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Relaxed states in relativistic multifluid plasmas
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The evolution equations for a plasma comprising multiple species of charged fluids with relativistic
bulk and thermal motion are derived. It is shown that a minimal fluid coupling model allows a
natural casting of the evolution equations in terms of generalized vorticity, which treats the fluid
motion and electromagnetic fields equally. Equilibria can be found using a variational principle
based on minimizing the total enstrophy subject to energy and helicity constraints. A subset of these
equilibria corresponds to minimum energy. The equations for these states are presented with
example solutions showing the structure of the relaxed states. © 2010 American Institute of Physics.

[doi:10.1063/1.3505326]

I. INTRODUCTION

In a variety of astrophysical settings such as jets pow-
ered by gamma ray bursts, supermassive black holes, or pul-
sars, energies can be such that the bulk motion of a fluid
approaches the speed of light, and/or the thermal motion is
comparable to the rest mass of the particles that make up that
fluid. These cases necessitate a relativistic treatment of
plasma motion. Previously, MahajanI showed that the dy-
namics of relativistic charged fluids could be treated using a
minimal coupling formalism in direct analogy to the canoni-
cal momentum prescription of single particle dynamics. This
formalism has been successfully used to describe both linear
and nonlinear waves in relativistic pair plasmas of pulsar
magnetospheres.z‘3 Presently, we demonstrate that there is a
natural minimization principle associated with the minimal
coupling formalism. When total energy and the helicity of
multiple charged species are conserved, the application of
this minimization principle to configurations leads to relaxed
equilibrium states. We believe that these states give a better
description of the physical system and can be used as more
accurate starting points for subsequent dissipation and slow
evolution.

The outline of this paper is as follows. In Sec. II, we
present the formalism behind relativistic magnetofluids and
derive a minimization principle for finding equilibrium
states. In Sec. III, we present some examples of one dimen-
sional solutions to the equilibrium equations derived from
the minimization principle. Finally, we conclude by summa-
rizing our results and discussing the applicability of these
relaxed states to astrophysical phenomena, namely, the
“striped wind” of a pulsar nebula.’

Il. RELATIVISTIC CHARGED FLUIDS

We consider an isolated system of multiple fluids and
take the mass-energy to be small enough that we can neglect
changes to the geometry of space-time. We thus take the
Minkowski metric g”’=diag(-1,1,1,1). The velocity four-
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vector is U*=(yc,yu), where u is the local three-velocity
of the each fluid species and y=(1-u?/c*)~"2. Then,
U?=U*U,=-c*. We assume local Maxwellian closure, so
all of the fluid quantities are implicitly functions of position
(e.g., n, T, and p), with n as the proper density of the fluid
and the pressure p=nkT.

Each species (labeled s) satisfies mass conservation,

3,I'{=a,(nU;) =0, (1)
and has the stress-energy tensor
T =pgh” +nimG(z)U*U”, )

where nmc>G(z)=p+ne is the enthalpy (pressure plus inter-
nal energy) density of the fluid,” and we assume some fluid
closure that gives the enthalpy as a function temperature
(z=mc?/kT). The results presented in this section are inde-
pendent of the specific form of this enthalpy. Each fluid has
a charge ¢,, coupling it to the electromagnetic field through
the Lorentz force equation,

a,T¢" = (qT",) F*", 3)

where the electromagnetic (EM) field tensor FH'=g*A”
— A", with A#=(¢,A) the four-potential.® The EM field
also obeys Maxwell’s equations (F is the dual of F),

4
A FH = —J" 3, F*=0,
c
and has stress-energy tensor
T = i( g"F o gFP" + ! " FPF ) 4)
4ar p 4 B

In order to close the system, we define the current
J'=2q,I'; as the sum of the fluid currents, which is required
so that the total stress-energy Tl =Tgy+2>,T%" is divergence
free (9,70, =0).

