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Abstract

Wg consider a symmetric tandem mirror plugging a long central cell,
with plugs stabilized by a hot component plasma. The system is taken to
have a flat pressure profile, withba steep edge gradient. We then comnsider
the interaction of the precessional mode with Alfvén waves generated in the:
central cell. This analysis is non-eikornal and is valid when mA/r < 1 (m is
the azimuthal mode number, r the plasma radius and A the radial gradient
scale lengthj for l&ng~wave1ength radial modes. We find that without FLR
effects the precessional mode is always destabilized by the excitation of
the Alfvén waves for m = 2. For m=1, it 1is ©possible to achieve
stabilization with conducting walls. A discussion 1is given of how FLR
affects stabilization of the m 2 2 . long—wavelength modes and of
finite—-Larmor-radius stabilizatién of ﬁodes described >in the eikonal

~approximation.

*Permanent address: Lawrence Livermore National Laboratory, University of

California, Livermore, éalifornia 94550




I. INTRODUCTION

In tandem mirrors it would be desirable to operate in‘an gzimuihally
symmetric mode. In order to obtain stability of such a systémvit has been
suggested that one use a hot component plasma that is dynamically decoupléd
from the respénse of the background plasma. Unfortunately, even if groés
MHD stability is achieved the system can still produce negative energy
excitationsl—3 that will cause instability when interacting with positive
dissipation or positive energy waves. This case was analyzed in the eikonal
limit4 for the excitation of shear—Alfvén waves 'in the centréi céll.

A principal purpose of this paper is to extend the eikonal analyéis to
long wavelength modes. If we model the plasma as being flat with a sharp
density gradient, we can perform a long—wavelength layer  analysis if
mA/r<<1, where m is the azimuthal mode number, r the plasma radius and A the:,
plasma boundary layer thickness. In this Casg we excite surface Alfvén
waves that damp due to a resonance at the local Alfvén speed near the edge
of the plasma. We find that both the positi;e wave excitation and the
damping lead to mechanisms which destabilize the precessional mode of the
hot plasma. The growth rates in various regimes are calculated. A somewhat
similar calculation has recently been discussed by TimofgevﬂS

Recent work6 has shown how conducting walls Vcaﬁ{ in principal,
stabilize the m=1 mode by converting the preceséional mode to a positive
energy wave (the_,MHD energy is then also favorable). This mechanism is
inciuded in our analysis and can stabilize the m=1 mode under suitable
conditions. Conducting walls' do not appreciably alter the dispersion
relation for the higher-m modes. However, if +the hot component plasma
consists Qf only a few Larmor radii, finite‘Larmor raaius and intermnal

compressional effects can stabilize in & similar robust manner. This
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mechanism is illustrated in the eikonal limit. In the layer mode limit,
mA/r<<1, an appropriate analysis has been performed in the z—pinch mode17,
wherev there is no dependence‘glong a field line. Incorporating this result
enables us to conjecture with some assurance the final combined result. We
conclude that there can be a window in parameter space where a hot plasﬁa
component can operate stably, free of negative energy waves. This
conjecture could be tested in present day experiments with hot—electron
plasmas, but would require hot ion plasmas of several MeV iﬁ later

fusion-sized machines.

IT. GOVERNING EQUATION FOR THE mth AZIMUTHAL NORMAL MODE

’ 8,9

We consider a long—thin, low-g, axisymmetric plasma equilibrium and

use flux coordinates to express the magnetic field as

B(z) = B(z)b = VyxVs
where z is distance along the magnetic axis,. Y = é‘B(O)r2' i$’ the'vaxial
magnetic flux and ¥ is the ignorable azimuthal coordinate. The geometry(
indicated schematically in Fig. 1, is that of a solenoidal central cell ‘of
length BLC bounded'by simple-mirror end cells of length Le<<Lc in which the
hot species is trapped. The plasma density and pressure are taken to be
constant out to the plasma edge at w=wp, and thereafter to fall smoothly to
zero over a boundary layer of thickness AY. There is a flﬁx—conserving wall

at Y=y, We will investigate modes that are primarily flute—-like in the
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end—-plug regions. - As a .result the quantities in the end cell will
ultimately depend on averages over the cell.

