V.Lj

0] = vtj = phase of the wave ﬂj = vtj = phasé of the wave +

:

ye cos Qt.
N J

reduced gyroangle

9y =‘tan_1[(1—a sinft) ﬁL] ]
y y




To illustrate the potential' benefits of frequency modulation
during heating, the new- stochasticity thresholds are calculated
numerically here, using the map (29) and their values are compared with
the analytic prediction, Eq. (17). To estimate the new thresholds 102
particles are initially distributed inside a regime bounded by adjacent
separatrices (trajectories that connect unstable fixed points). The
particles are followed for about 40,000 cycloperiods. Parameters ¢ and
v are kept constant and Q is changing, allowing a more thorouéh test of
Eq. (17), since not only the argument but also the order L of the
Bessel function iﬁ the denominator'is changing (L = ZgM). It is always
arranged that A = y~M-L0 = 0. In that case the form of separatrices is
simple; they are the curveé connecting the unstable fixed points of
Hemiltonian Eq. (14) and they are given, using the large argument::
approximation of the .Bessel functions, by rectangles with sides
VRI; = J?ET; = (p+1/2)m + f; ¥ = qn. In the variables of the map

(R9) the separatrices are formed by the intersecting set of lines

v—u '
> =P = (p+1/R)m
ng =3 = qm - (Bot+l)w

p.q,n integers. Here, the particles are initially distributed inside

the bénd - g <p < g. For each set of parameters ¢,0 and v the wvalue
Aé is teken as the minimum tested value of A before diffusion of
particles out of the band ceases. The minimum initial distance from

the p-boundaries is such that crossing of the sepafatrices corresponds

to a growth of the stochastic layer around the separatrices to a half




width h = n/20. In Fig. (7) the numerical results AJ/A = o' /o, are
plotted against the theoretical predictions of [Eq. (17). Good
agreement is shown. Lower thresholds occur for small 0, howevgr the

4 is higher with modest 0. In conclusion, externaily

diffusion rate
varying the frequency of thé launched LH waves appears to be a
promising method to lower the wave amplitude threéhold for effective
ion enérgy absorption, with the additional advantége of making it
possiBle to control the modulation parameters ¢ and Q. Sincé typical

values of O and ¢ of order ~'10—2 will be sufficient, the change in the

due to the change of v = W/ @e

position of the resonant layer dRres

according to

ORpes {il —1 sy

will also be small.

VII. LARGE SIZE RIPPLE IN THE MAGNETIC FIELD
Here, the particle motion in an electrostatic wave is examihed in
the case when there is a large size ripple in the externally applied
magnetic field. The above sitﬁation can arise during LH heating in
compact tori, such as spheromaks, or in the new generation of tokamaks

with moderate aspect ratios, such as TFTR, JET or INTOR. When ¢ is a

modest fraction of 1, the small paremeter expansion performed in.

Sec. II that reduced the Hamiltonian in a two—dimensional form, is not




valid. More analytically, the variation in PZ becomes significant and
the modulation frequency 0 = kPZ changes considerably with time. The
full set of the equations of motion in three dimensions must be»
retained. The vector potential A and the Hemiltonian Eq. (3a),
introduced in Sec. II for ¢ small, can still vprovide a reasonable
approximation under the following simplifyihg assumptions:

(i) Toroidal effects, such as the grad-B and the curvature drifts,
are neglected and parficles remain confined on a given fluk surface for
a-long time compared to the time to go.around the torus. B

(ii) The reéonant layer is localized around a flux surface, and
the.wavé amplitude is constant there.

(iii) B is a pefiodic'function of the length =z 'along a magnetic
line on a given flux surface, and has a dominant Fourier component.. ..

The equations of motion, derived from Hamiltonian (8a) are

y =Py

z, =P,

Py = -y(1 - a;sinKz)2 + acos(y—?t) , ' 3 ~(36)
P= axcosxz(l—asinxz)yz

This system of four coupled first order nonautonomous differential
equations is solved numerically. Here I will confine myself +to
reviewing some numerical resﬁlts. " The trajectory of the system is
confined on a 5—dimensional surfece of the six—dimensional phase space
(Il,Iz,PZ,ﬁl,ﬁz,z), obtained from (Px’Py’Pz’X’y’Z) through the
transformations Egs. (3b), (3c). We can consider the 4-dimensional

