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Abstract

Curvature and finite pressure are known to have a dramatic
influence on linear magnetic tearing stability. An analytic theory of
the nonlinear resistive growth of magnetic islands in tokamaks that
includes the interchange driving term 1is presented here. A

Grad-Shafranov equation to describe the MHD equilibrium of thin islands

.is derived. The resistive evolution of these islands is then obtained.

Interchange effects are found to becomé progressively less important

. with increasing island width.




I. INTRODUCTION

Magnetic islands éaused by resistive instabilities are important in
many areas of plasma physics. .For example, tearing modes in tokamaks
are implicated in major disruptions, and are otherwise detrimental to
confinement. The analytic theory of the resistive, nonlinear growth of
these islands was first given by Rutherford,(l) He considered modes
driven by the magnetic—free energy, measured by A'; plasma pressure and
expansion—free eneréy due to curvature were neglected. However, in the
linear theory of these modes, magnetic curvature and pressure have been
found to be important.(z) Specifically it is known that A’ must exceed
a critical wvalue, Ac, for linear instability. Here, we give -an

analytic theory of the nonlinear dynamics of magnetic islands including

curvature and pressure. "~ This is a nonlinear generalization of thex

linear theory results of Glasser, Greene and Johnson(g) (henceforth
referred to as GGJ). We use an aspect ratio expansion for simplicity,
but believe  that the essential physics for more general geometries is

quite similar.

A principal result of this calculation is that there is a critical.

island width, Ax_ . Islands wider than Ax, are dominated by A’, while
those narrower than AXC are dominated by pressure and curvature in the

island vicinity. The critical width is given by

8xBAL ~ kg (E+F) (1)

where the quantities E,F,H and DI = E+F+H are standard measures of
magnetic curvature (obtained here to relevant order in &, the inverse

aspect ratio) obtained by GGJ for linear interchange stability,
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’

p = V1-4Dy and A4 is the finite pressure generalization(z) of A For
low g (i.e. DI+0), A=A The quantity k2 is a numerical constant
roughly equal to 6. For low £, e.g. ﬁ~52, this width is small. Hence
in low—f tokamaks, favorable curvature would have little stabilizing
influence on robust islands. But for high g, g~&¢, the island. width
above can be a substantial fraction of the minor radius. Thus,
curvature stabilization of nonlinear magnetic islands is of potentially
major importance.

In order to obtain this result, &a nonlinear Grad-Shafranov
equation is derived that is valid for thin islands, and that describes
the resonant magnetic field in the vicinity of the resonant surface.
The pressure is constant along flux surfaces of the magnetic field
distorted by the island structuré; it appears in the Grad—-Shafranoewv:
equation along with an expression for the average effects of curvature.
This expression for the average curvature is proportional to that in
the Mercier linear interchange stability criterion. It contains the
effects of the average magnetic well, the diamagnetic corrections to
the well, and the geodesic curvature (all of which  are typically
comparable for tokamaks with moderate t§ high 6)-.

The criterion derived here, Eq. (1), agrees with linear theory in
the following sense. Consider islands that are just barely into the
Rutherford regime, that is, whose width just exceeds the linear tearing
layer width. Then the A’ needed to overcome the stabilizing effect of
curvature and pressure, according to Eq. (1), essentially agrees with
A derived by GGJ. (The slight differences are explained in Section

IT.) Since the stabilizing influence of curvature decreases as the
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islend grows, linear theory estimates of stability are overly
optimistic for nonlinear instabilities. |

Finally, we note that the aspect ratio expansion used here is more
accurate than standard high f reduced MHD. Thus, the average curvature
expression is accurate enough to obtain the low § Mercier interchange
criterion for ﬁ~52.

The remainder of this paper is organized as follows. In Sec. II a
qualitative, physical explanation of the results of the calculation are
given. The detailed derivation of the Grad-Shafranov equation for thin
islands is presented in Sec. III. The resistive evolution of these
islands is described in Sec. IV. We summarize our results in Sec. V,

and indicate their application to related problems.
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I1. HUERISTIC INTERPRETATION OF RESULTS

We examine here a simple slab model with gravity. Gravity
simulates the role of the proper average of the curvature, which
suffices to demonstrate the qualitative features of the case with
curvature. We also indicate the physical content of the various terms
in the average of the curvature, which is computed in the next section.

A slab geometry with constant gravity and islands of one helicity
still has one symmetry direction. Moreover, MHD equilibrium are
described by a Grad-Shafranov equation, which is particularly simple
for thin islands and f << 1. In the vicihity of the island, the

magnetic field can be written
B = Bj z + ﬁxzw .

and BO can be taken as constant for § << 1. Gravity g is in the b's
direction and z is the symmetry direction. In the absence of islands
this 1is a sheared slab geometry, with ¢ = BOX2/2LS, LS being the shear

length. More generally, Y - is determined by Ampere’s law,

2 2
(ii— ji—]w =j., where ] is the current in the z’direction. For
2 ) z VA
ax dy
thin islands, az/ax2 >> az/ayg in the island region.
The equilibrium satisfies ixB = pg, and 0 is a flux
function: p(x) = p(v). The Grad—Shafranov eéquation imn the island

vicinity for this case can be written

& v = F) +x p : (2)
8X2 ) : 2

where &Z(w) is an arbitrary function needed to specify the current omn
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a8 flux surface. The second term describes parallel currents caused by
Pg as follows.  Because of quasineutrality, Y,¢j, = -V,¢i,- The
equilibrium condition gives i = péxi/BO. Then,
Y.ll = Vo o gx%/BO = 3p/3y VW'gxﬁ/B.. Solving for iy =i, eives the
second term above.

