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Abstract
Nonlinear magnetohydrodynamic (MHD) effects on Alfvén eigenmode evolution were investigated via hybrid
simulations of an MHD fluid interacting with energetic particles. The investigation focused on the evolution of
an n = 4 toroidal Alfvén eigenmode (TAE) which is destabilized by energetic particles in a tokamak. In addition
to fully nonlinear code, a linear-MHD code was used for comparison. The only nonlinearity in that linear code
is from the energetic-particle dynamics. No significant difference was found in the results of the two codes for
low saturation levels, δB/B ∼ 10−3. In contrast, when the TAE saturation level predicted by the linear code is
δB/B ∼ 10−2, the saturation amplitude in the fully nonlinear simulation was reduced by a factor of 2 due to the
generation of zonal (n = 0) and higher-n (n � 8) modes. This reduction is attributed to the increased dissipation
arising from the nonlinearly generated modes. The fully nonlinear simulations also show that geodesic acoustic
mode is excited by the MHD nonlinearity after the TAE mode saturation.

PACS numbers: 52.35.Bj, 52.35.Mw, 52.55.Pi, 52.65.Ww

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The destabilization of Alfvén eigenmodes by energetic
particles is an important concern for burning plasmas since the
excited modes can enhance transport and losses of energetic
ions. Computer simulation is a powerful tool to investigate
the interaction between Alfvén eigenmodes and energetic
particles. We performed the first numerical demonstration of
toroidal Alfvén eigenmode (TAE) bursts [1] with parameters
similar to a TFTR experiment [2] and many of the experimental
characteristics were reproduced. These include (a) the
synchronization of multiple TAEs, (b) the modulation depth
of the drop in the stored beam energy and (c) the stored beam
energy. However, the saturation amplitude was δB/B ∼
2×10−2, which is higher than the value δB/B ∼ 10−3 inferred
from the experimental plasma displacement measurements
[1, 3]. In the simulation of [1], the only nonlinearity retained
was the nonlinearity in the energetic-particle orbits, while
the nonlinear magnetohydrodynamic (MHD) effects were
neglected. Thus the spatial profiles and damping rates of the
TAEs were assumed to be independent of the mode amplitude.
Such a simulation is justified when particle trapping is the

most important saturation mechanism for the TAE instability
[4, 5]. This saturation mechanism has been demonstrated
in several previous simulations [6–9]. However, the linear
simulation tends to give too large a saturation level. This
suggests that the MHD nonlinearity neglected in the TAE burst
simulation may be important and is well worth investigating
carefully. In another simulation study of TAE bursts, where
the MHD nonlinear effects are taken into account but the
parameters are not very close to the experiment, the saturation
level is roughly δB/B ∼ 5 × 10−3 [10]. The effects of
MHD nonlinearities on the increase in TAE damping rate were
investigated theoretically [11] and numerically [12]. These
studies further motivated us to investigate the nonlinear MHD
effects on the TAE evolution to better understand the physics
mechanism of saturation.

In this work we study the nonlinear evolution of a single
linearly unstable TAE mode with toroidal mode number n = 4
using two versions of the MEGA code [13–15] which is a
hybrid simulation code for an MHD fluid interacting with
energetic particles. With the standard version of the MEGA
code, the full nonlinear dynamics of both the MHD fluid and
the energetic particles is simulated. In the other version of
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the MEGA code, only linear-MHD equations are used while
the nonlinear particle dynamics is retained. We shall refer
to this version as the linear-MHD simulation. A comparison
of the results between the nonlinear MHD and linear-MHD
simulations is used to clarify how the MHD nonlinearities
affect the TAE evolution. We demonstrate that the nonlinearly
generated modes, both the zonal (n = 0) and the higher-n
(n � 8) modes, reduce the TAE saturation level. To understand
the underlying physics mechanism, we analysed the energy
dissipation from each toroidal mode number. We found that
the total energy dissipation is significantly increased by the
nonlinearly generated modes. The increase in the total energy
dissipation reduces the TAE saturation level. The spatial
profiles and the evolution of the nonlinearly generated n = 0
and n = 8 modes are investigated. After the saturation of the
TAE instability a geodesic acoustic mode (GAM) is observed,
driven by the MHD nonlinearity.