surface of section of the above surface with the plane 02 = 27 and then
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take the projections of the above surface of section (Il,PZ,ﬁl,z) into
the (Qy’qy)’ (Il,ﬂl) and (P,,z) planes respectively. ((Qy,qy) and
(11,01) are not independent pairs of variables but simply a coordinate
transformation on the same plane.) This is achieved by integrating
Egs. (36) nuﬁerically for ten ions stgrting with initial conditions (in
normelized units) 15 < vl € 30, and vy = 20, the other pérameters being
o = 3.832 v = 30.243. Figures (8&) and (8b) répresent the uniform
field results (z=0) while the non-uniform field results are plotted in
Figs. (9&)4(90) for ¢ = 0.3. The major observed change ‘in behavior due
to. the ripple in the B-field is that heating of ions with initial
perpendicular vélocify vl(O) < Vies =AwLH/kl, (r(0) < v) occurs. In
otger words, the lower limit of the stochastic regime in the vy spaée

resulting in heating: ofr

is pushed below the resonant velocity Vies’

slower ions. For the case under consideration, taking into account the
finite wave amplitude 'correction to ‘include 1ions trapped in the
electrostatic potential, the uniform B-field velocity threshold, is

given by

as seen in Fig. (8b). For the non—uniform field case, we observe from
Fig. (9b) that

’

min = 19 = 2/3 r_,

r min

corresponding to ions with about half the perpendicular thermal energy

of the resonant ions. [Note also that the perpendicular energy of some
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Vi -1/2
ions increases above the point — > ¢ = 2, thus they become trapped
v
It
in the magnetic ripple, Fig. (9¢).]

A rough explanation for the new lower threshold can be attempted
as follows. Assume an ion that has an inifial speed vl(O) at the
bottom of the magnetic ripple «kz = n/2. For short time periods, the
zeroth order trajectory conserves.the adiabatic invariant u (expressed

in normalized units as Il), and the total energy is also approximately

conserved. Then v, varies roughly as

1l — esinkz 1/2 »
T ) (37)

’VL(Z) = v, (0) (
Energy absorption from the wave occurs at these points of fhe cyclotron‘
orbit where the ion resonates with the wave.1 If the wave amplitude'is
above the stochasticity threshold then the kicks in v, become
uncorrelated and energy diffusion occurs. The. resonant icondition in
the non-uniform B-field case involves both the gyroangle ﬁl and thg

z—position,

. lelEy 1/2
v (z)simSl1 = -4 2 9
1 k, k m

and is written in normalized units as

r(z)sind; = v - 2 ol/2 (38)

It is easily seen that the minimum value Tmin = r(0) the ion must have,
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so that r(z) resonates with the wave at some z, is given combining (37)

and (38) by
. 1/2, (1=g,1/2
rmin = (V=R &%) (1) s (1-e)r o (39)
If Em = % mvﬁin is the energy of the slowest ion accelerated in the

uniform field situation, the corresponding lowest energy due to the

effect of the ripple is

Assuming a maxwellian distribution, the number of heated particles

increases by a factor of

q = 1(E])/1(E) = PeEn/KT | (40)
v 2

Vres :
Typically the ratio Em/kT = —2— >> 1, thus the resulting increase is

V .

th

quite significant. For example, in the Alcator A heating
experiment,19 Vres/vth = 5.2, e = .06 vielding q = 2.5x101. In

Fig. 10 numerical results for rp;, = v, as a function of the ripple
size & are plotted against the theoretical prediction of Eq. (39)
(Solid line) for a fixed wave amplitude well above the stochasticity

threshold. Good agreement is observed.




VIII. CONCLUSION

The presence of a ripple in the magnetic field due to toroidal
effects was found to enhance RF power absorption by lowering the wave
amplitude thresholds and enlarging the stochastic regime in the
velocity space. Results obtained during a series of Alcator A lower
hybrid heating experiments have been eanalyzed in Ref.»lQ. It was
pointed out there that fhe launched wave amplitude remained well below
the_upiform.B—field stochasticity threshold, due to the distribution of
the wave energy over a wide regime in the torus. However, the observed
heating can be accounted for if the reduction in thé threshold due to
fheA magnetic field ripple is taken into account.4 A frequency

modulation of the launched waves will have equivalent effects and is

proposed as a method of improving energy absorption. Some other‘.

effects such as non-monochromatic wave spectra, incoherency,

20,21 22,23

propagation effects and scattering need to be comnsidered
for a full ficture of the Iower hybrid heating situation. From the
theoretical standpoint the effect of a slow modulation on an
intrinsically degenerate Hamiltonian was considered and found to have

more pronounced effects than in the case of the "modulational

instability” in non—degenerate Hamiltonians.
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Appendix A

(a) Derivation of Hemiltonian Eq. (4) from Eq. (3a)

Let

- o 1/2 — P -1/2
a4y (1-esinkz)*/®y | Qy (1—esinkz) Py ,
(A1)
. L EKCOSKZ
=z, R =P, - —=28KZ p
9z 9 z l-esinkz Y0
& canonical transformation introduced by the generating function
$(Q,.9. .v,2z) = (l—esinxé)l/zQ'y + Q. z
y! Z) H - y Z
The transformed Hamiltonian becomes
1 - 5 o 1 , gkcoskq, 5
H== (1-esink -+ + = +
5 1) (9%Q7) + = (q, Iesineq, ay)
(aR)

