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We demonstrate that a purely ideal mechanism, originating in the space-time distortion caused by the

demands of special relativity, can break the topological constraint (leading to helicity conservation) that

would forbid the emergence of a magnetic field (a generalized vorticity) in an ideal nonrelativistic

dynamics. The new mechanism, arising from the interaction between the inhomogeneous flow fields and

inhomogeneous entropy, is universal and can provide a finite seed even for mildly relativistic flows.
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The origin of magnetic fields or any kind of generalized
vorticity is one of the challenging unsolved problems of
theoretical physics [1–3]. The mathematical and dynami-
cal similarity between magnetic fields and fluid vorticity
(axial vector fields) imparts both elegance and usefulness
to the concept of generalized vorticity. Unless explicitly
stated, generalized vorticity, denoted by�, will symbolize
all physical quantities of this nature.

The origin problem has its genesis in the fact that the
circulation associated with� must vanish for every ‘‘ideal
force’’ including the entropy-conserving thermodynamic
force. The reasons lie deep in the Hamiltonian structure
governing the dynamics of an ideal fluid; the constrained
dynamics implies the conservation of a ‘‘topological
charge’’ that measures the generalized vorticity of the fluid
[4–6]—the invariance of the generalized helicity, which,
for a nonrelativistic charged flow, takes the familiar form
K ¼ R

P ��dx, where P ¼ mV þ ðq=cÞA is the canoni-

cal momentum and� ¼ r� P is the generalized vorticity
or generalized magnetic field (m: mass of a particle; q:
charge of a particle; V: fluid velocity; A: vector potential;
B: magnetic field) [7,8]. Consequently, in any ideal leading
order model,� (consisting of both magnetic and kinematic
components) cannot emerge from a zero initial value.

The problem of unearthing a primary generation mecha-
nism for the magnetic field, found to be important in every
scale hierarchy of the Universe, has defied a satisfactory
solution to date [3]. In particular, isolating processes that
might create a seed magnetic field, which the so-called
dynamo mechanism [9] could greatly ‘‘amplify,’’ consti-
tutes a major quest in astrophysical plasma research. Since
the topological constraint on the ideal fluid forbids the
vorticity to emerge, one resorts to ‘‘nonideal dynamics’’
to effect a change. A typical example is the baroclinic
mechanism [10], or Biermann battery [11], involving non-
ideal thermodynamics in which the gradients of pressure
and temperature have different directions [12,13]. A
velocity-space nonequilibrium distribution also provides
a source of magnetic field via the so-called Weibel insta-
bility [14]. In early cosmology, inflation [15,16], a QCD

phase transition [17,18], or a radiation effect [19] could
create a source. While these mechanisms may, and likely
will, play important roles in magnetic-field generation at
some scales, none of these could be considered a universal
mechanism operating at all scales [3,9,20].
The search for such a universal mechanism provided the

stimulus for this Letter in which we make a clean break
with the standard practice: Instead of relying on nonideal
mechanisms (such as the baroclinic effect), which are too
weak to account for the observed cosmic magnetic fields
[3], we will show that � can be generated in strictly ideal
dynamics, as long as the dynamics is explicitly embedded
in the space-time dictated by the demands of special rela-
tivity. The generalized vorticity is, then, generated through
a source term born out of the special-relativistic ‘‘modifi-
cations’’ to the interaction of an inhomogeneous flow with
inhomogeneous entropy. The use of ideal dynamics is
justified because the new ideal term turns out to be much
larger than the standard nonideal damping terms (entropy
production due to resistivity, for example). To set the stage
for a proper relativistic calculation, we begin with some
nonrelativistic preliminaries and see how an ideal mechan-
ics restricts the topology of fields.
The circulation

H
L �Q, associated with a physical quan-

tity �Q, calculated along the loop L, may be zero or finite
depending on whether �Q equals an exact differential d’
(’ being a state variable) or not. For example, if �Q ¼
Td� (T: temperature; �: entropy), the circulation is gen-
erally finite and measures the heat gained in a quasistatic
thermodynamic cycle.
A circulation theorem pertains to a ‘‘movement’’ of

loops. Along the time-dependent loop LðtÞ, convected by
the fluid motion, the rate of change of circulation associ-
ated with the canonical momentum