To simplify the analysis we take as the goverﬁing equation for the mth

azimuthal mode of the perturbed potential

2 4R
Ly _m e, 3 (o Bwise)
- Y ~dz oY dz 4 322 Y B2 Y
oo o 2 p+Cp=0 (1)
. l4¢'B2 14
where
2 fy 3 '
G = -n® 2o (By +HP) B (2):
Here KWEK/Br and « is the fieid' line curvature and r the radius. The

quantify G agrees with Ref. 10 aftier we average G in the plugs over z with ¢
constant. This is exactly what we do to solve this problem and to this
extent Eq. (1) leads  to a rigorously correct form. We have expreséed the

curvature vector in the form Eozﬁ = xwvw, and the pressures of the warm and

hot species as

with L and 1 taken with respect to B, the unit vector along the magnetic

field. The function H(w) appeéring in Eq. (R) jg%,10
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H(o) = - ~ | ‘ (3)
| [+ (/) 1] = 1

where W, is the average curvature—drift frequency and is given by

a<nh/B)
1 q [ dz 5y
% oaz PP
Iy ty 3y

~

By is a parameter characterizing the f value of the warm plasmallilz defined

as
3P, 3(P,. /B)
‘ fAdz lh 1w
5= By oY
w k., 3(P +P;.)
/ dz342 lh'" Ith
B oy
and Kg is the self-curvature caused by the bowing out of the equilibrium

with the specific definition given by®.

1, By 42 (Pih)
kg 20 g2y g2 e

[ dz, (P +Pyn)
B ¥ Y

Since the drive coefficient G is proportional to both Ky and OP/dy, it is
non—vanishing only in the boundary layer in the end cell. We also define a

parameter g,




ITI. DISPERSION RELATION
The axial structure of the eigenmode.has a different character in the
central and end cells. In the long solenoidal central cell where flux—tube
"bending and inertia are competitive effects and the local drive is small,
the modes pend to be standing wéveS'with axial wavelengths less than or
comparable to Lc' In the. shoff Aend» cells, on the othér‘ hand, +where

flux—tube bending dominates thé energetics (w = @, << ve/Lg. ve = end cell
Alivén velocity),’the modes are flute—-like. We exploit this structure to
obtain a dispersion relation by solving Eq. (1) in the central cell and
match the result to a near—flute mode in the end cell, where the presence of
the driving term mekes the equation more complicated.

Toward this end, we introduce a Fourier representation in the central

cell. Since the symmetry of Eq. (1) allows modes that are either -even or

odd in 2z, we set

e(v,z) = ) ep(¥) CS(kpz), (4)
n=0 - .
where
.j cos(EE z) , n20, even modes
c
CS(k,z) = 1 (5)
(n— 27 .
sin | T z], n>1, odd modes




and

1

—(1+6 ) L /LC dz ¢(y,2) S(y2) | (8)

o () =

The Fourier transformation of Eq. (1) then leads to an equation for ¢n(W):

dp 2 0. - v
9 2 ny _ m” "c R R
aw[ ( k ) aw] 4y B2 (w knve)en

3p(L)). 2 3p(L_)
9 9 Ttely _m” “7r7Te’
CS(kL){a«p[“”aw az] o 92 ) (7)
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where c¢ refers to quantities in the central cell, vé'is_thq Alfvén speed in

the central cell. Note that CS(knLé)=i1 and the right- side of BEq. (7)

involves the eigenfunction only at z=Lc. To eliminate the szefivatives ine. .

the boundary term we integrate Eq: (1) over the end cell to obtain

3 [1,//—§— a€0<LC) _If_ a‘ﬂ(Lc)
oy dy 9z 4y 3z
= ]L0+Le dz[ji (v B__.QQJ _ EE BQE ¢'+ Go)
i e 5ROy 4 g2