_ ; S mes 1/2 _
o 51n[qy/(1 esinkq, ) vt]
Under a new canonical transformation given by thévgenerating function

1
S1 = 5 y cot'&1 ,

so that
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= (211)1/2 simdy

qy =
(A3)

Q = (21,)1/3 cos®; |

the new Hemiltonian is
1 EKcoskq 5
H, = (1-esi I, += + —— l.sin2¢
1 = (1-es DKy ) 172 (QZ l-esinkg, 1% 1)

(A4)

- asin{[211/(1—asinxqz)]l/zsinﬂi—ut}

I}

An approximate Hamiltonian K Hl’ linear in the small parameters will

be introduced. Letting

a, €, k£ ~0(A) , A<< 1

and noticing from Eq. (3b) that

Q =P, +0(3*) =P, , z=gq_,
we obtain Eq. (4)
o 1 . .
K(;.2.1;,P,3t) = (l-esincz)1, + > PY — asin[(21,) Y Bsins,—vt] . (a5)
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(b) Derivation of Hamiltonian Eq. (6)

By inspection of Egs. (5a) and (5b) one sees that resonant terms in the
(Il,ﬂl) plane motion come through the term « 9K, /39, ~ 0(7), while
resonant behavior in (Pz,z) plane comes through terms of order
EK ~ 0(%2), or higher  Consequently ‘a perturbative solution  of
Eq. (5b) for Pé(t) and z(t) is satisfactory to order A. One then
substitutes into Egq. (5b) to obtain a pair of nonautonomous

differential equations for I;, ¢;. From (5b),

~

1,(0)
P_(t) = P.(0) — i ,
z( ) z( ) & PZ(O) sint
I,(0) ‘ )
z(t) = P, (0)t + e[cosnt-1] — + z(0) , (46)
aPZ(0)

Q = «P,(0) .

Having expressed gz, PZ as explicit functions of time and initial

conditions only, Eq. (5a) describing the motion in ‘the- (Ilgﬂl) plane

can be derived from the one—-dimensional, nonautonomous Hamiltonian

K(I;,85t) = (1 — ¢ sin[0t + ¢ L0) (cosat-1)]}1,
2
P2 (0)

-« sin{(ZIl/(l—a sith))l/zsinﬂl—vt} ,

Dropping the terms of order Az, we obtain Eq. (6)

K = (l-esinft)I; - « sin[(ZIl)l/gsinﬁl—Vt] . (A7)




Appendix B

The stochasticity threshold, Eq. (17), is evaluated foliowing
Ref. 15. Hamiltonian Eq. (10) is expressed in the (Iw,1¢,w,¢)

variables as

—aJM(r)JL(%¥]sin(w + %g) . (B1)

~

%? o + !L+1}ﬂ)

eMy .
—aJM(r)JL+1(?;)81n(w - 2
Expanding around the fixed points of Kg. Egs. (15a,b) in the new
t one

canonical variables ¢ = w—wK, lw = Iw_IK and solving for ¢ =

obtains

1 " ‘ i
h = 5 aLMgJM(rK)Lg - aLJM(rK)cosy - aLHJM(rK)cos(y -0t + E)
renormalized to
f=1 1% - Qcosy — Pcos|[g(y—0t) + E] (B2)
2~—.’]// & k4 2

with
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) eM
_ 2R "
Q = aLM~JM(rK)JM(rK) , (B3)
P = ooy, MJ (ry)d(ry)
L¥L+1 MY KMV K/ -

This 1is the standard form used in Ref. 15 to obtain the following

criterion:

pe > [M2 — 2(ax1) /R3] AR : C (B4)

with

p = /1Q[/mg ,
s defined by P/Q ~ 0(p°)

A = 2g+l-s

Here g=1, s=0 yielding A=3 and by combining (B3) and (B4)

B ' 0
o = . (B5)
® MIJL(%M]I |3y () Ky (rge) 11/7




_49_..
Appendix C

Hemiltonian (7) can be transformed into

. . Q oN1/27 k.., k
M = -[6,+ensin . X5 hy+vho—a E I [ (nhy) /lsin[(1 + D)Xy X,]  (c1)

» through

Xy = no b, |, I, =nhy ,
~(c2)

derived from the generating function

S(hy.hy,8;,95) = (m0;—85)h; + Ogh,

Here 6g = v—n, n being the closest integer to v =.w/wco. The essential
contribution comes from k << n. Performing a large argument expansion
of Jm(r), valid if r >m + (m./2)1/8 =z (n+k) + (n/2)1/3, approximating
(rz—mg)_1/4 as (rz—vz)_1/4, valid if r°n® >> kn, and Tgylor expanding

the cosine term, derived from the Bessel function expansion, we may set
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5 1/2(r2_v2J—1/4

Inax(r) = () cos [g(r)-(k-6)¢] ,

where

r = (Bnhl)l/z , &= cos—;(u/r) ,

(€3)

) (LR f'ﬁ/44;5,;f

~

and all the validity conditions are built into

v>>1 , r-v> (u/2)1/3 .

