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University of Washington
Seattle, WA 98195

Dear Dr. Ribe:

I have read the comments of the referee for the paper FP-14242,
“Pressure Induced Islands in Three~Dimensional Toroidal Plasmas” by
John R. Cary and M. Kotschenreuther. The referee’s comments indicate
that  he did not carefully read the original manuscript. Every comment
was either inconsequential or addressed in the original manuscript.
Nevertheless, 1 have taken this to be evidence that the manuscript
could be improved with more emphasis of certain key issues. Therefore,
I have rewritten the manuscript slightly. '

A point by point dicussion of the referee’'s comments follows. For
this discussion I have labeled the substantive comments on the second
page of the referee’s report by continuing the numbering. '

1. The small island approximation relies on the island being narrow
relative to the smaller of the plasma radius and k —1 This is now
explicitly stated in Eq. (30). '

2. Given the additional discussion of App. A, the existence of an
intermediate regime is now menifest as dxscussed in the vicinity of
Eqs. (65).

3. One need not assume £ to be large for the intermediate regime to
exist. One needs only that €om be small as is shown to be the case
in App. A. : :

3. and 4. The finite B corrections to ¢ are, of course, neglected
in the low—f theory. Only at sufficiently high—f, a regime beyond
the scope of this paper, do these corrections become important. In
fact, no definitive calculation has as yet given the corrections to
the high-order Egm S to high order in g. Therefore, the statement
made by the referee cannot be substantiated.
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5. This statement contredicts itself., One cannot call a renormalized
theory a 1linear theory. In any case, the island calculation is
definitely nonlinear, as discussed in Ref. 22, Sec. 3.2.

6. This claim was previously substantiated in Sec. IVB, which has been
relabeled Sec. V.

7. The large aspect ratio and associated approximations were used only
for purposes of estimation, e.g., Secs. IID and IIE.

8. The referee apparently missed the point that the threshold was due
to considering only low-order islands.

9. Thé present analysis developed entirely independently of the recent
work of Reiman and Boozer. Still, we do not object to adding a
reference. A brief description of their work is included in
Sec. VI.

I ask that you reconsider this manuscript for publication in The
Physics of Fluids. 1 also request that you send it to & new referee.

Finally, I ask that you send future correspondence to me at my new
address: Department of Astrophysical, Planetary, and Atmospheric
Sciences, Campus Box 391, University of Colorado, Boulder,
Colorado 80309. . '

Thank you for your consideration.

Sincerely youré,'




Pressure Induced Islands in Three-Dimensional Toroidal Plasma

John R. Cary and M. Kotschenreuther
Institute for Fusion Studies
- The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

The production of magnétic islands by plasma pressure in
three—dimensional toroidal systems is analyzed. Far from the rational
surfaces a procedure based on linearization in the plasma pressure
applies. This -yields the solution in terms of 6—function currentsats
the surface. These currents are found by a nonlinear analysis valid: in
the vicinity of the island. The result is a set of coupled nonlinear
equations determining the island widths. Scaling is found by using the
approximation of mnearly circular flux surfaces. The results indicate
that for typical stellarators, which héve a small fatio #lo/mo of field
line rotational transform to coil rotational transform, the island size
depends dramatically on whether a magnetic well is present. In this
case, if a magnetic well 1is present, islands are insignificdnt;'in
contrast, if a magnetic hill is present, island overlap dccurs for

arbitrarily low pressure.




I. Introduction
The stellarator is a toroidal plasma confinement.system1 with

rotational +transform produced by external windings. It has the

advantage.--that-- it - may-- be --operated steady state, since it needs no -

internal toroidal current to provide rotational transform. However,

with this advantage comes the necessity of being fully

three—dimensional, which greatly complicates the analysis to the point

"where no rigorous theory of three—dimeﬂsionalvplasma equilibria exists.

Indeed, as emphasized by Grad,z three—dimeﬁsional magnetic fields
may not have good flux surfaces eveﬁ in the absence of plasma. This
has not been thought to be a practical problem because surface:of

section enalyses of various systemss_5 have shown the existence of

fairly good -surfaces. - However, -as discussed by Carys’7 these: good::.

surfaces all have rotational transform values much less _than the
theoretical limit of +4 = my/2 for an (&g.my) stellarator.

Recently, a practical solution to the problem of finding vacuum

fields with dense flux surfaces has been presented.8 This solution is

based on a technique for identifying and measuring the stochasticity

inducing islands produced by toroidal coupling. Numerical = techniques

are used to.minimize the islands by varying the coil winding law. As a

result, one dbtains coil winding laws that produce magnetic fields with
no visible stochasticity ovér a wide range of rotational transform and
inverse aspect ratio e¢.

With the vacuum field problem solved, it is necessary to ask what
the effect of plasma will be. One would especially like to know
whether the plasma will modify the magnetic field in such a way that

islands and stochasticity are found. As a first cut it is ‘reasonable
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to analyze this problem with the assumption of scalar pressure, in
which case the equation of plasma equilibrium is JxB = VP. Such a
theory is strictly applicable only for sufficiently large collision
ﬂ.frequency,»wsuch:-that a---particle scatters~:before it can complete'a
superbanana orbit.9 However, such an anaiysis may point to featﬁres
general to all regimes.

It should be noted that while "previous analyses of

three—dimensional equilibria exist, they have mnot addressed the

question' of islands. Either good surfaces were assumed from the
outsetl’10 and consequences were derived,  or the stellarator
expansion11 was used. The stellarator expansion cannot address the

islapd question,becaﬁse the averaging procedure employed a priori
“ignores the existence of island structures.