The flute—like nature of ¢ in the end cell allows wus to replace the

z—averaged eigenfunction on the right side with ¢(L ), giving
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Y dy  Jz 4y Iz €' Iy BR Y
e
2 : .
2 p.w : ‘
m- e . .
- w go(LC) + G, (p(LC)} , | (8)
e

T L AL Lo+L o
where LG, = [/ ¢ € dz G(z) and Lepe/B§,= sz € dzp/Bz. Substitution of
c
Eq. (8) in Eq. (7) then gives an inhomogeneous equation for the Y—dependence

of the nth Fourier mode:

3o P e
ol 2 R 2 n m-"¢c , 2 .22 :
aw Y 2 @) ) 4 2 (@nveden
C C
L - 0 w? 8¢(L )
- 2 e d e c
=TT, o I, Stale) Gy v
‘n,0 “e . v Be (4
2 .
2 p_w
m e .
- = L) +G L 9
P o(Ly) + G, (L) } | = (9)
< .

Outside the boundary layer, where p is independent of @, the solutiomn
of Eq. (9) is of power law form. The solution that is regular on axis and

vanishes at the wall is
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Thus, the logarithmic derivatives of ¢ at the inside and outside edge of

the layer are

[l L oy, o
Y |

1 d¢n P o .
¢—d—=4 : : (10)

" 1ol o

wherg the constant Am accoﬁnts for the effect of the wall:

)"
(/)" — 1

+ ;é:(fﬁ) | o (11)

To complete the determination of Pn We.infegrate between.wpsw<wp+Aw and

find

] R
pe(wz—kﬁvg) Y delv) _ pc(wz—kzvg ) J%L on(¥p)

a,w V.I'l CQ
A B 3WL) 1 pe@e(¥.Ly)
+ T — OS(kyLo) [-ee S ¥ +
1+6, o Le B2 w2 g
Ve PR |
2 WeWewL)] + gl | ) (12)

P
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where the subscript "o"” denotes the value of quantities for w<wp. At w=wp

Eqgs. (10) and (1R2) give,

2 R =
Mm| Peo¥n Veo g"n("// +y) pco(w kn co)¢n( V)

2 ' .
L SRR A) Y+
2 2 e €o 2 P
+ ——— B¢ — ¢s(k L) [——— - =/ dy G.] @(v.,L.) (18)
; n . C
1+6, 4 ¢ L, c Bz m e P .

-~
~

It remains to determine wn(w+A¢), To do this we integrate Eq. (12) with the -

assumption that the inertia terms on the right hand side are small and can
be neglected and this approximation is ultimately justified when Le/Lc<<1'

One then finds

'g//p+A’V/ dfgb i

¢n(w +ay) = ¢ (w ) + f {poo(w _kn co gw

a2 )"L--L ¢n<w ).

L
- B CS(kL)f”—“’”—G(w )o(Lg ¥y)
®n, o c p

, g 2 2.2
As» long as w kn co

> 0 the denominator of the integrand #anishes somewhere
_inside the boundary layer. To treat the singularity we let w have a small

positive imaginary part and use

1 5 (v,

m ———= - = 3
2 |9p./3v]

o (PiEe?) Sgn(w)

where Y=y, is the resonant’ surface for the nth Fourier harmonic, kﬁvi(wn) =

(Rew)g, to obtain
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, ¥_sgn(w) Im]|
- ;s n 1 2. 22
n .
L L
— ,....__2 2 _.e_ 1l’I]. Jﬁ__d ‘ ) .
TN Be LC.CS(knLc) éb W Ge(w Z ¢(WP:LC)) (14?