Expanding the force equation (3), we obtain (we sup-

press species labels except when needed for clarity)
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1
U’d,(mGU™) + —d*p = qF*'U,,. (5)
n

Using U"d,=d/dt="yd/dt=y(d/ dt+u-V), we can break this
up into components,

d ) 14

= (mc*yG) - ——p=qu-E, 6
PALLS) yarh = (6)
d 1

—(mGyn)+ — Vp=qg(E+u XBJc). (7)
dt ny

This is the relativistic generalization of the Lorentz force
equation, and we see that the effective mass is increased both
by bulk motion () and thermal motion G).”?

If we define the entropy o through

1
T80 =mc*d'G — ;a”p, (8)

we can rewrite the evolution equation (5) for each species as
qU (F*" + (c/q)S*") = qU M"*"=TJ"o, 9)

where S#'=d*(mGU")—3"(mGU*") is an antisymmetric ten-
sor constructed using the temperature transformed momen-
tum as a potential.]o’ll This is the “minimal coupling mag-
netofluid unification” model described by Mahajan.l
The justification is that the combined potential TI"=A"
+(mc/q)GU” can be seen as the canonical momentum of the
fluid just as one has p—p+¢qA for single particle motion.
Since M*" is antisymmetric, contracting Eq. (9) with U,
gives do/dt=0, the standard result of constant entropy along
field lines.

By using fluid potential mGU”=(mcGy,mGya)=(x,P)
in place of ¢ and A, we can define the fields Q=(-d,P/c
—Vx) and R=V XP as direct analogues to the electromag-
netic fields E and B. This allows us to expand Eq. (9) as

c T oo
w(5+50)T22 "
q y dt
J c T
—(A+—P):uXQ—V(I)+—V0', (11)
dat q qy

where we have defined the total species vorticity
Q=VX[A+(c/q)P]=B+(c/q)R and potential P=¢
+(mc?/q)Gy. Equation (10) states that entropy is generated
locally only if the fluid flow is not perpendicular to the sum
of the electric field and the inertial analogue of the electric
field. Equation (11) describes the evolution of the magnetic
field and fluid momentum, including both gradient and in-
ductive forces. Taking its curl, we obtain the generalized
vorticity evolution equation for each species,

99,
ot

=V X (uSXQS)+V(1) X Vo. (12)
qvy

The first two terms in Eq. (12) state that the generalized

vorticity is “frozen-in” to the flow. The last term describes

vorticity generation due to the relativistic extension of the

baroclinic term. To make contact with the familiar magneto-

hydrodynamic (MHD) equations, we take a massless baro-
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tropic electron fluid with u as the bulk plasma flow. We then
recover the ideal MHD induction equation B=V X (u X B),
and the entropy generation rate 7d,0=J-E.

lll. MINIMIZATION PRINCIPLE

We now seek equilibrium configurations of systems with
multiple species. The presence of dissipation will allow ide-
ally conserved quantities to change over time. In general, the
conserved with the highest order spatial derivatives will
change the fastest, and those with lower order derivatives can
then be treated as constraints in a variational principle with
the most susceptible quantity as the target of minimization.'?
A standard example in MHD is the minimization of magnetic
energy (B2), subject to the constraint of constant magnetic
helicity (A-B~ B?/k),

&E - ah) =0. (13)

This results in the well-known Taylor state VxB=aB."
Within the current framework, species helicity and total en-
ergy are both ideally conserved variables under suitable as-
sumptions (see Appendix). However, the Kinetic terms cause
the total helicity to include higher-order spatial derivatives
than the total energy, making it more fragile to dissipation.
Thus, the variational principle (13) is mathematically
ill-posed.14 Simply minimizing helicity subject to constant
energy is not possible either since in general the helicity is
not positive-definite and often not bounded from below. In-
stead, we must find a coercive functional N, which is fragile
to dissipation but has a quadratic form. We can then mini-
mize N while keeping both species helicity and total energy
as constraints,

5(1\7— WE - 2 ah) 0. (14)

The resulting states can then be compared to the equilibrium
conditions to make sure they are physical, and we can further
seek a subset of these relaxed states, which correspond to
minimum energy.