The detailed analysis with curvature produces a Grad—-Shafranov
equation (Eq. (57)) that is similar to Eq. (2), but g is replaced by an
expression proportional to the pressure—driving terms in the Mercier
criterion.

If the plasma has small but finite resistivity, these‘ equilibria
can evolve in time, but slowly enough so that MHD equilibrium is
maintained. This evolution comes about because an induction electric
field dy/9dt drives a current. The appropriate average [defined bvaqﬁ*

(62)) of the current om a flux surface is given by

n<j,> = <dyY/at> (3)

where 7 is the resistivity. The basic féatures of the dynamics can be
obtained from a qualitative analysis of Egs. () and (3)-

With the island, % is modified from the equilibrium value to
Y = BOXB/ZLS + A cos(kyy).‘ To obtain the evolution of A, the parameter
A’ must be introduced. For simplicity A is assumed to be neérly

- (aa/ax); )/a(0).

—00

constant in the island region, so A’ = ((dA/dx)l

+o0

After integrating Ampere’'s law, we have

00
A(0)a" = [ jp dx




-7

where jA denotes the difference between jZ and the equilibrium current.

Since the relevant currents are localized to the island region,

A(O)A" ~ j, Ax ,

A

where Ax ~ JLSA7BO is the island width.

Also, <j>= HJW) + <x> go (¥); so

function (%) can be eliminated from the j, to obtain

1

ipn = L4 cos(k,y)> + (x—<x>) g o (%)
A n y

Jt

with Eq.

(4)

the unknown

(5)

In the island region <8Acos(kyy)/8t> ~ 3A/3t and =x—<x> ~ Ax. Now

assume that dp/9x ~ p/Ln,

80/3% = (30/3%)/(39/9x) ~ (p/L)/(rxBy/Ly)

so that
(x—<x>) gp'(¥) ~ gp Ly/(L, By) .
With Eq. (4),

AN’ 1 JA S
Se— —= + pg :
Ax n dt L.Bg

el

where Ln is the density scale length. Thens "

(6)

This can be written more transparently by eliminating A in terms of the

island width, A ~ BOAXB/LS. Also, pg plays the role of pressure times
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curvature, pk (and has the same dimensions). Making this replacement,

the evolution equation is finally obtained,

2
kL
1 dAx AT 4 #L'ﬁ s (7)
n at ax Ly

The detailed mathematical eanalysis gives an essentially equivalent
expression. That analysis shows that the pressure—driving term has
contributions only from outside the separatrix, but still from the
region near the island.

With only the first term on the right, the island width grows
linearly in time, which is Rutherford’'s resulti The sign of the
curvature term is such that for favorable (stabilizing) curvature- it
tends to make the island shrink, while for unfavorable curvature it
contributes to growth. A crucial feature is that it has a 1/Ax
dependence relative to the A’ term. Thus, for large Ax, the island
growth is determined only by A’, whereas for small Ai its growth is
dominated by curvature and pressure. AXC in Eq. (1) givbs the boundary
between these two regimes for the finite f generalization of A’.

The actual expression fér growth has ﬁKLE replaced by E+F, whiéh
is made up of two different types of terms. The first +type 1is an
average, over the equilibrium field lines, of the curvature normal to a
flux surface, Ky This is also proportional to the derivative with
respect to the poloidal flux of the equilibrium value of f d2/B, along
with corrections from equilibrium currents and diemagnetic corrections.
These terms account for all of E, but the diamagnetic correctiéns'are

part of F.
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The second type of term, arising from the geodesic curvature,
constitutes the remainder of F. This term has a simple interpretation,
if the corrections to [ d&/B in the first term are ignored. Then, the
sum of this term plus the first terms give the normal gradient of
f d2/B taken along the field lines perturbed by the local disturbance.
In the thin island ordering used here, the relevant field perturbations
turn out to be those which are nonresonant. These field perturbations
are produced by changes in the local Pfirsh—Schluter currents, because
the pressure is altered from its equilibrium value (i.e. the pressure
is constant on flux surfaces associated with the island.) The terms
due to the effect above depend on geodesic curvature because the

Pfirsh-Schluter currents are produced by °‘geodesic curvature. We

therefore refer to these second types of terms as geodesic terms. THey"

are also proportional to one higher power of f relative to the normal
curvature terms. They are generally comparable to the first type of
terms except at very low §.

There is a third type of term, H; different than those above,
which appears in the Grad—Shaﬁranov equation but not in.the expression
for the resistive 1island growth. This type arise.from the local
toroidal coupling, via Ampere’'s law, of non-resonant Pfirsh-Schluter
currents to produce a resonant ¥. GGJ also found that the H is rarely
significant for resistive instabilities in tokamaks, though they make a
significant contribution to the pressure—drivﬁng terms for ideal modes
(corresponding to our Grad—Shafranov equation for ideal equilibria).
GGJ evaluate E,E and H for shifted circle Shrafranov equilibrium with
B~52, and find that they are all of order 52.‘ For high g equilibria,

f~¢, those terms are all ~ 1.