R R

' 2
where 0n5w[(Rew) —k° co)]

is the Heaviside step functiop. [We are primarily
interested in the imaginary part of'¢n(wp+A¢)—¢n(wp). The small real part
leads to a small shift in the real frequency:of‘%ﬁ(mA¢y%$).] Elimination - of e

¢n(¢P+Aw) bétween Egs. (13) and (14) then gives,
PnWp) = 4,(0) CS(kL0) o(vy L) | (15)

where

2,00) = —E— (B ) + o, I () () 1) + 0]
L n,o . : ’

2.2 2 .. 2 2.2 y1—-1° ’ '
x [(Alml+1)knvco_w —i9 o (0"-k Ve )] , (16)

P ' . : e :
2 € 2 : o , . ; .
'}’MHD("//) = —2|m]| LB Voo gll/i Ph("//) >, O‘ o R R T (17).
c’e e . . B} . . :
2.8 2
0 k>v L v
o =1p-=2 2_CO /\msgn(“’) <1, a=——"2c<1 - (18)
o2y lde /W, 2 L. .2 _
P, ; C =¥n w C Veo

" In ;(16)v the qﬁantity ;W is the average curvature in the boundary layer of .
the end cell, and we have neglected PW relative to.HPh‘ The‘ dimensidnless_
parameter ¢n>~.iﬁnm¢¢¢b) 'measuresjbthe'rate at which central—cell surface -

Waves_resonant at Y=y, are dain.ped.ls’14 It is shown in Appéndix A  that the
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damping rate for such waves is y, = anRe(w)A|m|/2(1+A|ml). The end—cell ion
inertia parameter o« is small in the ratio Le/Lc’ and therefqne is negligible
in the long—central—-cell limit.

The dispersion relation follows from using Eqs. (14)—(18) in Eq. (4)

and requiring continuity of ¢ at w=¢p, z=L

e We thereby obtain

- 5 [ (V) +i%,0 878 [ H (@) +o0

n=0 ( 1—HSH, O) (/\ [m,'l'vl )kgvz —ngiﬂncn (wz——kgvg

(19)

-1 CO n co

where AyﬁHD = 7ﬁﬁD(¢b)—yﬁHD(wn) > 0. In the following section we will use -

(19) to determine growth rates in the limit |Im w|<<Re w for cases in which
|Im wl| is both lafge and small relative to the separation between resonant

frequencies, (A|m|+1)1/2 oo/ Lo

IV. DESTABILIZATION OF PRECESSIONAL MODES

In our analysis of the dispersion relation we. assume that:.

1) The éurvature—driff» frequency of the hot species is sufficiently .

high that MHD-like modes are stable, i.e.,.

7MHD/wx << 1 and g, << 1.

2) The reél frequency of the modes wunder investigaton 1is mnear the

precessional frequency, and the imaginary part much smaller




W= w, +‘6w,
0y = 0 (1= e[y ™/ inle - B,) = 0 (e,
60) = 66‘)0 + 171

|6w] << w, - ' (R0)

Note that it follows from (20) that
. K . ‘ L - y .
H(w) = 8° =~ (21)

and
op(w) = o (w,) -
We also define thé parametef

_ 1/2 : v
Awn = w, — (/\lml‘l'l) knvco, (22)

which measurés :the' éxteht- to whiéh the mode is out of. resonance with the
nearest axial harmonic. Then

Awn)

2 W 2.2 _ _
wy = (A +1kve, = Rwohw (1 -
(o]

3) The condition the growth rate is much smaller than the real

frequency requires
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222 , AR v,
5 g (g—ﬁw) *—fE_-" when —— &+ 1
(g—By )y v . L&, (e=Fy)

In  this ‘limit~ we can consider the perﬁﬁrbed response as a»separate
precessional mode in the end cell and cold-plasma shear Alfven wave in the
central céll,Awith a weak interaction between them.  As g—ﬁw becomes small,
the precessional frequency becomes less than the minimum Alfven frequency
and we lose the resonance of the two modes . .Whenig;FW?O,’we_assﬁme
w<<v_ /L., end then we need only keep the n¥0 term in ‘Eq:‘(is)i . The
dispersion relation. is then that of the layér ﬁode discussed in‘Ref.'15,
with a frequency and growth rate w~7~(g7MHD)2/3wi/3. The inequality,
w<<vC/Lc, then restricts the axial 1ength LC under consideration .to
v .
Le << ~1/3 2;3 2/3°
@’ TMHDE - ‘ -
modes with o Z'VC/LC, as :the low frequency limit has been discussed