We begin by constructing a canonical stress tensor for
each species by replacing F in Eq. (4) with the species ca-
nonical tensor M**=F*"+(c/q)S*",

70 = L grapg, paB s grrpgatyg 15

s _4778 aff +4g af Y~ ( )
Assuming that the system is isolated and that the fields van-
ish at the boundaries, the integral of the time-time compo-
nent of this tensor will be an effective Hamiltonian for this
system.15 Summing over species, we see that this is equiva-
lent to the sum of the species total (magnetic plus fluid)
enstrophies,

N=3 - [ [vof ol (16)

The enstrophy is the most fragile to dissipation since it con-
tains the square of the curl of the fluid momentum (R terms
in ). This makes it a proper target functional for minimi-
zation. We will minimize this with constraints of the total
energy and species helicities by varying the potentials ¢
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and A and the momentum P,. Note that we do not indepen-
dently vary y, the time component of GU¥, since at fixed
temperature,

Sx = 8(cGy) = S(NAG*+ P>)=— - P =— - 6P.

><I’U

The variation of the enstrophy is

SN = Ef { [V2D ]6p+[V X Q,]- A

mvc[v X Q- ﬁvzq%] : an}d%c. (17)
qs ¢

The total energy is the sum of electromagnetic and ki-
netic energies

E= J T®x = Epy + E,
_fE2+B2
a 8

which leads to the variations

x+2f(mn0272 p)d’x,

(18)

SEgy = f ﬁ{(- V2p) 6+ (V X B) - SA}d’x, (19)

SE, =6 f ngn,c*Gyyrdx

f §<C2G§+P§> s
= | ngmy de

= J 2ngm yu, - OPdx. (20)

We define the generalized helicity in the Appendix as

= f [B + (c/q)R]-[A + (c/q)P]d’x, (21)

which contains the fluid helicity, magnetic helicity, and cross
helicity terms. The variation of this helicity gives

¢
5hs=f {Q oA +—Q, - 5Ps}d3x. (22)
qs
Plugging these variations into the minimization equation
(14) and considering each variation independently result in
the set of equations

> VD, - uVip=0, (23)

s

1
E —V X Qs - asﬂ.v

_ 2y xB=o, (24)
dar 4ar

s
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1
{V X Q- —V2q3 ] Z,unsqsys -a,Q,=0. (25)
41

To ensure that these solutions are physical, Egs. (23) and
(24) must be equivalent to Poisson’s and Ampere’s equa-
tions, which requires

E qu)x == 4771““2 ngsYs- (26)
Substituting Eq. (25) into Eq. (24),
I, ug
£ v xB= E —V2D, +2unyg, | . (27)
4 4 c

Thus each species component of Eq. (26) must hold indepen-
dently, viz.,

1 !
_V2<¢ + %Xs> == 477”&Qs7$' (28)
"

s

The states with minimum enstrophy satisfy the relation

—V XQ,-aQ = Mwus. (29)
4 c

The subset of minimum energy states can be found
by taking the limit u, a,— %, keeping a,/ u=—1/\; constant.
This formally reproduces the energy minimization
SE-Z2,h,/\;)=0; however, by using the states constructed
from Eq. (14), we arrive at the relaxed states via a well-
posed minimization problem. In order for both Ampere’s law
and Eq. (28) to still be satisfied in the limit of large u, we
must have

m
v2<¢+ —5X5> 0. (30)
qs
For a system with V(¢p+m,/g,x,)=0 on the boundaries, this
implies that

4.
.G, + - ;2 = Vmax.s = CONSt., (31)

s

which means that the gradient forces in the evolution equa-
tion (11) vanish. Since G, y= 1, mc?vy,,,, can be interpreted
as the total energy available to the fluid species, to be dis-
tributed among thermal, bulk motion, and -electrostatic
energies.