_10_

Note that to solve the Grad-Shafranov equation analytically and
obtain the evolution equation, we must use a subsidiary expansion in
which E~F~H are assumed small. The resistive criterion of GGJ contains
E+F+H2. In the subsidiary expansion this is indistinguishable from
E+F, and fhe main point is that H does not affect resistive growth as
much as E+F. However, note that H2 arises in the GGJ calculation
because in the thin linear tearing layer,.resistive diffusion is as
important in the pressure response as the terms tending to make the
pressure respond adiabatically. For nonlinear islands whose width
exceeds the linear theory layer, the adiabatic terms dominate and the
pressure becomes a function of the perturbed flux. We would therefore

expect that the H2 term would be absent in the nonlinear case.




III. THE GRAD-SHAFRANOV EQUATION FOR THIN ISLANDS

The fundamental equations needed to describe the islands are the
vorticity equation‘(or equivalently quasineutrality), Ohm's law, and a
relation to determine the pressure. Nonlinear islands grow relatively
slowly, so foilowing Rutherford we neglect inertia in the vorticity
equation. Also, we assume that the island growth rate is slow compared
to the parallel propagation time for sound waves, so that there are no
parallel pressure gradients. Therefore, our starting equations are

quasineutrality

Lyedy =20y (8)
and, due to the neglect of inertia, pressure balance

B =7Tp . ' (9)
Inserting j, from Eq. (9) into Eq. (8) gives

Vyedy = Be¥p x V(- ¥L) : (10)

B2

and B « Eq. (9) gives

B.Vp = 0 . | (11)

In this section the consequences of Eq. (10) and (11) are
considered. These results are combined with Ohm's 1law in the next

section to obtain the dynamics.




A. Mathematical Preliminaries
First, coordinates are chosen. Consider the flux coordinates of the

equilibrium magnetic field BO,
By = Vx x Yla(x)v—¢] | (12)

where ¢ is the toroidal symmetry angle, x and are the poloidal flux
and angle, and gq(x) is the safety factor. We suppose the islands under
consideration are centered on some surface Xo with a particular
rational value of q, say qg- These islands are caused by magnetic
perturbations that are harmonics of the helicity angle a = ﬁ—(/qo.' Our

coordinates will be «o,y,¢{. For any quantity, f,

-~ Jaf af ‘
By Vi (¢.anx) = 37 alT) + (1-9/qq) ) . (13)
¢ dot :
where
7= [T¢ « (Ixx¥0)] = a/Bye¥¢
is the Jacobian.
Also, an averaging procedure must be defined. Rutherford’s

analysis was essentially two dimensional because of symmetry 1in the
third dimension. That third dimension corresponds here to ¢ at
constant «. If ¢ varies at fixed «, ¥ varies as well, so ¢ at constant
o 1is mnot a symmetry coordinate, and (8/8{)& does not vanish even for
equilibrium quantities. We therefore define the ¢ average of a

quantity f by
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fz§de f(¢,0x)/$ d¢ (14)

and the ¢ varying part of f by

f=1-1. (14a)

Average quantities f are functions of « and X alone, and are resonant
at qq- Quantities T are nonresonant. O0f course two mnonresonant
quantities can beat together to yield a resonant quantity.

Finally, it will be convenient to introduce the following

notation,

[A,B] = J V¢ « (VAxYB) . | (15)

We also define the helical flux, Yho > through a ribbon of constant «,

by

awho/aX =1 - Q/qO . (18)

In terms of this bracket,
=)+ [t} - (17)
o .

Note that [who,f] vanishes at the rational surface, q(x) = qy. and in
linear theory, Jhl[who,f] = ik”f, where k“ is the parallel wave number.

Also, note that




[A,B] = g—i (z—z)< _ (Z_i]g -gg (18a)
and that [A,B] behaves like a Poisson bracket, i.e.,

[A,B] = -[B,A] , ' (18b)

[A,[B,c]] + [B.[C.A]] + [c,[4,B]] =0 . (18c)
and

[AB.C] = A[B.C] + B[A,C] . (184)

Equation (18c) 1is known as the Jacobi Identity, while (18d) implies
that [A,B] is a derivation.
Also, note that [A,B] acts like a typical quadratic form under the

average Eq. (14).

[A.B] = [4,B] + [Z,B] . . (19)

Of course, the equilibrium magnetic field is perturbed by the

instability. This perturbation can be written as
= V¢xTy; + By o (20)
where wl = —Rgoé, with R the radius from the symmetry axis, and

Bry = V o x (A - ig-é). The total poloidal magnetic flux, Yitx, is

related to the total toroidal current E°jTOT by Ampere’s law(S),
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2 2
RY°1/R Y\('Wl"'X) = (’JTOT , (”1)
and the perturbed flux satisfies

RUCV/BPTY = ¢+ (frorieq) = $*41 - (21a)

N

B. Ordering Procedure for Thin Islands and Large Aspect Ratio

After the above expressions for EO and gl are substituted into
Eqs. (10) and (11), the result is split into average parts and parts
which vary in ¢. It is simplified by keeping only terms relevant for
thin islands, and for small inverse aspect ratio ¢.