The present analysis of the scalar pressure eqﬁilibrium equation
JXB = VP is based on a low pressure expansion, about an integrable
vacuum field, _i.e!, .a magnetic field-§0 such that:zxgo = 0, and for
which there exists a flux function ¥ such that field .lines lie on. the
contour - surfaces of ¥: go&!w =‘0. In a way common to,thé analysis of
nearly integrable Hamiltonian systems, one keeps in fir;f order effects
of only a finite number of .the low—order resonant peréurbations. Then,
in regions far fme the corresponding resonant surfacés .one can. find
the plasma current 5y lingarization.lz From this “;kterior” point of

view, the 'marrow currents associated with -the islands can be

representéd by oJé—functions. To. find these island currents one must

solve JxB = VP by a different technique, which relies on being closeé. to
a particular resonant surface, where the effects of the associated

nonresonant fields may be neglected. Finally, by integrating Ampere’s
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law to obtain the magnetic field perturbation zxgl = J,, one finds a
nonlinear equation for the island width. ‘
| In general, the resulting equation for the islénd width-depends on
- details - of - the- original - vacuum field and the pressure profile.
. Moreover, complications arise because ‘the perturbations of various
helicities are coupléd. To make further progress, decoupling is
achieved by invoking‘ the approximetion of nearly circular flux
surfaces. As >a result one obtains a nonlineaf algebfaic equation
governing the widths.of the islands of the various helicities.

The resulting equation shows that at low valués of g, the islgnd
'width scales as 51/2. Once f§ exceeds a transition value ﬁt, the island

size depends markedly on whether the island is in a region where there

-is &8 magnetic - we11,13’144 i.e., dzv/dwz < 0, where V is the volume::

inside a flux surface . The widths of islands in good regions, where
a well {s present, saturaté atvﬁ ~ ﬁt; that'is, the island width for
g > By is approximately the same as it is for § = By - Appliqd to the
proposed stellarator AFT,3 these results indicate that islands in the
inner region will be insignificant.

Quite a different result is obtained for islands iﬁ;regions where
there is, a magnetic hill. ' Instead of saturating, the island width
.écales.linearly with g for g > By - More important is the scaling with
mode number £. For large 2, ﬁ£ approacﬁes zero and the island width
scales as /2. Thus, as one considers more rational surfaces "+ =m/4,
2=1,...,L, one always finds island overlap because the mean spacing
between rationals scales as 1/L2. Therefore, the present. results

indicate that three—dimensional scalar pressure equilibria do not exist

in regions where there is a magnetic hill.
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These results may be interpreted in a more familiar way by first
neglecting the 3D-terms, i.e., the terms due to the lack of symmetry.
In this case a scalar pressure equilibrium-'with:‘nested ’magnetic
surfaces . (i.e.,without resonant perturbations) exists. _This
equilibrium is stable (unstable) to resistive inteféhange modes at low
g if thérg is a magnetic well (hill). The 3D-terms drive resonant
perturbations which produce islands. In the stable case the islands
are generally small ﬂbt only because the 3D—tenﬁs are small; but glsb
becaﬁse ofvthe effects of good curvature. In the ‘unstable cése thé
3D-terms initiate a linear instability whieh grows until it saturates
due to nonlinear effects. For sufficiently unstable systems, i.e.,
£ > 3t’ the island width is indebendent of the 3D-terms and is
identical to that found for ‘the width ~of = saturated resistive~.
instabilities of axisymmetric systems.!® '

The présent calculation does not ad@ress what actually occurs:in’
this instance, .except to say thatr magnetic;Astochgsticity arises,
because the present calculatfon relies on fhe islands not overlapping.
We eéxpect that'these effects lead to! a soft 6—limit,.;where as the
plasma pressure is raised, stochasticity and'plasma'traﬁ;pqrt increase.

‘The outline of this paper is ds follows. 1In sec. I1 the exterior
current is found by linearization. Finding the magﬁetic fields due .to
these currents is in general & difficult numerical problém. To make
further progress and obtain scaling, we find ‘these magnetic fields with
the approximation of nearly Cirqular flux surfaces. To complete the
analysis, the island burrEnts_are fodnd in Sec. IIl.” This involves
determining the pressuré'profile near the island, which is acéomplished

by c¢onsidéring the P¥irsch~Schluter’ transport in- this region. In
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Sec. IV the analyses of the iﬁterior and exterior regions are combined.

This yields a nonlinear equation for the island width.




IT. Exterior solution

When only a fiﬁite number of helicities are considered, one can
define the exterior region as the region far from the correspbnding
resonant. surfaces. In this:region, the flux surfaces in the presence
- of the perturbation have the same topology as theAvacuum flux surfaces.
This allows one to find the plasma currenté by'linéarization.' In fully
thrée;dimensional systems obtaiping this linear solution is a difficult
ﬁﬁﬁerical prob}ém.' Therefore, Sec. IID shows how analytic solutions

may be obtained when the flux surfaces are nearly circular.

A. Vacuum magnetic field coordinates

Being curl-free, a toroidal vacuum field can be written as the

gradient of a multivalued scalar potential,

By = 12

According to Ampére's law, this scalar potential must increase by an
amount A¢= 1 equal to the total current through the center of the

torus. Thus we can use a multiple of ihe scalar potential,

as a toroidal angle. With the definition v.= 1/8n, the vacuum field

can be written

By = 7v¥¢ . o . | (1)
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To select the two remaining coordinates, we require our system to

be a flux coordinate system16 so that §0 has the form
B = IpxWs + +(W)Tpxly , @
" where +(y) is the rotational tramsform. Thus, magnetic field lines

stay on surfaces of constant ¥, where 2my is the toroidal flux enclosed
by the surface.

10 for analysis of

Similar coordinates were introduced by Boozer
‘three—dimensional scalar-pressure equilibria. (We note, however, that

in the present vacuum field case the toroidal angle is periodic with. a

Y—independent period of &2n.) These coordinates differ from the more

femiliar Hamada coordinates,17 in that the,qacobian is not a function
of the surface alone. In fact, Hamada coordinates need not .
exist18 for integrable, three-dimensional, vacuum magnétic fields.