H
LðtÞ P � dx is identi-

cally zero in an ideal fluid. In fact, if two loops LðtÞ and
Lðt0Þ are connected by the ‘‘flow’’ dx=dt ¼ V, the rate of
change of circulation is calculated as

d

dt

I
LðtÞ

P � dx ¼
I
LðtÞ

½@tPþ ðr� PÞ � V� � dx: (1)
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Coupling it with the ideal equation of motion

@tPþ ðr� PÞ � V ¼ �rE;
with the effective energy E ¼ mV2=2þ�þ h (�: poten-
tial energy; h: molar enthalpy), shows that the rate of
change of circulation equals the circulation of an exact
fluid-dynamic force derived from the energy density, i.e.,H
LðtÞ rE � dx ¼ H

LðtÞ dE ¼ 0. In the standard nonrelativis-

tic description of an ideal fluid, therefore, if the initial state
has no circulation (vorticity), the later state will also be
vorticity-free (Kelvin’s circulation theorem). For the vor-
ticity to be created, the ‘‘force’’ on the fluid must not be an
exact differential.

How will special relativity affect the ideal dynamics?
Interestingly, the very basic kinematic modification—the

Jacobian weight ��1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðV=cÞ2p

reflecting the space-
time unity imposed by special relativity—destroys the
exactness of the ideal thermodynamic force; the loop in-
tegral

H
LðtÞ dH (for some exact differential dH) transforms

to
H
LðtÞ �

�1dH, which is no longer zero. Thus � could be

created within purely ideal dynamics.
For a geometric visualization of the new creation mecha-

nism, we now examine the fundamental reconstruction of
the notion of circulation in relativistic dynamics. In the
relativistic space-time, the loop LðtÞ pertaining to a ‘‘syn-
chronic space’’ (t ¼ constant cross section of space-time
in a reference frame) ceases to be the appropriate geomet-
ric object along which the circulation must be evaluated.
The loop moves in space-time with a 4-velocity U� ¼
ð�; �Vj=cÞ (Vj: the reference-frame velocity), and the
relativistic circulation must be described as a function of
the proper time s. In Fig. 1, the respective evolutions of the

‘‘synchronic loop’’ LðtÞ and the ‘‘relativistic loop’’ LðsÞ are
compared. The synchronicity of the loop LðsÞ is broken by
the nonuniformity of the proper time. The circulation of a
4-vector }� along the relativistic loop LðsÞ obeys

d

ds

�I
LðsÞ

}�dx�

�
¼

I
LðsÞ

ð@�}� � @�}�ÞU�dx�: (2)

If }� is an appropriate momentum, the relativistic equation
of motion relates the integrand ð@�}� � @�}�ÞU� with an
effective force. If the force is exact, the relativistic circu-
lation will be conserved; the ideal fluid does, indeed, obey
an appropriate relativistic Kelvin circulation theorem.
However, vorticity (or magnetic field) is defined on syn-
chronic space (hence, it is reference-dependent); its circu-
lation still pertains to the synchronic loop LðtÞ. The field
must be mapped from the naturally distorted LðsÞ back to
LðtÞ—this reciprocal distortion, represented by a Jacobian
��1, imparts a shear to the thermodynamic force (i.e.,
changes dH to ��1dH), destroying its exactness.
These formal considerations will, now, be translated into

an explicit calculation showing how relativity helps us to
circumvent the ‘‘no-circulation’’ theorem. A covariant the-
ory of vorticity generation follows from the recently for-
mulated unified theory of relativistic, hot magnetofluids
[21]. The central construction of this theory is the relativ-
istic generalized 4-momentum }� ¼ mcfU� þ ðq=cÞA�

(A�: 4-vector potential) and the antisymmetric tensor

M�� ¼ @�}� � @�}� ¼ mcS�� þ ðq=cÞF��; (3)

where S�� ¼ @�ðfU�Þ � @�ðfU�Þ is the flow-field tensor
representing both the inertial and thermal forces and
F�� ¼ @�A� � @�A� is the electromagnetic tensor. The
factor f represents the thermally induced increase in ef-
fective mass: an increasing function of temperature T, f �
1 in the nonrelativistic limit, rising to f � 6:66 for T ¼
1 MeV [4,22]. The generalized vorticity �̂ (or the gener-

alized magnetic field B̂) is defined by r� } [or ðc=qÞr �
}], where } is the vector part of }�. The equation of
motion is written succinctly as [21,23]

cM��U� ¼ T@��: (4)

Substituting (4) into (2) shows that the rate of change of
circulation of }� is balanced by the integral along LðsÞ of
ðT=cÞ@��. It is the vector part of (4)

q

�
Êþ

�
V

c

�
� B̂

�
¼ cT

�
r� (5)

that explicitly shows the relativistic modification of the
force Tr� by the factor ��1. Here, the generalized electric

field Êj ¼ Ej þ ðmc=qÞS0j satisfies Faraday’s law @tB̂ ¼
�r� Ê. The appearance of ��1 on the right-hand side is
due to the mapping back of the relativistic space-time onto
the synchronic space in which the conventional circulation
and the vorticity are to be calculated. To evaluate the rate of

change of B̂ (with respect to the reference time t), we must
go back to (5), whose curl reveals the source for magnetic-

(a) (b)

FIG. 1 (color online). Two figures compare the evolution of a
surface and its boundary (loop) moved in space-time, respec-
tively, by (a) the nonrelativistic velocity (dxj=dt ¼ Vj: 3-vector)

and (b) the relativistic 4-velocity (dx�=ds ¼ U�). The figures

are drawn in the x-y-t coordinate with V=c ¼ ðtanhx; 0; 0Þ (thus
� ¼ sech�1x). In the Lorentz-covariant theory, the circulation
theorem applies to a loop LðsÞ that is moved by the 4-velocity
U�. However, the vorticity (or magnetic field) is a reference-

dependent quantity defined on the synchronic cycle LðtÞ, requir-
ing a mapping from the relativistically distorted LðsÞ to LðtÞ; this
map multiplies the thermodynamic force by a Jacobian weight
��1, breaking the exactness of the differential form.
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field generation:

S ¼ �r�
�
cT

q�
r�

�
¼ �r

�
cT

q�

�
�r�; (6)

which may be broken into the familiar baroclinic term
SB ¼ �ðc=q�ÞrT �r� and the relativistically induced
new term

S R¼�
�
cT

q

�
r��1�r�¼�

�
c�T

2q

�
r
�
V

c

�
2�r�: (7)

The discovery ofSR is the principal result of this Letter.
The following conclusions are readily deducible. (1) For
homogeneous entropy, there is no vorticity drive—either
baroclinic or relativistic. (2) As long as the kinetic energy
is inhomogeneous, its interaction with inhomogeneous
entropy keeps SR nonzero, even in a barotropic fluid. In
Fig. 2, we show an example of the vorticity generation
from an initial (incident) vorticity-free flow. Here we as-
sume the simplest scenario. (i) We start with an inhomo-
geneous scalar, the energy density (enthalpy) E. (ii) This
drives a potential (vorticity-free) flowV / rE. In Fig. 2(a),
the vector image of V is drawn for E ¼ ax2 þ by2 þ cz2.
(iii) If the fluid is barotropic, only the relativistic source
SR / r��1 �rE survives (here we assume f � 1). In
Fig. 2(b), we show SR, the generated vorticity after an
infinitesimal time. The enstrophy density jSRj2 is shown in
Fig. 2(c). We observe that the inhomogeneity of the flow
velocity (a direct consequence of the inhomogeneous sca-
lar field) yields a vorticity (an axial vector field) by the
relativity-induced twist of space-time. (3) When baroclinic
drive is nonzero and, in addition, the kinematic and thermal
gradients are comparable, we can estimate

jSRj
jSBj

� ðV=cÞ2
1� ðV=cÞ2 : (8)