The island results from the part of (21 with the resonant helicity,
namely @1. In order for the calculation to be tractable, we must
consider islands ﬁhat are thin compared to the minor radius. Thus, wl
is taken to be small wl ~ 6 << 1. The width of the island is measured
by w%/g ~ 61/2. This 61/2 serves as a localization parameter,
analogous to the thin layer parameter of linear theory.(g)

The pressure p is perturbed away frbm the equilibrium pressure Pg
by the presence of the island. Because of the topology change and
distortion of the local flux surfaces, the local pressure profile is
substantially altered. . The magnitude of the pressure perturbation
Py = PPy is ordered so that Ypl ~ YPO' However, since the flux
surface modification progressively diminishes away from the island, P
is localized to the island region. Thus, Yp; * O for distences from

the rational surface which greatly exceed the island width:




Py ~ 61/% ¥py ~ 61/% Ypg

A

For the aspect ratio expansion, we take 2‘50 ~ 1, ﬂogo ~ ¢, the
minor radius scale ~ 1, R~1/¢, and x~1. In the £ expansion, we will
keep terms to lowest nontrivial order in ¢, and additionally those of
on;\higher order in ¢. This 1is done to treat the curvature more
accurately than in high f reduced MHD. For example, the present
calculation includes sufficient terms in ¢ to obtain the low g (ﬁ~52)
Mercier interchange criterion.

Vhile correctiong of order ¢ are kept, for simplicity, additional
corrections of order ﬁ are not. This is quite consistent for the case
where, say, ﬁ~52 or ﬁ~53/2, and for this case it is also necessary to
compute the curvature quite accufately. For f~¢ the next order
corrections in ¢ are mnot strictly needed to correctly obtain the
average curvature to lowest order, and they can be dispensed with for
this case. \

We now examine the relations between the small parameters &,e¢ and
g for the'problem at hand. |

We wish to have an expression for the island evolution which
includes both the interchange driving term (due to pressure and
curvature), énd the A’ driving term. Therefore, an ordering should be
chosen in which these are comparabie. The discussion in Sec. II shows
that this implies 51/2 ~ 6L§E/A’, where ¥ is the proper average of the
curvature, L_ ~ R~1/¢e, k~e, and L, ~ 1. Thus, we take 61/2 ~ B/eA” to

be small.
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The parameter A’ is often numerically rather large for current
profiles of interest (sometimes 20-30 times an inverse equilibrium
scale length). We therefore take A" >> 1. This is evidently
consistent with small island width, and equivalent to conventional
orderings in linear theory.(g)

Because finite islands are being considered, the part of §1~Vf due

to Y, 1is comparable to goov? for resonant quantities, f, associated

with the island. To see this, recall Eq. (13),
Bo* 7 = 171 (1-a/q5) (3%/da) .

We take q ~ d9q/dxy ~ 1, and also 3/8a ~ 1. Therefore, in the island

vicinity,
(1-a/qy) (31/9a) ~ 17 161/34

Also

B,-VT = J_l[wl,?] = J—l((awl/ax)(a¥/aa) ~ (3y/3a) (81/3x) )

For quantities associated with the island, df/dy ~ ?6_1/2, so

B, VT ~ J1s1/3F,

Finally, we estimate the size of the avérage current E°T1’ from
Ampere’s law, Eq. (21a). A’ is defined so that
d@l/dx ~ A'@l ~ A’61/2 . d@l/dx changes - on the island scale, so

R 1afy, /dax® ~ aa*l/ZA’@l. Thus 8.7, ~ es*/a".




Collecting all the fundamental island orderings, we have

s1/2 = g/en” (22)

These orderings are now applied to Eq. (10) and (11).

C. Simplification of the Curvature Term

The curvature term in Eq. (10),

B-¥p x V(-1/8°) |

is simplified in several ways.

1) B is replaced by the equil%brium toroidal field. This is
appropriate since the {¢—component of B dominates by 0(1/¢), and because
the perpendicular components of Vp and V(—l/BZ) dominate the toroidal
components by 0(1/¢). Thus (@o&)&.prY(—l/Bg) is relétively small by
0(52). Furthermore, E~§ can be replaced by its equilibrium value. The
change in B due to p can be found from the well-known fact(3) that the
two remain in approximate pressure equilibrium, (B2/2)+p = constant.
Therefore, B1 = pl/B ~ ﬁ61/2 is small. Finally, for axisymmetric
equilibria Eo@ = f(x)/R, where f is a particular function of y alone.
For /¢ ~ 1, the relative variation in f over the minor radius is ~ ¢,

and thus its variation in the island is ~ 61/2, so f(x) may be taken-as




a constant f; = f(xo). Thus, the right-hand side of Eq. (10) 1is

consistently approximated by

to V¢ o VpxV(-1/B%) = i p, -1,/B°] . (23)

2) The 1/B2 term on the right in Eq. (23) is the total magnetic
field. The important change in the equilibrium magnetic field
‘magnitude due to the perturbations is due to Py giving the diamagnetic
correction to the equilibrium field Beq: BlBeq € -p;. Hence 1/B2 =
1/B° + 2p./B* | and, the bracket in Eq. (23) is [p, 1/B° + 2p,/BY ]

eq 17 "eq’ ' ’ ! eq Py eq-’
To requisite order the B:q can be taken to be & constant. Since

[p.p] =0, we can subtract [p,Bp/ng] from the above. The curvature

term can thus be written

I7p.n] (23a)

where h = fo(—l/BEq + 2pO/B:q]. The second term in h subtracts off the

part of the magnetic well from diamagnetic currents.