We introduce these coordinates because of their simple metric
properties. For _example, . the dot product of Eqs. (1) and (2) yields

the relation,

Bg =7/f ’ . (3)

between the vacuum field By and the Jacobian /= (2¢X20-2¢)—1~

Furthermore, from Eq. (1) we find the covariant components of By,

=7, " (4)

while from Eq. (R) we find the contravariant components of Bg:




Bb=0 |, B =+/g . Bi=1/g . (5)

These results, together with the lowering operator, allow us to
conclude that all the relevant metric information is known once one is
given +(v¥),y, and any three componehts of the metfic tensor. For
example, suppose one knows thé metric elemepts g¢¢, g¢ﬁ, and Byy @S

functions of ¥,¥ and ¢. Then the Jacobian is given by

I= reppps ~ 659) + (6)

the magnetic field strength is given by Eq. (3), and the remaining

elements of the metric tensor are given by

!

Byp = ~ tByg 4 (7a)
3 ' "
g.ﬂgo = - ‘f"g.mg 3 . » . (7b)
ol 2 . _ L . ;o
and 8pp = VA + * 8y : : (7¢)

The Jacobian contains much of the relevant information about
the vacuum magnetic field properties. For exampie, thexspecific volume

V’ = dV/dy is simply the surface integral of the Jacobian:

n 2n o ,
Vi(y) = [ as [ dp J(y.B.9) . S : , (8)
o 0o o . .

Furthermore, the specific volume of a closed flux tube of rotational

~ transform +(¥, ) = m/& is given by

aL “2ﬂ£ . _ . K
$ | do AWy, 04mp/2,0) . . (9)
0

B

o =

<o




Thus, the "§de/B—criterion” for magnetohydrodynamic
equilibrium,19 that the quantity of Eq. (9) be a surface function, is
| equivalent to requiring that the resonant amplitudes of the Fourier

expansion of the Jacobian,

JW.8.0) =1 Hp)et¥Pine (10)

A.,m »

vanish at resonance:
FimWam) =0 - o | R (11)
This condition is not generally satisfied for vacuum magnetic fields.

B. Calculation of the current by linearization
To solve the magnetohydrodynemic equilibrium equation JxB = VP, we

assume that P is small sﬁch that linearization is possiblé

!

-

1,¥By = VP,

Upon taking the dot prodﬁét of this equation with §0, we conclude, in
the wusual Way,l that. Pi is & function of ¥ alone. From the
cross—product of this equation with §0 we determine the perpendicular

part of the current: 3

1, = Pi(¥) Aw.5.0)T0xT¥ . | o (12)
i




.._1 1_
It remains to find the parallel part of the current. To do so we

write
I = Q. 9.0) [TwxTs + +(y)TpxWy] . | (13)

With Fourier expansion,

Q= J Qeitt-ime R O (14)
m ' o

the equation of charge conservation V+J = 0 becomes
[2+(¥)m]Qp, = —2P{(¥) Lo - | (15)

Several aspects . of ’this equation should be noted. First, the
(2=0, m=0) component is undetermined. This 1is wusually required +to
venish by assuming that the net toroidal chrrent has dieq away in a

steady-state stellarator. Second, the general solution of Eq. (15),

-P{ (V) Lpn(¥) . S |
1 7 {m . ;

+ - : 16

L+ (¥)-m Um OV ien) (16)

le('W) =

is singular at the appropriaté rational surface Yom- ‘While both terms
are singular, both singularities are integfable. Third, the multiplier
of ihe 6—function singularity, ézm' is undetermined. In Sec. III the

singularity will be resolved and the value of ézm_will be determined.
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C. Magnetic field perturbation
To complete the description of the exterior region, one must solve

for the magnetic field perturbation,

YxBy =4,

where, according to Eqs. (12), (13), and (16),

3 =P Spo@)VexW + T {86 (Wvy) — P Lpu )/ [+w)m/a])

i.,m
#(0,0)

x exp(itd—imp) VyxV(d-mp/L) . v (17)

' The three-dimensionality of the system gives. rise to currents with:

every helicity (l,m). These give risé to a vector potential

4 =3 [ Ay, m)W + A (y,4m)Tplexp(its—ing) , ~  (18)
£,m : : S,

containing every helicity. '(Note that the gauge A¢ = 0 has been

)
chosen.)

The solution for & and «Z, in terms of the as yet undetermined

élm's can be obtained by a Green's function integration. As the
- : : !

singularities are integrable, the solution for & 1is continuous..

Because the equations are linear, the solution has the form

. ' ' ) S
dig(w.ﬁ,m) = Cy(¥,2,m) +£Z ’ D@(w,l,m,l’,m’)ql,’m, , '(19)
T

where the coefficients C and D depend on the details of the vacuum

field and the pressure profile. As Eq. (19) indicates, in general, all




—-13—-
~helicities of the vector potential are coupled by the D coefficients,

since Ql’m’ will be found to depend on éll'm"

D. Solution for nearly circular flux surfaces
In order to make further analytical progress, we introduce the
approximation of nearly circular flux surfaces. First, we introduce a

coofdinate r satisfying
. 1 - .
v =2 (/Ry)r? | | (20)

with R, a constant corresponding to the mean radius of _the magnetic
axis. (This choice 1is dictated by Eq. (1) which indicates that
Bg = yz/Rg.) Second, we introduce a coordinate 2z = Rpp. With these
coordinates, one can always write the operator zx(zx in Ampere{é law,
Zx(zxél) = il’ using the metric tensor. However, if the flux surfaces
are nearly circular and the inverse aspect ratio is small,'then.té"
lowest orde? in the three-dimensionality one can wuse the metric for
circuiar_ coordinates in the operator Yx(zx . This. approiiﬁgt?on
decouples the various helicities in Eq. (19)?