The relaxed fluid states further satisfy the relation

2
VX (Gyu), =\, 2D Tsy _ s g (32)
mc mgc
This condition was given previously by Elsdsser and Popel16
in the case of nonrelativistic temperatures without justifica-
tion for it being a minimum energy state. This equilibrium
condition introduces a natural length scale of the collision-
less skin depth. To show this more concretely, we take the
case of an electron-positron pair plasma. Normalizing length
to some system size L, velocity to ¢, density to n,, and mag-
netic field to By=v2mm,nyc?, Egs. (27) and (32) become
B

A N
eV XP,=€'\,—P, - —, (33)
+ +G+ + 2
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~ N_ B
eV XP =N =P +—, (34)
G_ 2
eV XB=—tp,_=p_ (35)
G G

+ —

where N=\/87L and e=\,./L=\mc*/8mng>/L is the ratio
of the pair skin depth to the system size. P,=G, y,u, is the
momentum of the positrons, and the minus sign subscripts
denote electron quantities. The previous work by Igbal
et al."” examined the limit of isotropic equal temperatures
and densities with quasineutrality and nonrelativistic bulk
flow (y~1). They showed that B could be expressed as the
sum of three Beltrami flows (VXF;=u,F;) with different
scale lengths ,u,;'. In appropriate limits, one of the eigenval-
ues u can become very small, leading to structures on a scale
much larger than the skin depth, making the solutions rel-
evant to modeling of astrophysical jets. Indeed, if we assume
that the spatial variation of the fields is only on the large
scale, to first order we recover the MHD relaxed “Taylor
state” VX B=aB, with a=():;1 +X:1)/2. However, the pres-
ence of the small parameter € multiplying the curl operator
means that the multifluid equations represent a singular per-
turbation on MHD dynamics and that the small scale struc-
ture cannot be fully ignored. In general, the relations be-
tween G, vy, and n make the equilibrium equations (33)—(35)
highly nonlinear, and solutions must be found numerically.
In the following section, we examine the class of one dimen-
sional solutions in various simplifying cases.

IV. ONE DIMENSIONAL SOLUTIONS

In order to explore some configurations of the relaxed
states, we will now restrict to the class of solutions in one
dimension. We take a Cartesian coordinate system with all
quantities varying in x only. We further consider those simple
cases where the enthalpy, temperature, and density of the two
species are equal (G,=G_=G, T,=T_=T, n,=n_=n). This
in turn implies that A2=\? (we drop the hat notation of the
previous section). For definiteness, we take the relativistic
Maxwellian distribution.”'®" The enthalpy then takes the
form G(z)=K;(z)/K,(z), where K; is the MacDonald func-
tion of order i and z=mc?/kyzT. We also take the entropy to
be constant within the region of interest so the density takes
the form n=ny(K,(z)/z). This assumption can later be re-
laxed (see the following discussion).

A. Perpendicular current

We first look for an analogue of the one dimensional
(1D) Harris—Hoh sheet,”**" with J 1 B. This implies that the
direction of B does not change, and we are free to choose
B=B(x)Z and J=J(x)y=-B’y. We could take in addition a
constant J, but then the current would not vanish at the
boundaries. Also note that the 1D assumption precludes the
possibility of a constant B, since Egs. (33) and (34) would
demand nonzero curl of P in the x-direction. The current
equation (35) then becomes

Phys. Plasmas 17, 112112 (2010)

n
—y=——(P,-P), 36
E&xy G( + 2) (36)

implying that P,_=P,, and P, =P,.
Crossing Egs. (33) and (34) with B, we obtain

€V (P, B)=e(B-V)P, + P, - V)B
+ e‘l)\+%(B X P,)+eP, X (VX B),
(37)
€V(P_-B)=e(B-V)P_+e(P_-V)B
- ")\_%(B X P_)+ eP_ X (V X B).