D. Simplification of MHD Equations

It is convenient to define

\ I=j,/B, (24)

§

so that j, =BI, and ¥V, « j, = B.VI. With the total magnetic field,
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J {q(g—f—)a + ["ﬂho + Yy I:l} + ETI'YI . (25)
The terms from BTl can be shown to be higher order. Thus, from

Eq. (R3a) and (25) it is clear that

q(;j’;)al + [y, 1] = [p.h] (26)
q(;—{)ap + [wpot¥y.p] = 0 . (27)

All quantities, e.g. I, are now split into 6 averaged parts, I,
and ¢ varying parts, T = I-I. These quantities are then determined
from the average and ¢ varying parts of Egs. (26-27). The total

helical flux, Yho + @1, acts like a flux function for the island. We

denote this important quantity by
Yh = VYpo t 'El . (=8)

Then the averages of Egqs. (R6) and (27) are

~

[vy 1] = [p.h] + [5.8] - [9;.T] (29)

[WhrI_D] = _[@1:5] ) (30)

upon making use of Eq. (19).

Equation (29) 1is of‘ central importance. In the absence of
pressure and toroidicity, it becomes [wh,f] = 0. This implies that the
currenﬁ is a function of Yy which is a crucial element of Rutherford’s

argument. The main effect of pressure is to modify this result. The




last two terms of Eq. (29) are determined by the ¢ varying parts of
Egs. (R6-R7). Upon subtracting Eqs. (R9) and (30) from Egs. (26) and

(27) respectively, we obtain

a(Z) + BT+ 1)+ 30T - 3T
- [5.E] + [5.5] + [5.5) - [5.5] 51)
A(Z) + 5]+ [5.5) + [,.5) - 7,80 = 0 e

The terms in these equations that dominate for thin islands are
easily recognized. The left-hand side of Eq. (31) comes from the B.VI.
For the non-resonant I, the term involving the equilibrium.magnetic,
field is dominant; this is the term q(aT/ag)a. Also, p is constant on
the surfaces describing the island; thus P is small compared to p, and
[p.B] dominates on the right-hand side. In Eq. (32), the term with )

is large and the largest of the remaining terms is the. one due to the

equilibrium toroidal field, q(aﬁ/ag)a. Thus, we expect in lowest
order,
oT .
qo(a_g)a = [p.h] (33)
qo(g:?)a = "['@1:5] . (34)

The size of T,P and Jl can be estimated from Egs. (33) and (34).




One can check that the remaining terms of Egs.(31)-(32) are
negligible. For this note that fi~1. Therefore, Eq. (33) implies T~g,
ahd Eq. (84) implies P ~ §L/® @15 ~ ¢48. In the next section we solve
for @1 using Amperes’'s Law [Eq. (47)] and find a@l/ax ~ 561/2/8. With
these results, and Eq. (22), the validity of Egs. (33)—(34) can be
readily verified. It can also be shown that the right side of Eq. (30)
is negligible.

Equations (33)—(34) are easily interpreted physically. The first

says that j is the Pfirsh-Schluter current; the second says that P

arises from the tilt of the ¢ varying magnetic field into gradients of

p. We have
T = g5t [p.[d¢k] | , (35).
B = agtlp,facd] . . (36)

The sum of the last two terms of Egq. (29) becomes

xq-t '
%f ac([[5./a¢d,1.8] - [¥,.[p./ack]]) . (37)

Integrating by parts and using the Jacobi identity [c.f. Eq. (18c)],

this is

'

[p.[qp" [ ack,9,]] . (38)

so that
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[y T] = [5.5 + [if ah.,]] - (39)

The right—hand side above gives the appropriate average of the

curvature, h + ;L{fd{ﬂ,@l] . To the order of the calculation, this can
1) :
be shown to be the field line average of the curvature «,

$ [<¥3
K ’

B

taken over the field line perturbed by @ (the peturbations due to Yh
contribute only in higher order). This perturbation is accounted for
by the second term involving h and ¢ in Eq. (39) and it brings in the
geodesic curvature, whereas the first term gives the contribution from
the mnormal curvature. Both terms in the average curvature are

generally the same order.

E. Computation of Geodesic Curvature Terms

v is now computed using Ampere’'s law, Eq. (Rla).

1 % . .
RY 2 YWy =¢- (lTOT—leq] : (40)
We consider here only currents present in the island region. (21

in the interior must be matched thereby exterior solutions in the usual
way, thereby introducing A°". For islands thin compared to a

perpendicular wavelength, the gradient operators simplify to




where IYXIO is |¥x| evaluated at x = Xg: it is generally a function of

~

o and ¢. Recalling that I = j”/B and f = (‘BOR, we find to requisite

order in ¢ and 8,

&E £01V%1 5% (Toar=I_ ) (41)
Ny Yy = fol¥xlo” Iporleq) -

The ¢ varying part of Eq. (41) is

where I = ITOT - qu.