To implement this procedure we introduce the resonant coordinate,

R
il

9 — mp/2 S  (21a)

(=9, | | - (21b)

for finding the (£,m) harmonic,

éllm = _;i{a.('g{/,l,m)va + ,_,q{g‘('w,l,m)V{ . (22) ‘
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With the aforementioned approximations, Ampere’'s law yields

o 2 : .
3, o mr /ER0 Sqﬂk

1+ (mr/iRy)?

ar

- d( = _ézma(r_rlm) +

and
3 r/Ry Sl 42
dr 1+ (mr/lRO)z dr rR_0 N

dpP éﬁm(r)

dr t(r)ém/l '

" This equation can be solved with the Green’s function

LN

2., :
’, . m ’ ’
G(r,r’) = - =X Iz(mr</R0)K£(mr>/Ro) ,

Q

where I and K,are modified Bessel functions.  The

allows us to find the‘cdefficients for Af,,

.,dg(rtl:m) = C((!‘,}l,m)

Green’s . function °

+ ¥ Dt(r,l,m,l),m’)'él,,m,, (23)

2°,m

analogous to Eq. (19). The results are

M
2
2 RO

C{(r,l,m) = -

[ ar’r’ 1;(mr/Rq)K;(mry/Ry)

x S (r) Y/ [e(r )]

(24)'

)

RNg




and

. : 2 .
’ ’ m' r ’, ’ ’ ’
Df(r,z,m,k U8 ) = _629.’ Gm' ‘R'Z_R.‘[ dr'r I£(m</RO)K£(mP>/RO)
' 0
x 6(r-rg ) . : (25)

where 6,,. is the Kronecker 6.
For large 4(4>>1), the asymptotic expansions of I;(4x) and Ki(lx)

may be used. This allows us to determine

' Ry 4P -1 4 ap R a .
Colryy 2om) = - ;5 e Hym) 1 [t Fam) 7 d—:-] (26)
and |
. 2.1/2 ‘
Dg‘(rlm,l,m) = (RD/.ZQ)[I +.(mr/£R0) }] . (27).-

E. Scaling of the coefficients

The precise evaluation.of CC and Dé depends on thg pérticulaf
profiles of . ng andt dP/dr. To, estémate C< and D( we assume the
stellarator to have rotational transform of order unity and small
inverse aspeét ratio 5-739/30 << 1. We take the mean yagnetic field to
be B0 and we use § to denote the peak ratio of piasma pressuréuﬂto

magnetic pressure, f

2AP/BS. We then find

Ci(2.m) ~ REBye 0/ (2%0%) (=8)




where €ym 1S @ typical value of fm/joo, and A+ = +(a)— +(0) is the

total shear. Similarly, we find

. o

. 29
D, o9 (R9)

It is important that D(: is always positive.
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ITI. Interior solution
The analysis of the last section provided the solution for the
magnetic field in terms of the 6—function island current ézm; In this
section we determine élm by considering the details of the island
. region. . For.- notational convenience we»introduée the subscript "r” to
denote the resonant (4,m) = (%,..m.) and resonant surface Y, Wwhich
satisfies. t(wr) =m./2.. Similarly we define ty = d+/dy evaluated at
¥ =9, and &, = Ialr’mr'. |
This analysis of the island yegion relies on the smallness of the
island size. This assumption, essentially that the island width is

small compared with the machine.size.and k—l, allows one to neglect the

Y—variation of equilibrium quantities and the perturbed fields within

the island region. In terms of the island width 6+ in rotational:

transform and the total shear A+ of the vacuum field, this assumption

is
1/2
8+ << A#/(22+m28%) . (30)
A. Interior current

From Eq. (2) we deduce that the unperturbed magnetic field comes

from the vector potential

>
o
Il

Y¥8 — F(9)¥p = yVa — [F(y¥)~ +.p]¥¢

where +(y) = dF/dy, and the variables « and ¢ refer to the
transformation :Eqs. (21-22) for the particular resonance under

consideration. As discussed in the last section, plasma pressure
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modifies the vector potential by adding the new terms of Eq. (18).. As
a result, thel field lings no longer stay on surfaces of constant y.
Instead there is a new invariant function Y.' To find this new
-invariant function we wuse the .noncanonical perturbation theory of

Ref. 20. For ¥ near the resonant surface Wf: this invariant funétion

is
X =5 0 @Wv)R = T o (y ke, m ) KA
- (0¥ T A (y.kay ke KA
k=—o ) .

Apt(r, — 2 A,

o

) 1 et #0-iny ey
(2,m) .~

= B |

to »loﬁeét order in A;. The notation )’ indicates that resonant termé,
(l,m; = k(lr,mr); are to be excluded from the sum.

As one can éée_from Eq. (51), the resonant component of Al{ ‘give§'4
the largest part of Y. The effect of the Ala component and the
nonresonant components is small prbvided one is close to wr, Acf. (30).
This 1leads us to int{odﬁce an averaging operator that seiects only the

resonant terms:

_ : 21l v o
T(W,0) = —— [ a¢ t(W,o=otm ¢/2_.¢) . - (32a)
‘ LS S T . e

We further define its complement,

(32b)

o]
m
—n
|
=
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In addition we introduce the new variable,

X = 9y, . | - (33)

As a result, the new invariant is given approximately by

- o = 1, <
X=X frxz - Al((x’“) . (34)

The new magnetic surfaces, which are the contours of ¥, are
topologically different from the vacuum surfaces by the presence of an
island chain. The magnétic surfaces for a typical perturbétion,

KI((x,a) = xccos(zra), are shown .in Fig. 1. At the boundary or

separatrix of the island, X=Xgx = Xc sign(+). Inside, +.X < ]*;xgkf‘..

while ‘outside t;y > |*£xc|. This indiqates the double-valuedness: of

the function ¥(%X). The éxtentrof this island in the variable ¥ is
oy = zlxc/féil/z.‘AThis indicates an e2tent in rotational transform of

. )
Y

6+ = 2|+ix | /7 . ' C (35)

1 the pressure must be a

‘As in :any toroidal system with shear,
function of the flux invariant alone, P(Y). This allows us to find the
perpendiqular current via force balance:

/ -

P (¥ g 5y ax Fro. -
; =P g & X v, X _ g Fyyueval |
AT e [= B¢ o Yoodt + Be 5, Yoy + (By 50 = By 5))Tyxle]

upon neglecting the ¢(—dependence of ¥. To find the parallel current,

we write

~—
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1=, .- (36)
and set Zo.{" = —Zail. The resulting equation for Q is