2. The simulation model

Several hybrid simulation models have been constructed
[7, 16–18] to study the evolution of Alfvén eigenmodes
destabilized by energetic particles. In the MEGA code, the
bulk plasma is described by the nonlinear MHD equations and
the energetic ions are simulated with the δf particle method.
The MHD equations with the energetic-ion effects are given by

∂ρ

∂t
= −∇ · (ρv) + νn�

(
ρ − ρeq

)
, (1)

ρ
∂

∂t
v = −ρ �ω × v − ρ∇

(
v2

2

)
− ∇p +

(
j − j ′

h

)
B

+
4

3
∇ (νρ∇ · v) − ∇ × (νρ �ω) , (2)

∂B

∂t
= −∇ × E, (3)

∂p

∂t
= −∇ · (pv) − (γ − 1) p∇ · v

+ (γ − 1)

[
νρω2 +

4

3
νρ (∇ · v)2 + ηj · (

j − jeq
)]

+ νn�
(
p − peq

)
, (4)

E = −v × B + η
(
j − jeq

)
, (5)

j = 1

µ0
∇ × B, (6)

�ω = ∇ × v, (7)

where µ0 is the vacuum magnetic permeability, γ is the
adiabatic constant, ν and νn are artificial viscosity and diffusion
coefficients chosen to maintain numerical stability and all the
other quantities are conventional. The subscript ‘eq’ represents
the equilibrium variables. The energetic-ion contribution is
included in the MHD momentum equation (equation (2)) as
the energetic-ion current density. The quantity j ′

h is the
energetic-ion current density without E × B drift. We see
that electromagnetic field is given by the standard MHD
description. This model is accurate under the condition that

Figure 1. Spatial profiles of energetic-ion beta, bulk plasma beta
and safety factor.

the energetic-ion density is much less than the bulk plasma
density.

The MHD equations are solved using a fourth order
(in both space and time) finite difference scheme. The drift-
kinetic description [19] is employed for the energetic ions.
The energetic-ion current density j ′

h in equation (2) includes
the contributions from parallel velocity, magnetic curvature
and gradient drifts and magnetization current. The E × B
drift disappears in j ′

h due to the quasi-neutrality [13]. The
computational particles are initially loaded uniformly in the
phase space.

For the purpose of clarifying the nonlinear MHD effects,
the linear-MHD calculations were performed to solve the
following equations:

∂ρ

∂t
= −∇ · (

ρeqv
)

+ νn�
(
ρ − ρeq

)
, (8)

ρeq
∂

∂t
v = −∇p +

(
jeq − j ′

heq

)
δB

+
(
δj − δj ′

h

) × Beq +
4

3
∇ (

νρeq∇ · v
)

−∇ × (
νρeq �ω)

, (9)

∂B

∂t
= −∇ × E, (10)

∂p

∂t
= −∇ · (

peqv
) − (γ − 1) peq∇ · v

+ (γ − 1) ηδj · jeq + νn�
(
p − peq

)
, (11)

E = −v × Beq + ηδj. (12)

Here the variables with δ such as δB represent the fluctuations,
for example, δB = B − Beq.

A tokamak plasma with the aspect ratio of R0/a = 3.2
was investigated where R0 and a represent the major radius
of the geometrical centre of the simulation domain and the
plasma minor radius, respectively. The cylindrical coordinates
(R, ϕ, z) are employed. The shape of the outermost magnetic
surface is circular. The spatial profiles of the energetic-ion
beta, bulk plasma beta and safety factor are shown in figure 1.
The bulk plasma density is uniform. The different initial values
of the central energetic-ion beta βh0 were investigated with the
profile kept constant. The central energetic-ion beta βh0 shown
in figure 1 is 2.0%. The initial velocity-space distribution
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Figure 2. Spatial profiles of each poloidal harmonic of the TAE
with toroidal mode number n = 4 for (a) radial velocity and (b)
radial magnetic field. Solid (dashed) lines show cos(mϑ + nϕ)
[sin(mϑ + nϕ)] harmonics with poloidal mode number m labelled in
the figure.