The averaged part is

i_ — v - 7 T —2% . ' )
5 V1 = fg [1WxIg"™ T + (Wl , (43)

ax
Eliminating the I from Eq. (42) using Eq. (43), we find

Fis

z V1= T [1Wx1p% Ty = W15 Ty

Ix

¥, — 5
& =R - = -2 & -2 1 -2
- lYXlO |ZXIO Ia / IY.XIO ] + |Y,X|o 5 2/|ZX|O . (44)
X

~ -2 . —2 = & —2. = G Vi
vy =1 [1WxI°T, = 1xIg" Ty ~ 19x157 1,] (42)




Equation (35) is now used for TA' With 51 = 5—50,

IA = [51: ét f dfﬁ]'-

/

Recall Eq. (18a). Since p; has the scale length of the island

width,

ap
~ 1 3 1 ~
I = déh , 45

where hO is h evaluated at y = Xg-

The term in h can be simplified for axisymmetric equilibria, for
which B is a function of @ only. The [d¢ is taken at constant «, so
upon writing h(®) = H(a + {/qo), we see that, 3/d«a is the inverse of

qalfdg. Hence

~ a_]_ ~
IA = a_X_ hO . N (452)

Inserting this into Eq. (44) yields

2 ap _
3% ~ 1 —2¢ —2¢ 5 -2 2+ —2
Y Y1 = Ip 3y [IEXIO hy — |¥x15%hg — |¥x1q |Yx1o%h / [Vxlg ]
X
2= -
_o 3%y -
+ TP = /1w (46)
ax

After integrating in y,
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My _ . W 2 -2
L =c+ v v

= -2 & —2¢ -2 -2~ -2
+ 0y fo [1WxIg° By - 1Tx15%8y - 1TxI57 1WxI5RE, / 19x157] (47)

where C is a constant in y. Recall that @1 is needed to evaluate (38),
where @1 enters in a bracket. In this bracket, the a@l/ax terms
dominate. This is true for the second term on the right-hand side in
Eq. (47) since A’ is large. The third term, which is the part of @1
driven by TA’ is slightly more subtle.

First, mnote that IA is a Pfirsh-Schluter current, and so is
proportional to a gradient of 51. Since 51 is‘localized to the island
region, the totél integrated current, fdx TA’ vanishes (at least:to
this lowest order in 61/2). Usually, a given TA would produce: a
@1'~ fOfTAdx/Z’ ~ fq TAdl/z/Z’. The TA in Eq. (45) produces a’@l
smaller by 61/2, @1 ~ fOTAé. The second property of TA is that it 1is
not small for small islands; from Eq. (45), TA ~ B, and is independent
of 6. Since fy ~ 1/e, the TA in Eq. (45) produces ¢; ~ 68/¢. Note,
however, that this @1 has a scale length of 61/2. Thus
SQI/SX ~ 61/2ﬁ/5. The second term is of order A", which is equivalent

to the first since 61/2 ~ B/eA’. The constant does mot contribute to

(38) for axisymmetry. Thus,

I _
[p,[agfdfh:w]] = [ph,] _ (48)

where
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1 /9 =\ Y
h, =- — (£ [a¢h
g~ " law J2B) 5

IR

.
- 22 _ (% 2 2
- Py fg [1WxIg™hg = (RglWxI5®) / 19x15°]

Wy = "
M hg |19 / ¥xq] : (49)

Note that hg depends only on the variations of h within a flux

surface, and is therefore related to the geodesic curvature.

F. Grad—-Shafranov Equation
Having found the right-hand side of Eq. (39), we now determine its

effect on I and @1. We have
lvy 1] = [p.htn ] (50)

As discussed in part D, the left side of Eq. (30) is negligible. Thus,

for thin islands, p is a function only of Yy
p = 13('501’1) . (51)

Equation (50) can be easily solved using this result. In view of

Eq. (18a) and (18d),

_ = 3p = = 9
[P (vy) Bny] = 5;? [ byl = [y, (B+hy) 5ji] : (52)

Therefore, Eq. (50) becomes [¢h,f - (H+hg) égl] = 0, which has the
h

solution
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T= ) + (i) gﬁi , | (53)

for any arbitrary\ g

Many of the terms on the right in Eq. (53) are essentially
functions of wh’ so wé lump them into . In the vicinity of thin
islands, h(y) = E(XO) + (x—xg) aﬁ/axo. H(XO) can be lumped into &
and similarly for pgy(x) upon expansion. Also, (aﬁ/awh)ﬁ(wh) can be

lumped into ¢  Thus,

= 3p 9P & g5, =2 2
I = L) + (x—xg) = g4 - HolTx15° / Vx| : (54)
F (¥ 0/ By, 81 7 By, olIXlo™ / Mxlo™ o
where
ap _
= 0 —2¢2 —2¢R 2
g1 =3h/8XO+WfO []YX|O hy - | Vx| h~y / IZX()]

We now determine the equation for Yh which is the Grad—Shafranovl

equation. Ampere’s law gives

8%

- vyl =R (T_T EVEER
S V1= o 1TxIg® (T-Tgg) + £ 191G T, - (55)

x

Equation (45a) gives TA’ so the second term on the right is
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Wy g5 g