Miay 20, ox 39 _szse_ M se A i) aq

1+ =) %5 o 9a " dady oy sa ¥ Tox T Ta¢ ! oy

&

3 Ry

= - P 3

NH"’
@
|

2
3

UJN H‘.U
wm kw
Q
I
N ‘9
<

@
<
o3}
R
w

9
W g

&
-5
<

.The preceding expressions for the current are fully nonlinear. To
make further progress we invoke the low—§ approximation. This we do by
neglecting .(ﬁ(ﬁz) terms in Eq. (37). That is we use Bg for Bg,- ¥ for

B(, we neglect the last term on the right of Eq (37). The result is

(1+S_A1_°.‘.)ﬂ+_32_£3Q X 39 _ iA_l_CaQ _fl_{ _G;Alﬂ)aq

3 ' 8¢ oy dx  da dy  y da T\ aa
o oy (3% 3K _ 8% of -
P00 (55 oy W) ) (38)

Secondrly, we write Q = Q+Q and take the ¢{—dependent and ¢(—independent

parts of Eq. (38). Neglecting ﬁ(ﬁz) terms we find
—f_j -‘Z) (39a)

" and %gg_%za_q P()( —Xi{ ) (39b)

)
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For consistency we should apply the same approximations to our result

for il’ This yields
9% Y . - |
I, = =qP () (X VaxV¢ — <X vexvy) . - 40
sl ﬁVP (X)(Sa Vax¥¢ 3y “CXQW) ( )

It is important to recognize that we have not linearizéd even
fhough we have used the low—f approximation. The linearization of

Seq. II does not allow topology chaﬁges. It is equivalent to setting

X = % fékz,'thereby neglecting the term 9%/da, which, as we will now

see, resolves the singularity.

The solution to Eq. (39a) is straightforwardly obtained by Fourier .

expansion.

‘ Y . i 09—i
5= ip A , (9% im X exp (i29—-imp) .
Q=iP (’f) (lzm)(aa w Mty Fom) (2+,-m) (41)

To find Q we note that Eq. (39b) can be put into the form

Q=P (X)f + K(X) o (42)
.
with the function K(¥X) arbitrary. Thus, the;péfallel and perpendicular

currents are known in terms of the functions P’(X) and K(X).

\
7

3
/




B. Nonlinear Island Equation

One can derive a nonlinear Grad—shafranov—liké eéuation for the
island region by invoking the narrow island apéroximatioﬁ. Thi; allows
us to assume 82A1¢/8w2 >> |Va||V¢[azA1¢/8w3a and to neglect the first
term in the sum of Eq. (41). As a result, Ampere’s law yields
5%%

A EE ) g + )]

Emh;.m,exp[f(l—l')d]a(z—z’)mr,(mﬁm')lr

_pr(y) X . ,
P(X) 3 v (gm) STy ,. (43a)
(2"m")
whére“
h(a,¢) = 7(;7!VWI2);i¢r =h+ } hy elt¥-imy o (43b)

4,m \
_ )

This nonlinear equation resolves the singularity of Sec. I1 and
determines the structure of the magnetic field neér the dsland{ It
remains to determine the functions P’(¥) and K(X).
C. Determination of the current function K

In a steady—state stellarator the inductive electric field has

decayed away. This implies that the integral of J+B over the volume

between two flux surfaces vanishes

[ dad¢dy Q(y,n.¢) =0 .
YO<7<70+d7 i ’

P

Given our expressions for @ we find

~




K(%) = P (%) <

where the averaging process is defined by

It f<w<7,a>,a)/§§<w<z.a>,a)

SW0)> = - ‘ (44)
X -
| a3k (g0 .00
Therefore, we have the expression,
Q=P (L -<4>) . - (45)

for the parallel current function.

)
D. Determination of the pressﬁre profile

As discussed in Sec. ITIA the pressure is constant on a. surface of
constant-.y. This is due to the large parallel transport, which
implies, for example, that pressure is copstant on .the island
separatrix. In determining the pressure profile, particle sources are
neglected, because their effect is small when the island region is
small. This implies that the pressure profile is constant within ihe ’
island separatrix because it is constant everywhere on a'.bounding
surface.  Outside the sebaratrix, the particlg- flux induéed .by
resistivity is constant. 1In addition, far from the island the préssure
gradient must reduce to the value of the exterior region. In

combination these facts yield the pressure profile.




The consequences of resistivity are found from Ohm's law,

-Vo + VxB = q, 4, + 1 . -~ (48)

As’fesistivity is a higher order effect, the modifications of i" and ll .

due to vresistivity may be neglected. From the perpendicular part of

"Eq. (46) one finds the particle flow velocity,

Vv, =7, BxJ /B® + BxVe/B% . | L (a7)

Thus, if ¢ = ¢(¥,a) + (¥,a,¢) is known, one can find the particle

flux,

T=p [ asdp(TRxTee T TV sTR =T 4 4 Ty (48)
. dx

" as the sum of the classical flux,
Mo =m0 [ dsdp(TxxTae¥¢) IBxy Tx/B° (49)
3% ' .

the resonant Pfirsch-Schluter flux,

r
X

and ‘the nonresonant Pfirsch-Schluter flux,

n

N 3

The notation indicates that these integrals are over constant—%

- surfaces.

rp=p [ dodp(TxxVae¥¢) 1BxVe.V5%/B% | (50)

ro=p [ dodp(TxxVos¥¢) 1BxVE.Vx/B° . (51)
Y .