(38)

The first term on the right implies that P, =0 for both species.
Then, by inspection, the above equations are equivalent only
if we take A,=-A_=\, and P,=P+P =P Z+Py, and
P_=P—P, =P 7-Py. Thus, there is a net current perpen-
dicular to the magnetic field as well as net momentum par-
allel to the field. The current equation is then written

JB n

65 =— ZEP},. (39)

Equations (37) and (38) become

J n,o_,
5£(Pz3) =- 5(6 AB+2P)P,. (40)
Using Eq. (39) allows us to write

P, _n n,.
eB—-2—PP,=- 5(6 AB+2P)P,

ox G
or
P, W n
—=—€ —A\P,. 41
€ x € G’ (“41)
Dotting Egs. (33) and (34) with B gives
V.(P, XB)=e'\2B.P B hp
€ . = —_— . _— =) s
* G 2 6t
which in 1D reduces to
J B?
e~(P,B)=€ NP B—— 2P,
ox G ° 2 G’
Using Eq. (39), we get
JP, B
e = e_l)\EPZ - (42)
ax G 2

We have a set of three equations, Egs. (39), (41), and
(42). In order to close these equations, we take the adiabatic
distribution where yG=1v,,,. Then, we are able to write
G*= yﬁm—PZ. The temperature and density can be solved for
using the relativistic Maxwellian distribution described
above. The nonlinearity inherent in this prescription necessi-
tates numerical integration to find solutions. As an example,
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B
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FIG. 1. Example of a pair-plasma equilibrium state in a 1D B, field-reversal
configuration with A\, =—\_=1. Perpendicular to the field, the electrons and
positrons stream in opposite directions, generating a current J,. Along the
field, both species flow together, creating a parallel flux I"=nyu.. The
adiabatic condition leads to peaked density (n,=n,+n_) and temperature
profiles, with points of vanishing density, beyond which the magnetic field
is constant. Distance is normalized to the skin depth, and n=n, and
kgT=mc? at x=0.

in Fig. 1, we plot a 1D equilibrium solution for a Maxwellian
pair plasma containing a magnetic field reversal similar to a
Harris sheet. The electrons and positrons have equal tem-
peratures and densities but opposite eigenvalues \,=—\_=1.
The adiabatic condition (31) leads to a compact area of non-
zero density and current, outside of which the magnetic field
is constant. The finite helicity of the system allows for bulk
flow along the magnetic field. The two-fluid nature of the
equations leads to field reversal on the scale of the skin
depth, suggesting application to magnetic reconnection stud-
ies and shock structure. The accessibility and stability of
such nonlinear multifluid equilibria will be explored in forth-
coming work.

1. Oscillatory and constant solutions

Differentiating Eq. (42), we have
! B!
ezP’V' = )\(2) P.+ E_IAEEPZ’ —e—,
’ G ' G - 2

ool i

If the variation in n/G is small, then the solution is oscilla-
tory when

(43)

—
1 vmGe clw

N> e\Gln=— = —zel
L \8mmngiig® L

where w, . is the effective plasma frequency including ther-
mal effects.

If A= 6\'m, and P,=0, there is a solution with constant
B, P_, n, and T. From Eq. (42), we see that this requires
P.= V’EB/ 2, or the_total flow velocity (electrons plus pos-
itrons) is u.=B/ \J'nGyz. That is, the magnetic field is con-
stant with flow along field lines at a relativistically modified
Alfvén speed.

Phys. Plasmas 17, 112112 (2010)

2. Pressure balance
Examining Egs. (39), (41), and (42), we see that we have

dB*>  nJpP?

—=4——". (44)

ox G ox
If we take the adiabatic distribution yG=7,,,,, we are able to
write G2*= yrznax—PZ. At x=0, we take B=B,, T=T,, and
n=ny. The boundary x; is then defined as the point where the
density vanishes and P=P,,=\ 3’12nax_ 1. For x>x;, the
magnetic field is constant, B=B(x;)=B,. Then, Eq. (44) im-
plies that

X1 &82
B%-Bﬁ:f —dx
o 0x

1 9P 1
<[ |
o G ox 0

Using the fact dP>/dG=-2G and that the constant entropy
distribution has

dG 1d(nT)

Jx n Jdx

4=y, (45)
X

we arrive at (since n;=0)

% o(nT
B -Bi=-38 j 07 e 81, Ty, (46)
0o Ox

Thus, the difference between the boundary magnetic field
and the central magnetic field strength depends only on the
central density and temperature but is independent of A, the
width of transition, or the orientation of the fields. This is
equivalent to saying that the magnetic pressure and the ther-
mal pressure balance.