- 56
% &wh Iy (56)

ar _.2~
fo IZXQI ho (

To fhe requisite order, BPO/BX and qu may be taken to be
constants, o and Ij. Also, 3y /dx = My 0/ 90X + a@l/ax. Recall
o/ 9x=1 — q(x)/qO = —(X—xo)qé/qo. The term involving SEI/GX in
Eq. (56) cancels the a@l/ax term from Eq. (54). Finally, to obtain an
expression for Y azwho/axg is added to both sides, which can also be

regarded as a constant. Defining yx’ = X—Xg» and lumping all the

constants into a function f,(¢) yields

2 —
d , dp
Y = SL(¥y) + X (G+G5) ; (57)
3 R 8wh

X
where G, = f IVX|_2 g

1 0 aAlo 1
and G, = —frqi/qn |V | =28

2 09079 I2Xlo fo

This equation is similar to the Grad-Shafranov equation with
gravity. Note that G1 and G2 correspond to the expressions in GGJ, (to

requisite order in z)

, Y
E+F = pglag/ag)” Gy

p 2
H= Po(qo/qO) G

with pg = apo/ax. The  Mercier criterion for instability is

E+F+H > 1/4.




—30—-
IV. RESISTIVE ISLAND EVOLUTION

A. Determination of Average Island Current

As in Rutherford’s analysis, the arbitrary function J( in

Eq. (54) is determined using the Ohm's law,

E” = nj“ ) (58)
and Faraday’'s law,
JdA . )
E=- — _ , 59
- at g (

where g is the electrostatic potential. In the aspect ratio expansion,

and localized about the rational surface, Eq. (58) and (59) yield

oy
1 34 1
N . + — , = f I 60
3t + (af)ot ag [’V/'*"‘//ho ,d] o (60)
The average of this equation is
Iy —
h 1 = ~ =
5 T o w8l + [9.8]) = 1401, . (61)
t dp
The dominant terms of the ¢ varying part give
Wy, (8”) - (62)
at 3¢’ 07°A

] term in Eq. (61) can be seen to be small. The

©

Using +this, the [@,
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discussion in Sec. II indicated that awh/at balanced nl so

g% ~ né_l/zA'. This implies ¢ balances TA in Eq. (62), so g ~ ng/c.

Thus, [#.8] ~ 1(8/¢)%61/2, which is negligible compared to 3,/8t.

Therefore, Eq. (61) becomes

oy 1 - -
-t % (v B = nigT, (61)

This is & two—dimensional equation which is essentially equivalent
to Rutherford’'s expression. To eliminate the term [wh,E], "flux”

averages over surfaces of constant Yy, are defined,

a"//h -1
§aa [(=2) 1]
<t (x,«)> = X ' (62)
- My -1 S
$ o (377
X

It is easily shown that <[¢h,3]> = 0 for any function g, and
<f(yy)> = f(¥y,). Averaging Eq. (61) and using Eq. (54) gives T ),

or equivalently,

- 3 ‘ 5
fgn 9t vy,
3 oY oy
- - < >) ha|V \ 63
v Lo~ o) BolHl® / 13kl (63)

(compare Eq. (63) and Eq. (5)). Using Eqs. (63) and (55) we see that

the island portion of the Grad—Shafranov equation [Eq. (57)] becomes




Yy =1 D

5= 1T o sy (x>) 6y 2

dx”’ n 9t My
o 9Pg

- (64)
My ag 9xg

Note the difference between the G1 and G2 terms, which arises
because only G; appears in Eq. (h4). This distinction leads in the

next part to the fact that G2 doesn’'t contribute to resistive growth.

B. Approximate solution of Island Grad—Shafranov Equation

Equation (64) i's now solved using two conventional approximations:
1) We assume one harmonic in Yhi dominates (e.g. the most unstable

one), so that

qY
nath + A(x’,t) cos mx (65)
Zqo

2) We assume that the “constant %" approximation is valid. This
requires a subsidiary expansion where A'dl/z ~ G1~G2 is taken to be
small.

A is obtained by operating on both sides of Egqg. (64) with

L $ da cosma, to get
™
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oA _ |VX|62 L $da cosma <—a-A cosmo> (66)
3 R mn at
X
Gl _
+ — $da cosma (x'~<x'>) ap/awh
i
G —
2 ’ a
+ — ¢da cosmx - 3/ 90
il (x gji dppg/as)

Note that A'61/2 << 1 implies that the <8@1/ax> term in Eq. (64)
can be dropped, and that dy,/3x = x' q3/qp- The island width is
~ 61/2 50 A~6. The right side of Eq. (64) is ~ 672, Thus, to lowest
order A = constant. The solubility condition for A in next order gives
the evolution equation.

This will require matching to the exterior solution. - In the
exterior, Yho >> @1, and the flux surfaces are only slightly perturbed
from the equilibrium surfaces. The right side of Eq. (65) vanishes for
large x’, but the pressure—driven terms vanish least slowly. Those
terms can be straightforwardly evaluated for large x°, and they depend
on the asymptotics of aﬁ/a¢h. Recalling that the pressure gradient
dp/dx must approach their equilibrium value apo/axo, the right side of

Eq. (66) approaches
DI AL/)(’2 3
where

’ 7’ 2 !
D; = pg (qo/qo) (G1+G2) = E+F‘+H .
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Therefore, the solution of Eq. (64) in the exterior is

| &g
A~ Cqx + Cox . (67)
1 ¥ \/1—4DI
here o =
W 1,2 )

These are simply the Mercier interchange solutions, and this agrees
with the resistive linear exterior solutions of GGJ.