The calculation of the classical flux involves using the
expression (40) for ii, and the narrow-island appréximation (30), which
allows one to use IV7|2 & Ilez(ay/aw)z and 3X/3y = +; X in the integral
of Eq. (49) The resuit for T, is |

Mo = ~[n,0P" (R)ep/7] [ dvdp x(x, ) (g2 1WIR) . (52)
X . Yr

The evaluation of the Pfirsch—Séhluter.transport'is more difficult

because we must first use Eq. (46) to evaluate ¢. From Eq. (48) we

find

V. (¢B) = 7,4B = n"QBz

Splitting ¢ in the usual way, ¢ = ¢+%, and invoking the narrow island

assumption we find

E(W,d) = f(7(¢,d),q) -

af P
where 5— ==Y Q/(87/6¢) ’
a .
and % = —iyn"P'(y) g% Y4 ng.exp(ilﬁ—imw)/(lfr—m)a .
: (£,m) .

)
,-

These results ailow us to find the Pfirsch-Schluter transpdrt.

With the definition, -

x(X,a) Z x (X)exp(ikL, o) . , ' (53)

,/’k .

we find
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rp = =2myoP (%) [ da (4 - <f>)%/(3x/3y) | (54)
3% . _
~and
, *
‘ ' Xy Sam Sg41cn. , meHan

= —(2m)2 Ve ' rr (55)

r.n = —(2m) "Iu'}'PP (X)“'r 2 Z 2

o "k (a,m) (m/e.m/2)
.As mentioned in the beginning of this séction, the total pérticle
flux must be constant, f(x) =Tgp. To determine this constant, ‘the

pressure gradient is required to reduce to its global value P; defined
by P; = dP/dy evaluated at an intermediate value of ¥ close +to the

particular surface but several visland widths away. This procedure

yields
Z—;'=P{./[81(E)+gg(7)] , B | (56)
y
where' ‘
o (% = /G) | ] d¥d Y, . 2 \Y R
g1(X) (*_r/ YIS _J_(zﬂ)z x(X,a)( g IJ//_I) )1'//:1&r
. Zfﬁi z, Xk«JQmLJQ+k£r;m+kmr] ; (578) .
ok, (m) . (mp/am/8)R
e = = o aw =1 A
ga(X) = (¥%n,/nGY f%"; (4 —-<,J>)2‘(§§§) . (57b)

and
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2 , PORL

G = [ L (21 ?) ¢ 2y | Hml” (58)
2 2
(2r) Ve L g (m/em/R)

E. Constant—Ac approximation
While the general calculation proceeds from the nonl inear
Eq. (43), for the present case of narrow islands in low—§ systems, one

21

can use the “constant—y" approximation®" of linear tearing mode

theory. In this approximation we write

K1¢ = E X (¥)exp(ike, )

and neglect the variation of xk(w)'throughout the island layer. Thus;1 

62 m is found by simply integrating the parallel current (45) through
r,r .
the layer. N
.
© 2m d _ _ )

A a o ’ —

Up tm = [ v O/' o EXP(-ikL )P () - < I>) . (59)

' - 00

The contribution due to @ of (41) is smali because of the approximation
(30). Since the y-variation of K< has been neglected, ¥ is an. even

function bf‘ ¥, and P’(¥) 1is an odd function of %. Thus we may use

é(-,<;_(>

as Egm << 1 is generally true, we find

[

L

. £ _n : i
: : A —ikQ_ o)
a -2 ¢ o 4P <x> 7 da SXP(-ikly
kL, km, Foo¥y) { ax —
X

dX +r o 2" x(X.«)

ﬂf(wr,a)(i—<x>) in the integrand of Eq. (59). Furthermore, '

S
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where the +(-) sign in the limit of the integal is chosen if zsx is

positive (negative).

F. Single-harmonic approximation

To make further progress we assume that only a single harmonic in

Alf is significant. Without loss of generalitj, we choose

le = X cos(lra) " ‘}, N 3 ‘ (61)

The width of the island in rotational transform is given by Eq. (35).

Similarly, we define

A

Q= éc cos(Lpa) + és sin(2,0) . (62)

A

The symmétry of x(¥,o«) in Eq. (60) implies that Qg = 0. This means
that the external currents, through the coefficient C of Section II,

determine the phase of the-perturbation. The internal currents given

Cy

by ' i

+oo

A

Q = -4[g50Wyp)/+7] [ X P’ (X)<cos(n)> , (83)
. . XSX

(
)

add in phase to the exterior perturbation.

G. Estimation of the profile functions !

To evaluate the 6—function multiplier éc in Eq. (63) we must

estimate the profile functions 31 and gy of Eqs. (56-58) that determine

: o v
the pressure profile. The function g4 is readily obtained for typical

PR
]




stellarators with +%p/my << 1 (cf. App. A), since the resonant

coefficients in Eq. (57a) are very small. Thus one obtains

With this term alone, Eq. (56) has a simple physical explanation. The

- pressure gradi-ent averaged over the modified surfaces,

‘do dP  ,_ - da 9
| -5, = P& [ o
oy W g 2T

= P'(R)+ %) .

is constant.

With the single harmonic approximation, .

I = Soo@) + F W) cos (2 (atag))
the second function go(X) contains four ‘terms,

do % - <x>°

go(X) = (’}'Bf)ll/?)lG-f,-I'.)[gég J "= 2 Joo " Ji cosipag<cosl o>

2m b d
: cosz(l;-'o;)—<c'os(l o)>?
+ ﬂzcosglcx fg—o-‘v L. - T
71 r-o0 2n X(?,CX)
2 5 da sinzlra |
+ 47 sin®p.aq [ -2—7;-;&—;)— (64)

Near the island, the first term scales linearly with the island size

and is independent of ¢

re Thus, it essentially produces a modification

of the function gl(}‘('). The last two terms are the previously noted10
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resonant Pfirsh—Schluter transport terms modified by the presence of
the island. In the absence of the island, these terms become infinite

as one approaches the resonant surface, thereby flattening the pressure

profile 'in that region. Thisﬂsingularity is eliminated once the island

structure is accounted for. Nevertheless, these terms remain but scale

inversely with the island size. The remaining term behaves like a
.cross term With an intermediate scaling.