A new series of transformations, analogous to the ones performed during

the derivation of the map (1) for the uniform B-field case2 leads to
the following Hamiltonian
M= - [60+ansinQX2]ﬁ2—ﬁ2—A Y cos[ﬁl + (6-k)g]sin[%y + kﬁg] . (c4)
k , :
Here -
6g .= v-n , : (C5)
. 1/2 '
By = (r®®) 77 - ve - w4 = g[(20n)) V7] (c8)

?

» 2 frz—ugfl/z
AhZV 2

r

Xy = my;—9, =X, (c7)




X = ﬂz/u = Xz/v . (c8)

The equation of motion for X, reads X, = 1, or equivalently,
2 2

By = vt . - (c9)

The motion in ﬁl, %4 plane is given by

'fi[do + ensinﬂt] — A 2 sin[ﬁl + (so—k)¢]51n(i1 + kt)

s (c10)
1 =AY cos[ﬁ1 + (6-k)plcos[x; + kt] ,

k

h

| 1/4 _ :
where A ,(Z/ﬂ)l/zau(re—uz) '/rz is treated as constant over a finite

time period. Now the variables p and ¥ are defined through

p="h +vm, ¢ =am - X, | : (c11)

while u and v are introduced as linear combinations of p and ¢

according to

(c12)

e
I
e

|

Be
<o
I
e
+

e

Combining Eqs. (C11) and (C12) and using the identity
(o] 0

Y sin(kt) =2rn ¥ 8(t-2mj) ,

k=—ox . j=—0

where 6 is the Dirac 6—function, we obtain
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Ce
Il

6(t) - ZnAcos[v—(ﬂ—é)do] Y 8(t-¢-2mj)

j =00

(€c13)

<o
I

6(t) + BﬂAcos[u+(ﬂ—é)60] Y 6(t—¢-2mj)

j=—o

-with

6(t) = 6y + ensindt = 6, + evsindt . ' (C14)
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FIGURE CAPTIONS

Surface of section with the ¥, = 2n plane expressed through
(a) velocity-like variables Q_, gq. and (b) action—angle

-variables I{, #{. (c) is a blowzup of the framed area in (b).

Here o = 0.0498, v = 20.10023, ? = 0.01 and ¢ = 0.055 implying
M=10, L = 10, and A = 0.00023.

Surface of section (I, ﬁi).with o = 0.0498, v = 20.10, 0 =
0.01 and ¢ = 0.0055. Here A = 0. Fig. 2(b) is a blow—up of
the framed region in 2(a).

Same as in 1(a), 1(b) but for a uniform magnetic field (e=0).
Note the absence of islands in phase space.

Surface of section with the same parameters as in 2(a)-2(b),
except here v.= 20.09.

Transition to’ chéotic ' behavior.v' v =20.10, Q = 0.01,
€ = 0.0055 and (a) « = 0.0995 (b) o = 0.199, (c) a = 0.398,
(d) aa = 1.194.

Surface of section showing emergence of second order islands.
Here o = 0.1998, v = 15.575, 0 = 0.01, & = 0.0055 implying
MO = 31, LO = 15. :

Ratio of the stochasticity threshold with frequency modulation
Aé to the constant frequency threshold AS. Q is the
modulation frequency, v =21.1, ¢ = .01. Bars represent
numerical and squares theoretical results respectively.

Limits of the stochastic regime in the perpendicular velocity
space in a uniform magnetic field with o = 3.382, v = 30.243.

Stochastic regime in the perpendicular velocity space for a

large size ripple in the magnetic field. The wave amplitude
is the same as in- Fig. 8; v = 30.243, ¢ = 0.3, 0@ = 0.01.

Initially, ions start with v, 2V, It is evident from
Figs. 9(a), 9(b), that the stochas{ic limits in the velocity
space are extended much lower than in Figs. (8a),(8b). Note

also from Fig. 9(c), the projection of the surface of section
into the Pz’ Z plane, that some ions gain enough perpendicular
velocity to become trapped in the ripple.

Stochasticity threshold in velocity as a function of ripple
size ¢. Wave amplitude o = 3.382 is well above o - Solid
line is the theoretical prediction. Velocity v in the
perpendicular axis is normalized according to v = Vlkl/wc‘
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