For the remainder of the paper we will only analyze‘“

vpfeviouslyuls
(4)  The end—-cell ion—inertia term «a is negligible which Vfbllows if

Le/Lc<<1‘

A, |Im o] << (/\lm_|+1)1/2 Al VCO/Lc =

We first evaluate the growth rate, 7, when it is small compéfe& to. the
separation bétween resonant frequencies. | |

When [dw]| is sﬁall enough to be neglected in the denominator in (iQ)tf

' .
viz.
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192 «< 1, (23)
Awn :

we find,

Sw 2 > ’

_=2

w & Z

0 n=0

[(Alml+1)kﬁ go 2]'>’1§1I{D(wp)ﬂyn0 (w _kn co)AVMHD+la [A]mlkn coAyMHD+(w _kn co)ﬂn7MHD(w )]
(146 o) (8 ([N +1 GV E of] Popof (oFavE )P

(24)

First we assume g>ﬁw and therefore wo>0. Then v is manifestly ﬁositive '
definite, and the mode is always unstable in this 1limit. Note that . the.-

growth rate vanishes with o which identifies the mechanism responsible for:

n’
destabilizing the negative—energy precessional mode in this limit as damping
of ééntral—cell surface waves resoqaﬁt at the Alfvén frequency ét V=Y, - If
g~Ew<O, Im 6w is manifestly negapivé,"and ﬁe~ have stability. The reader
will observe in the forthcoming calculations that stability alwaYs arises
when g—§,,<0. . |

To check that (R4) is consisténf with (23a,b) we appro#imate the sum by

its largest term and get (n#0),

[_( 1+ UnwoynA'yI?ﬂ-lD + i 7_1'1]
oo _ 2% (V) ,(Awn)?ym(wp> hw (25)
M (gBm® [+ /00)?] ,

Comparison with (23) then gives the validity condition
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L Y |
N << (eFyp)aef (1+=2-]). (26)

If Aw, Yp << VC/LC,.the mode is suffiéiently resonant so that only one
term contributes significantly to the sum. Then take 6w and Y &8s the same
order as Aw,. Keeping the leading order part of the resonant term in (19)

gives

0w —g2 7§HD(wp)+ianA72MHD

W, '(g_gw) wo(Awn+6w) + iy,

Multiplying through numerator and denominator by.wo(Awn+6w)—itho then gives.

(n#0)
A“’n fw i7’n
2,2 (4 ) (-t ~ o
Sw _ _ g YMHD wp 0 Yo Yoo (27)
Yo (g—EW) (Awn+6w)2+y§

2

This  result o&grlaps with Egs. (24) and (25). 1If g 7§HD/[Aw§(g—3w)]<<l;

then (6wtAw) can be neglected on the right hand side of Eq. 27 and3wé find,

g® vﬁHD(wp)vn

(8=Fy,) (72+005)

Sw =+ i (R8)

Note that here the growth rate can be inversely proportional to 7y . In the




opposite limit, yﬁ<< lAwn+6w|2, where yﬁ can be neglected in the denominator

of (27), we have

2

' 2 2 ‘ 2
&%y (V) g W) 7
dw2+Awn6w+ — = PL pr._ ‘1

(e—By) - (e-B,) Dentow

IT we neglect the right side we find the solutionS»:

-

Aoy Do 2 gz?ﬁHD(wp) 1/2
e
(g=B,)
Thus, if
2.2
: 7MHD(¢E) S 589]2 ,
(g—F) €

there is instability, with

Fhany) 21/

= y -

(e-B,) %

the maximum growth rate occurring exactly at resonance.

of equation (31) applies, we need to keep the right hand side‘ofﬁEQ; (29) to

find instability. Then setting,

~

ow = dwi + 6“11’

(29)

(30)

31y

(32)

When the opposite




‘with |6w1| << |b6w,| , and Gwi given by Eq. (30). We find that the solution

for dwy is,

tio. 2.2
iRy ey (Vo) \
6w, , = a P (33)

B (B e (120)

and

e 2.2
. 4g™y
AB = 1— MHD - | (34)

o146, ) (g—F,)

Thus, the root near w,(w_.) is always unstable (stable) if g—EW>O.' If g—F,<0
observe that both roots are stable as A>1. Note that in the limit

yMHD(wp)/Awnéo, the unstable root agregs-with Eq. (R8).