The last three terms in Eq.‘(64) are important only when £he
islands are exfremely small, that is, at very low values of . These
terms can be neglected if they are small relative to the first term in
Eq. (64) or to the function g,- Together, these conditions allow us to

neglect the last three terms in Eq. (64) provided either

dinVv’
6+ >> ——— ¢ 65a
v | (652)

or

danv’ -2

R 2
ep|nyln ey + 2nyef +p

_flll/g (65b)

6+ >> + zn”aﬁ(fr—mo/zo)"z]

applies. [In these estimates we have kept only the JG,O and ‘ﬂ&O’mO
terms in the sum of Eq. (58).] Usually, the restriction (65a) applies.
The regime where neither of Eqs. (65) applies 1is uninteresting since
then the islands are extremely smali, 6+ S £,.d4nV’/d+, as seen from
App. A. Therefore, for the remainder of the section we work in the

intermediate regime where Eq. (30) and one of Egs. (65) applies. In

this regime we find the pressure profile
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P (x) = (Py/#p)/[x0(X) + &(xg = <x>)] (66a)
where
§ = (L gty 2 (66b)

2. ‘
£y n +en, /eo4en (en /5y )2/ (e pmmg/2g) "

In typical systems, é < 1.
H. Calculation of Q

To complete the calculation of éc we insert the profile (66) into

the integral (63). The result is

A 1 ‘I X4 7z ~ S
Q =~ 5 ( HGoPi/+i2)6vu(@)sign(x,) (67)
where
. 4 He <cos (L x)>
| +rXc | Xsx xgt+e (xg—<x>)

A graph of u(g) is shown in Fig. 2. As is illustrated in the figure,

u(0) = 1, and u(g) remains of order unity for very large values of g.
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IV. Combined interior and exterior solutions
Together,the results of Secs. II and III give the widthsyof the
magnetic islands. A closed set of equations is obtained bf inse?ting
the interior result (67) for 6£m into Eq. (23). In general,_thié set
of equations is nonlinear and couples éll of the considered hélicities.
In this section we obtain scaling laws by using the approximation of

nearly circular flux surfaces. -

By combining the result (67) for élm with the exterior.

Egs. (23-25), we obtain

4o/ Xgm = BlEgn + Agu2lerxen ! Psien(s Xyp) ] | (68)

‘where X is X, (¥y,) with x, _as"defined by. Eq. (61), and. the

coefficients ¢ and 4 are given py
= (400 g )
and
dgm = —2P; jéou<é>D¢<mmz,m>/w»~;i ~ ~/1ed) lanV’}&flsign(P-;%o%

The solution to Eq.'(68) for the island width G*Qm is

“
g

Sty = -;— [6d,, + (6°a%, + 4618,,1)2/%] . ‘(69)A

From this equation we see that at low values of f#, the island

width is given by
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by = 1884yl Y2 ~ 16e, 1 Y/R/(,0) .

At values of f greater than the transition value

~ ~“o . d+ 2

€om

the dependence of the island width depends markedly on whether there is

a magnetic well (alm < 0) or a magnetic hill (&lm > 0). When a

magnetic well is present, the width saturates, so that in the limit of

large f (but within the low—f approximation) one finds

>
ZAm _d+ . (71)

dtlm = Iclm/dlm' = Y 2y’

As discussed in Sec. III this result is applicable only once the

island is larger than the size (65) required for flattening to be

insignificant. Thus, Eq. (71) applies only when (d#/dan')z > &, If

this is not true, the island grows to the size given by (65). That is,

the island growth turns off"as soon as the flattening effect is
diminished and the curvature effect comes into play.
In contrast, if a magnetic hill is present, the island width grows

linearly with g for g > By:

6+ = By (72)

It is interesting that - alm, the driving term from the three
dimeﬂsionality, has dropped out of this equation. This 1is consistent

with the fact that at low . resistive interchanges are unstable when




V" > 0, and that Eq. (71) provides the nonlinear saturation level for a
single mode. The main difference is that eim #0 eliminates' the
unstable symmetric equilibrium solution 5*£m = 0.

Perhaps more important is the fact that Eq. (72) predicts island
overlap for arbitrarily low . This is due to the fact that the island
width predicted by Eq. (72) scales as L,

| . =R

while the mean density of islands with &<L is given by dN/d+ = % Lz.

Stochasticity occurs'z2 when the overlap parameter 6+dN/d+ exceeds
approximately 2/m. Thus, omne expects to find stochasticity once
islends with &=1,...,6 are considered, where
5% d | '
- .
L ~ — . 74
(8) 5Id£nv,l | (74)

We note fhat the flattening effect of Eqs.-(66) cannot come ‘into ‘play

since the width predicted by Eq. (73) greatly exceeds the necessary

width (66).

v’ —
jednV_ -1 - . (73)
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V. Applications and Discussion

The -proposed3 (£0=2, m0=12) stellarator ATF provides a good

illustration of these ideas as it has a magnetic well region near -the’

axis and a magnetic hill region towards the edge; For this machine
typical values are ey ~ 0.15, ¢y ~ 0.5, + ~ 0.5 and dinV’'/d+ ~ .15.
With the écalings of App. A it is easy to see that island effects will
be insignificant in the (inner) region of magnetic well. ' In the outer
region, the smallness of the coefficients indicqte;‘ﬁ >>Iﬁt. ~For ATF,
a typical value is d+/dfnV’ ?« 7. Thus, the n_=1',...,14' islands will be

overlapping at § of order 1%.
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VI. Discussion

The existence of three—dimensional scalar equilibria has 1ong been.

an issue. In part this is due to the §d&/B critf.erion.19 (Thé fact
that scalar pressure toroidal syétems must satisfy this criterion,
" while even highly integrable vacuum fields do not,la‘ indicate that thé
introduction of a small amount of pressure is. a singular
.perturbation.) In' part the issue arises because one expects islands
and stochasticity to be present at some level in. a system without
special symmetry. Once oné'accepts thé presence of_islands; the ﬁdl/B
issue is resolved. The important probleﬁ is the 'cglculatibn of the
island size and, hence, the levellof,stochas§icity;

The present low—g caléulation is & first step. Two important
effects have been found. The plasma produces slowly varying exterior
currénts far from the island. These currents produce resonant fields
in much the same way as an external coil. The plasma also produces
sharply peaked currents near the island which can either ephance or
limit island size depending on whether the average curvature'ié bad or
good. In .typical stellarators with tlo/mo << 1, these curfents aré
sufficiently strong, and the island driving terms Egm 8re sufficiently
weak (see App. A), that the importance of islands defends dramatically

on the presence of a magnetic well.’
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If the well is present, islands are small. In contrast, when a
magnetic hill is present, island overlap occurs forvarbitrarily low B.