B. Equal \: No bulk motion

If N\,=A_=\, we can have a solution with no total mo-
mentum, P,,=P,—P_=0, and Eqgs. (33) and (34) become
degenerate. Thus,

B
€V XP=e\2P-—, (47)
G 2
where P=P,_=—P_. In 1D, this reduces to
JP 1
= e\ZP+ B, (48)
ox G 2
JP, n 1
—2=¢\=P,--B.. 49
Cox € NGl ae (“49)
The current equation (35) becomes
JB
e =22p (50)
ox G °
B, n
e—==-2—P,. 51
ox G’ 1)

We note that the 1D constraint enforces P,=B,=0.
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FIG. 2. Two examples of pair-plasma equilibrium state in a 1D configura-
tion N\,=A_=1. There are components of B and J in both directions perpen-
dicular to X, with a finite transition width dictated by the equilibrium equa-
tions and the adiabatic condition. In (a), the magnetic field vanishes at the
origin, while it retains a finite value in (b).

In Fig. 2, we show two examples of one dimensional
solutions with equal A=1. Both solutions have Ty=1, ny=1,
and P,(xo)=1. In the first plot (a), the central magnetic field
vanishes at the origin. There is a finite region over which the
plasma density is supported. The magnetic field changes in
both direction and magnitude over a width of Ax=9.77. As
discussed above, the magnitude of B at the edge is set by the
central density and temperature. In this case, B*(x;)=8.0, and
the field orientation twists through an angle of Af=131.5°.
In (b), the central field is taken as B,(xo)=1. Nowhere does
the magnetic field vanish in this case. The transition width is
Ax=8.68, the edge magnetic field strength is B*(x,)=9.0, and
the angle change is A6=109.3°. Note also that the direction
of J, is reversed.

1. Sheet-pinch

With a sheet-pinch type equilibrium in mind, take
VXB=aB, with « as a scalar function of x. Then, inserting
P,=-P_=P into Eq. (35) shows that

P=¢—B.
2n

For this case, B2 and P? are both constant, which means that
n/G and « are both constants as well. The 1D solution is the
sheet-pinch B=B(sin(ax)y +cos(ax)Z). However, in order to
maintain P and B parallel, we require that

Phys. Plasmas 17, 112112 (2010)

nl aG\* 1 W aG
2—e— | +-—-€ A Zle—]=0
G\ 2n 2 G

ezazg—)\a+ 1=0.
n

Thus, the temperature and density determine the scale of the
field. If € is small (skin depth<$system size), we can take
a=1/\, none of the relativistic effects matter, and the \ scale
is set by the system boundary conditions. The momentum is
small compared with the magnetic field strength in this limit.

However, if skin depth effects are important,

AN n G
a=ﬁa(l * \/1—462E).

Real solutions imply that A >2e\G/n. The fact that one so-
lution diverges as €— 0 shows the singular perturbation na-
ture of the underlying equations.

V. DISCUSSION

We have shown that the evolution equations for charged,
relativistic, and homentropic fluids can be expressed in a
vortex form using a minimal coupling method having the
same form as the canonical momentum of single particle
motion but with the inclusion of thermal effects. This places
the magnetic field and fluid vorticity on the same footing.
Following this formalism, we found that the effective Hamil-
tonian constructed from this canonical momentum leads to a
well-posed variational principle, which allowed us to find
relaxed equilibrium states of the relativistic equations of mo-
tion. These equilibria can exhibit structures on multiple spa-
tial scales, and could be very useful in the modeling of hot
astrophysical flows. We have made no claims as to the sta-
bility of the states—indeed, we expect the configurations
containing counterstreaming species to be unstable in the
kinetic regime. However, such states could be useful as start-
ing points for studies of relativistic magnetic reconnection.