‘ B. |7|.> (A|m|+1)1/2 T v.o/Le

If the growth‘ rate 1is larger than the separation between resonant
frequencies no single term dominates the sum over axial hafmonicsl.:Thgh' in
the 1limit where +the damping of central cell surface modes is weak~enoﬁgh
that o, can be neglected in the dispersion relation, the summaﬁion can -be

expressed in closed form. With the aide of identities found in Ref. 16, we

find that Eq. (19) becomes
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ap(Wple (5 + By)
= - @y y 1 1
(g - -:;o— - EW) ‘ Ii:o (1+6n,0) [wz_(/\[ml_i-l)kgvio]
K
wL
T Wple (<= + B Ly cr 01/2 )
_ @y (1A 1) v,
w % 1/2
(e = 3 = Fu) (AmpD) /Ry o0
wL
gB'}’I%ﬁ.m(Wp) LC CT ( Cl 5 ) v
(147, )1/ Ry R
= [m| = - (35)
(g—EW) Sw (/\|m|+1)1/2 VCQ
where CT = tan(-cot) for odd (e;en)' modes and o = wK(g—EW)+6w. For

[Imw]| > (/\lm|+1)1/2 vco/Lc-thewtrigonometric functions

by

CT-["‘.'_QFC =1,
(‘/\|m|+1)1/2 v

co

in which case (35) gives

2 2
i g MHD ¢

2By, (-/\|m|+1)1/2 v

co

Thus, we find instability when g—Ew>0, even in the abs
Alfven resonance excitations..'Here the negative—energ

destabilized by excitation of many Alfven surface mode

’éfe’well approximated

(36)

ence of damping due to

y precessional mode is

S.:




The validity condition on (38) follows by demanding

7] > A+ Y v o/Le,

—— > g — By
(/\'mrl'l)vio

w

-~
~

while the condition for neglecting o, in the dispersion relation is Yn<<r -

Of course it has been assumed throughout buf”analysis that Y<<w, -

V. CONCLUSION

We have ahaiyzed the interaction of long—wavelength precessional . modes

of a 'hot component plasma, with Alfvén waves in the central cell_of‘fhé-lii

tandem. By assuming that the wave interaction of the precessional ‘modé._in

the plugs’~with the cold plasma waves of the central cell are weak, We’hﬁve'

calculated the growth rate, <, that arises due +to this interaction.

Roughly, the growth rate can be expréssed by the interpolation formula,

5 (g7§HD)2
Y
ggyﬁHDyn i AC"n
Y = min { 5 , ,
(e-By,) (vg+owy) A (1-2)(g-By,)
gy 27l - ‘ o

(eB,) V/E ’4 (g?ﬁw)(A|m|+1)1/3yco

These grthh rates afe depiéted'schematically in Fig. 2. These results ére

qualitatively similar to that obtained from the eikonal theory, in that the
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negative energy precessional mode is destabilized either by exciting a
surface Alfvén wave, or through the dissipation associated with the Alfvén
resonance. However, with a conducting wall in the environment of thé hot
plasma it is possible to conver£ the m=1 precessional wave‘ to a pdsitive
energy wave, and in that case the Alfvén wave excitation in the central cell

6

is stable.” It should be noted that Eq. (37) is not valid if g—Ew is too

small, as the assumption y/wo<<1 fails. This regime is the threshold for

the onset of MHD-like instability.