One should note that this o?erlap does not mean complete loss of
equilibrium unless the low-order islands overlap. At low.ﬁ, where only
the high-order islands overlap, the fesult.is an enhanced diffusion due
to stochasticity. The calculation of the diffusion constant is outside
vthé scope of this paper, which a priori assumes that overlap is mnot
present.b |

The physical picture is thgt the three-dimensionality gives a  
driving force for the resistive interchange mode. If the mode is
stable, it cannot be driven to significant amplitudes by the small
effects represented by the resonant sszs. In confrast,_if the mode is
unstable, it grows to very large amplitude before it saturates;

" In stellarators where one cannot;assume fio/mo << 1, one cannot
ﬁse the well as the only criterion, since the presence of low order
rationals no, longer allows one to show that the resonant coefficients
€o.m are extremely small. K While mno such stellarator is currently

operating, new optimization techniquesa’18 indiqate that one can be
built. In this case one must evaluate the island sizes with Eq. (69)
and check for overlap.

A slight generalization of thisiproblem is to allow fof‘ a  small
island producing vacuum fieldvperturbation. This essentially modifies
Eq. (868) by the replacement ﬁalm - Balm + 4#;X§;¢ . This indicates
that one could tune away islands provided there is a magnetic well so

""that the island size depends on 82 However, in the case of a

m
magnetic hill one can not reduce the island below the size of the

saturated resistive interchange (72). It also follows from this
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analysis that the interchange forces will begin to reduce the vacuum

island once § begins to exceed éfvacla%ldf/dlnv’l if the average

curvature is good. (6+,.. = |4+/Xjn 1/2.)

A future direction for such island calculations is the inclusion
of effects of higher order in . As f is increased the plasma shape
distorts, which causes both the aﬁm’s and V" to change. (In the course
of thé work it has come to our attention that Reiman and Boozérzs havé
calguiayedk the. O(8) correctionsA to the £y 's.) Provided the ;lm{s
reﬁai# small,.a change in_théir magnitudevshould not affect - the b&sic
conclusion - for typical stellarators with *io/ho << 1: islands are
small if fhere is a well but overlap if there is not. More important
is the fact that as g increases the_resistive interchange stability
parameter is modifiéd24 to Dp tather than'simple ?". 'In this case’ our:
physical picture leads us to bélievé'that At higheg values of g, DR Aa

rather than V" determines the importande of islands.
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Appendix A
Estimation of the Fourier Amplitude &g,

A stellarator magnefic field consists of a constant part, <B>; a
helical part, Bh ~ <B>ahcos(209fmo¢); a part that varies due to
tofoidél effecﬁs, Bt ~ <B>atcose, where £y is given roughly by the
" inverse aspect fatio; and all other terms that can be obtained by
nonlinear coupling. The various coefficients, <B>, Epo and €y, vary
from surface to sﬁrface. Since B nowhere vanishes, the coefficients th
and ¢y must be less than unity. Typically, ¢y, never exceeds 0.2 while
£y never exceeds 0.15. Thus,:sh and g4 can be assumed small. .Since
I= 7/83, the corresponding terms in the Jacobian are
:;(=ﬁﬂb0[1—28hcos(loe—mow)—Zetcos(Q)j + other tefms generated by the
nonl inear coupling.

Nonlinear coupling can produce only those variations that.are
consistent with the my—fold beriodicity in ¢. This implies that .eg
must venish unless (&,m) = n(%p.my) + (k,0). Various models of the
nonlinear 'coupling‘ can be used to estimate the size of these
amplitudes. From the exponential model, d~ afboexp[—Zahcos(£06¥m0¢)

- Zetcose] , one obtains

DX
: ~ Bt (A1)
nlytk,nmg, n'k!
for the coefficients of .Eq. (10). From the inverse model,

-1
F~ Aool1-Repcos (298-myp)] - [1-Reycos(8)] ., one finds




gt mmy ~ SROE (A2)
In either case the coefficients decrease exponentially with  mode
number.b
The exponential decrease impligs that the resonant coefficients
are very small in typicél stellarators. For eXamﬁlg, the l&rgestv such
coefficient in ATF,3 a .(2,12)' stellarator  with maximum rotatiénal
transform near unity is £12,12" Fér ATF, typical vélues are
Ep ~ &y ™ 0.15. Thps, we estimate £12.12 ~ 8.6><10—10 on the basis of
the more pessimistic estimate (AR2).
This sméll size for the resonant terms is due to +the fact that

3-5

typical stellarators rely on fio/mo << 1 1in order to have good

magnetic surfaces in vacuum.s'7 (This need not be true of optimized

8.9

fields or fields with rotational transform.hested between low order

rational.) For resonances with n=1, "this implies k/£0 >> 1. Thus,

according to (A2) the associated resonant terms 8£0+k,m0 ~ ah5% must be
very small.

In addition there are variations caused by coil winding errors
that lack the mo—field periodicity. Without more knowledge of these
errors, the estimation of the corresponding ez’m’s is difficult. One
can expect them to be present but exponentially small, as in (A2), for

large values of £ and m.
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Figure Captions

1) Contours of X (from Eq. (33)) at an equilibrium resonant
surface. ¥ and o are the equilibrium radial coordinate and
resonant angle, respectively. 6% is the island width, and

X = Xgy ©n the separatrix.

2) Reduction in the island current due- to island induced

~ transport.




T "OI4

R S U Uy




100

10 <O

FIG. 2