The class of one dimensional solutions has a wide vari-
ety of possible configurations depending on the symmetries
between the fluids. The multitude of these states must be
narrowed down based on the boundary conditions particular
to a given application. One possible application of this type
of configuration is the modeling of the striped wind that
results in pulsar wind nebulae (PWNe) with unaligned rotat-
ing dipoles.4’22’23 In this configuration, an expanding entropy
wave consists of low entropy regions of constant magnetic
field separated by high entropy, neutral pair-plasma current
sheets. A typical PWNe of this type can have yG~ 100,
making a relativistic treatment necessary. It is expected that
the dissipation within the magnetic field transition region
happens on a much shorter timescale than the expansion of
the wave, enabling the application of equilibrium theory. The
reversed field configuration described in Sec. IV A provides
a detailed and physics-rich description of this transition re-
gion, evaluated in the frame moving with the entropy wave.
Although we have presented here solutions with constant
entropy inside the hot, dense transition region, this assump-
tion can easily be relaxed in the 1D case. Outside of the
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transition regions, the constant field portion of the wave can
be described by the case presented in Sec. IV A 1, and the
entropy can be much lower than in the transition region. The
magnetic pressure in the constant field regions balances the
thermal pressure within the current sheets, as in previous
studies. We will further examine the application of the for-
malism presented in this paper to these configurations in fu-
ture work.

APPENDIX: CONSERVED QUANTITIES

Below, we show under what conditions the variational
constraints used in the minimization principle are conserved.
We use the general conservation principle that if a four-
vector V¥ is divergence free (4,V”=0), then the spatial inte-
gral of the time component is conserved, provided surface
terms vanish. The total energy is automatically an ideally
conserved quantity because the closure J'=2q,I"} implies
that 9, T{{=0.

To define the total helicity of each species, we take the
dual of M, M*'=1/ ZEQB“VMQB and construct the helicity

four-current
K* = M*11,.
The divergence of this four-current is
9,K* = MP§,I1,= 3 M*M,,,=-29 - (E +c/qQ),
(A1)
where we have used the fact that the divergence is a scalar to

evaluate in the lab frame, and we use the same definitions as
in Sec. II. From Eq. (11), we have the lab-frame value

T
(E+c/gQ)=—uXxXQ-—Vo,
qy
which allows us to write

d,K" = 21(9 -V)o. (A2)
qy

Thus, we see that helicity will be conserved if the entropy is
constant on lines of total vorticity, which is true for isentro-
pic plasmas in the case that ull€2. In the limit of small mass,
this implies that entropy is a magnetic flux function, a stan-
dard result for MHD. In addition, we note that if there exists
an equation of state such that the thermodynamic term can be
expressed as a full gradient,

(Tly Vo=V{,

then due to the fact that V-Q =0, the four-divergence of the
helicity can still be written as a total divergence,

(A3)

Phys. Plasmas 17, 112112 (2010)

5KF =20 V=V (zng) (A4)
q q

Then, the species helicity

h= f Kdx = f [B+(c/q)R]-[A + (c/q)P]d’x  (A5)

is a conserved quantity. Note that the equation of state con-
dition (A3) is identical to the conservation of vorticity con-
dition in Eq. (12), namely, that the baroclinic term vanishes.
Thus, we conclude that whenever the flow preserves total
species vorticity (), the helicity 4 is conserved. Note that in
the 1D examples in Sec. IV, the baroclinic term always van-
ishes regardless of the form of entropy.

This helicity contains a term involving the momentum
times the curl of the momentum (~v2k). Thus, it has a higher
order of spatial derivative than the total energy, which con-
tains only the momentum squared (~uv?). It is for this reason
that the helicity is more fragile than energy to dissipation,
and we must use the variational principle (14).
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