This stabilization mechanism is not effective for higher m numbers,"butq

it is still possible to convert to positive—energy Wavés usihg finite Larmor

radius. For example, the previous eikonal analysis4 leads to .a form similar

to Eq. (35),
W ~
— + L
(wK _ﬁw) ¢ 7MHD(e1k) wL )
1= - T ) (38)
[1 - — = Byl c c
K
where
ds 3 .
5 B “v 3y Fntfin)
-7MHD(elk) = 5
dsklp
B2
where kl is the4perpendicu1ar wave number. In obtaining Eq. (38), the hot
component FLR terms derived vpreviously,4 were mneglected. However, when

including the FLR terms, the dispersion relation becomes-
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By’ o
w 2 2 “h 2 .
— + L - 1— k eik
1= ' : ; cr(~ ) _ o (89)
' 3 2 2 Ph c ' ‘
1-— - - kVay — v w
where CYN is the hot—electron. Larmor radius. The structure of this

dispersion.reiation is the same as Eq. (35), and complete stabilization
results if kiaﬁ 6h/(2KA)>1.

Eq. (39) is still an eikonal result. .For_thé layer mode analysis the
results are not‘cbmplété. Recent'analysis7 applies to the layer mode FLR
%)

problem when mA/r << 1, m® >> 1 and an FLR term of the form m 6hah/(2KAr

arises in the hot component response with r —(Bw /B)l/2 However, as thg
m=1 mode is nearly rigid so that therevshould be no FLR term, we expect the

2

' FLR term to be proportional to mv-1. Thus, the conjectured dispersion

relation is,

1»f:'&] fk (m l)a 8 '  ;v | oL .
(2 + B (1- 25 [l 1M1 - ———f—ﬁ) ) L O o
@y : mix ~ RxArp (A|m|+1) Voo

1= — . Vv
- (mP-1)alg, & ‘ Voo (A I+1)1
e - = [y ™ o
C @ v BKArg O R
(40)
(mz—l)agﬁ P : . '
Thus, if h h‘+ lmTK [1+ (w i )lml] > 1, one achieves complete
ZKAr o

stablllzatlon with a cfase fitting conducting wall and with a hot component_‘
whose Larmor radius is a reasonably large fraction of the radial scale

length. In reactor conditions one requires ions in the MeV regime
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" Appendix A: Damped Central-Cell Surfac; Modes

Here we derive the demping réte for waves resonant at the Alfvén
freqency in 'fhé ;boﬁndary; layer of a éylindrical ﬁlaéma column from our
general dispersion relafioh,ﬁqlT(IQ). The appropriéte‘ limit' isb 7§HD(wp)'
AyﬁHD, o+ 0, in ‘which .case the denominator in (19) must vanish for.séme

axial mode number. Thus,.the dispersion relation is simply

-~
~

2.2 2 : 2 R _2
(Almf+1>knvco - 0% + io (0 _knvco) =0

Writing w=w —iy, ahd discarding terms of a(yﬁ);_we obtain

W2 = (Alml+1)k§vgo, | o (A1)
°n Nm| S . » o
T >0 | | | BT

W,
p n
2 A|m|+1

(Note that for convenience we have defined ynkto be positive.) ;Thé ‘waves

have a}’reai fréquency equal to the Alfvén frequency on that sﬁrfdéé ih'the

boundary layer where the density is po/(1+A|m|), i.e., the reéqnant ‘surface

Qﬁ—knt/b(wh)'=-O. They are damped at a rate prqpbrtionél to the thickness
of the'bdundary layer [recall Eq. (17)]. These waves have been studied by

15 and Hasegawals; Eqs.i(Al,AB) are equilivalent to their

Chen and Hasegawa

results, corrected for the presence of,avflux—conéerving-wall.
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Figure Captions

1.

Geometry of the axisymmetric tandem.mirrbr. Axial profiles of B

and the number density of warm and hot particles is shown in (a).

In (b) -the w4dependence.of B, the magnetic fiéld, p, the density,

and p, tﬁé pressure, is indicated. -

Schematic diagram of the parameter regimes in which various 'limitél
of the dispersion relation (i;&icated by the circléd equafion

numbers) are valid.
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