For highly relativistic flows (cosmic particle-antiparticle
plasmas, electron-positron plasmas in the magnetosphere
of neutron stars, relativistic jets, etc.),SR will be evidently
dominant and can be far larger than the conventional
estimates for the baroclinic mechanism. One must also
remember that most long-lived plasmas will tend to have
rT �r� ¼ 0 because of the thermodynamic coupling of
temperature and entropy. In this large majority of physical
situations,SR may be the only vorticity generation mecha-
nism; no physical constraints will force the alignment of
the gradients of kinematic � and statistical �. Thus, the
relativistic drive is truly universal. (4) Finally, we compare
the strength of the new relativistic drive with damping from
the nonideal dissipative processes to determine general
conditions when such a drive will be able to overcome
the inherent dissipative tendencies. A systematic and rig-
orous inclusion of dissipative processes in a relativistic
system is nontrivial, and we will not attempt to do it
here. We will, instead, attempt a simple heuristic approach.
The resistive dissipative term D ¼ r� ð�JÞ ¼
ðc=4�Þr � ð�r�BÞ, which is pertinent for the nonrela-
tivistic evolution equation, will be assumed to be valid for
the relativistic equation. Notice that, in the initial stages
when one is looking to create the ‘‘seed’’ field, the resistive
dissipation term will be necessarily negligible because the
vorticity is zero in the beginning. Being proportional to the
generated vorticity, the resistive dissipation term will be-
come progressively large as the fluid builds up vorticity. At
some arbitrary stage in the development, a ratio of the
strengths of the source SR and the sink D may be written
as

FIG. 2 (color). Relativistic generation of the vorticity for a
barotropic flow accelerated (for an infinitesimal time) by an
internal energy E ¼ x2 þ 2y2 þ 2:5z2. (a) The vector image of
V / rE. (b) The generated vorticity SR after an infinitesimal
time. (c) The magnitude of the enstrophy density (square of the
vorticity) plotted on an isobaric surface of E.
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jSRj
jDj � ð�V=cÞ2ðT=mc2Þ

ðVA=cÞð�=!pÞ ; (9)

where we have introduced the Alfvén speed VA, the colli-
sion frequency �, and the plasma frequency !p. We may

deduce the following. (a) The denominator of (9) is always
very small. For all plasmas where the ideal fluid models are
valid, �=!p � 1 (for an electron plasma, for instance,

�=!p ¼ 10�9n1=2=T3=2, where the density is in Gaussian

units and the temperature in electron volts). Similarly, in all
problems of interest to this Letter, VA=c � 1. (b) The
numerator, of course, has a large range of variation. For
plasmas that are very relativistic [in both directed and
random (thermal) motion], the numerator is much greater
than unity. (c) Even for nonrelativistic plasmas, the drive
SR can easily overcome damping. For a hypothetical
electron fluid with n ¼ 1010=cm3, T ¼ 20 eV (T=mc2 ¼
4� 10�5), V=c ¼ 10�2, one can calculate jSRj=jDj ’
B�1 (in gauss). Thus the drive remains dominant until
one reaches the magnetic fields of 1 G or so. Notice that
the ratio is really independent of the density and is im-
mensely boosted up by higher temperatures. The ‘‘relativ-
istic drive’’ has turned out to be strong even for plasmas
that are quite mildly relativistic.

We have thus found that a recourse to special relativity
uncovers an ideal, ubiquitous, fundamental vorticity gen-
eration mechanism. The exploration of this mechanism is
likely to help us understand, inter alia, the origin of the
magnetic fields in astrophysical and cosmic settings.

We end this Letter by making a few comments about the
finer points concerning vorticity, the generalized vorticity,
and the relativistic generalized vorticity. As the physical
system becomes more and more complicated (from an
uncharged fluid to a charged fluid to a relativistic charged
fluid), one must invent more and more sophisticated physi-
cal variables so that the fundamental dynamical structure
(vortical form), epitomized in (4) is maintained. We do this
because the very beautiful vortical structure is so thor-
oughly studied that reducing a more complicated system
to this form immediately advances our understanding of
new larger physical systems or, possibly, of more advanced
space-time geometries.
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