The exterior solutions which satisfy the boundary conditions far
from the 1island are characterized by a given value of Cl/C2 on each

side of x* = 0. The relevant matching parameter is

Ly B — — —/— . ' (68)

@]

Since Gl and G2 are taken small, Py = DI and Py = 1—DI.
With D1 = 0, Ax becomes the discontinuity of the slope. For small

DI' keeping terms only to order DI’

Dy 1-Dy
A ~ AO(X + Cl/CZ X )
D c —2D
dA Dy Y1 1 ;
and -~ Agx M= + == (1-Dp)x” 1) . (69)
dy X C2

The lowest—order solution 1is a constant. The evolution equation is
obtained by matching the mnext order solution of Eq. (66) to the
remainder of Eg. (69). The next order solution A, is obtained by

inserting A, into the right-hand side of Eq. (66) and integrating




1 94, —
— = dx {— — | Vxg ! [ da cosma <cosmo>
‘ nm dt

G —_
+ L fda cosma (x'—<x'>) Sp . (70)
7 My,

% _ 2o ip_Q)
W a9 Mo

+ = [da cosma (x°
T

The asymptotic behavior of the G1 and G2 terms will give agreement

with the Dl/x term in Eq. (69). The matching to the C,/C, term

requires that AOA’ equal the integral from —» to 4+« of the right side.

These terms can be written explicitly using Eq.'(65), and the G2 term

can be shown to vanish. It is clearer to write the result in terms of

By = 4/q5/q; AY/?, which is the island width:

k —2D ko (E+F)
1 3 1 2
n ot Ax Ax DY Ax ( )

where kl and kg are numerical constants. Explicitly,

1 ” cosa < 1 ' '
k, =— [ dw (§ da —=2—"/§ da ————) , (72)
1 Ve {1 (ﬁ vw—cosa $ Jw;cosa) :

which agrees with Rutherford, and




16 dw_ [ 9p 0 1/2,
ko == [ —— (AgW) (= AW
2 ‘/211W1/2 [3%0 o) (= AgW)™"%/pg]
2 21 1 .
x [ dao —cosx dog —— . ' (73)
0 vw—coso 0 vVw—cosa

In the expréssions above, W is Yh normalized so that W=1 corresponds to
the separatrix. Note that only the region outside the separatrix
contributes to the pressure—driving term. The expression in kz in
[ ] depends on the pressure préfile near the island, but it
approaches 1 as w2, and is typically ~ 1 in the island region. aﬁ/awh
is computed in Appendix A under the assumption that the pressure
gradient 1is maintained by a constant pressure source and diffusion

coefficient, with the result that the expression in [ ] is

e .
2nwl/? / | da (VW—-cosa ), (74)
0

in which case

32 0 27 2T 2m a
ko = ==l [ aw [ da — / | da VW—cosa | e
Ve vW—cosa vW—cosx
1 0 , 0 Q
~ 6.3 (75)

Note that roughly half of the integral above comes from distances
in x” which are 2/3 of an island width away from the island separatrix.

Thus, it is not highly sensitive to the region near the separatrix.




V. CONCLUSIONS AND FURTHER APPLICATIONS

We have derived a Grad—Shafranov equation, Eq. (57), to describe MHD
equilibria in the vicinity of thin islands in tokameks. The resistive
evolution of the island width is given by Eq. (71). Note that the
latter indeed resembles Egq. (7), since DI is small. Thus the
qualitative discussion of Sec. II is pertinent. In particular, we have
shown that finite pressure effects, while demping initial iéland
growth, become irrelevant for island widths excéeding the Axc of
Eq. (1).

The average curvature in tokamaks is usually favorable. In other
configurations, such as reversed field pinches, the curvature 1is
unfavorable. Resistive interchanges are likely to be unstable for such
cases, and we believe that Eq. (71) describes the c&herent evolution of
these instabilities in the nonlinear phase. If As is stabilizing,
Eq. (1) gives the saturated island width for these modes. Of course,
the analysis given here does not describe any further‘evolution if two

islands overlap.




APPENDIX A

We assume that there is a diffusion process operating in the
equilibrium, and pressure sources exist in the plasma interior. In
steady state, the pressure gradient in the island region is found by
the condition that the flux be a constant. With the island growing,
the condition of constant flux still determines the pressure gradient
if the diffusion coefficient D is sufficiently large that the local
pressure equilibrates rapidly compared to the island growth rate, i.e.,
if D/AX2 > y. From Eq. (71), ¥ ~ nA'/Ax so the criterion is D > nA’Ax.
Even for the case A'Ax ~ 1, this is satisfied if the pressure diffusion
coefficient exceeds the classical magnetic diffusion coefficient.

We furthermore assume that D 1is constant and unchanged by the

island. The flux I is

r=0 /[ ds:Vp

dad¢ J
D Vox Ve Vo, —E-
/ J oxtes Ty oYy,

Thus, the constant flux condition in the island region is
9 f doo x = C
Y

for some constant C. Therefore,




Equation (74) resultis by choosing the constant C to make the

dp/dx far from the island agree with the equilibrium value.

value

of
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