of the energetic ions is a slowing-down distribution with a
maximum velocity 1.2vA and the critical velocity 0.5vA, where
vA denotes the Alfvén velocity at the plasma centre. The ratio
of the energetic-ion Larmor radius to the minor radius is 1/16
for the energetic-ion velocity equal to the Alfvén velocity. The
number of grid points for the cylindrical coordinates (R, ϕ, z)

is 128 × 64 × 128 and the number of computational particles
is 5.2 × 105. We investigate the evolution of the n = 4
mode, which is an exact solution of the equations of a quarter
of the tokamak domain with the toroidal angle taken from
0 � ϕ � π/2. The MHD nonlinearities generate fluctuations
with toroidal mode numbers that are multiples of 4 (n = 0, 4, 8,
12, 16, . . .). In contrast, in the linear-MHD code only the n = 4
component is excited. The nonlinear evolution of the energetic
ions generates the current density fluctuation δj ′

h with a
harmonic content in ϕ, with all harmonics being a multiple of 4.
This leads to the generation of MHD fluctuations with toroidal
mode numbers that are multiples of n = 4 and obscures the
effects of the MHD nonlinearity. Then, we retain only the
n = 4 harmonic of the hot particle current, while we artificially
remove the energetic-ion current density fluctuation δj ′

h if
n �= 4. The viscosity, diffusion and resistivity coefficients
in the MHD equations are chosen to be ν = νn = 10−6vAR0

and η = 10−6µ0vAR0, respectively. The spatial profile of the
unstable n = 4 TAE mode observed at the linearly growing
phase of the instability for βh0 = 1.0% is shown in figure 2.
The phase of the mode in the figure is chosen so that the cosine
part of the dominant harmonic m/n = 6/4 is maximized at the
peak location. The frequency and growth rate of the TAE are
ω = 0.318ωA, γ = 1.3×10−2ωA with ωA = vA/Raxis, where
Raxis is the major radius of the magnetic axis. The maximum
values of vr/vA and δBr/B are close to each other for the TAE,

Figure 3. Comparison of radial velocity evolution for the
linear-MHD and the nonlinear MHD runs using the cosine part of
m/n = 6/4 harmonics at r/a = 0.42 for βh0 = 1.5%.

Figure 4. Comparison of radial velocity evolution for the
linear-MHD and the nonlinear MHD runs using the cosine part of
m/n = 6/4 harmonics at r/a = 0.42 for βh0 = 2.0%.

because a relation between velocity and magnetic fluctuations
|vr/vA| = |δBr/B| holds for shear Alfvén waves in a uniform
plasma. The major harmonics (m/n = 5/4 and 6/4) of
the radial magnetic field profiles have opposite signs whereas
the signs of the radial velocity harmonics are the same. The
parallel wave number k‖ = (n − m/q)/R0 is positive for
m/n = 5/4 and negative for m/n = 6/4 in the region
5/4 < q < 6/4 (0.35 < r/a < 0.50). The opposite sign
of the parallel wave number leads to the opposite sign of the
magnetic field fluctuation. For the purpose of the data analysis,
magnetic flux coordinates (r, ϕ, ϑ), where r is the radial
coordinate and ϑ is the poloidal angle, were constructed for
the MHD equilibrium.

3. Simulation results

3.1. Comparison of linear-MHD and nonlinear MHD
simulations

The evolution of the MHD radial velocity is compared in
figures 3 and 4 for the linear-MHD simulation and the nonlinear
MHD simulation. A comparison of the radial velocity
excitation is made for two different hot particle beta values,
βh0 = 1.5% and βh0 = 2.0%. Figures 3 and 4 show the
evolution of the m/n = 6/4 harmonics of radial velocity vr/vA

measured at the TAE peak location r = 0.42a. The frequency
and growth rate are ω = 0.310ωA, γ= 3.0 × 10−2ωA for
βh0 = 1.5%, and ω = 0.303ωA, γ= 5.1 × 10−2ωA for
βh0 = 2.0%. We see in figure 3 that the saturation levels
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Figure 5. Comparison of radial velocity evolution for cosine part of
m/n = 6/4 harmonics at r/a = 0.42 for βh0 = 2.0% between the
linear-MHD and the nonlinear MHD runs (a) with only n = 0 and 4
modes retained and (b) without n = 0, but with n = 4, 8, and
higher-n modes retained.

of vr/vA for both the linear-MHD and nonlinear MHD runs
are ∼3 × 10−3 and in the two calculations the phases of the
excitation remain synchronized in time, indicating in this case
a robust accuracy of the reduced model. On the other hand, for
βh0 = 2.0%, a significant reduction in the saturation level can
be seen for the nonlinear MHD run in figure 4. The saturation
level of vr/vA is ∼8×10−3 for the nonlinear MHD simulation
while it is ∼1.7 × 10−2 for the linear-MHD simulation. The
MHD nonlinear effects reduce the TAE saturation level by
half when it reaches vr/vA ∼ δBr/B ∼ 10−2. For cases
where the instability growth is lower, the saturation level is
vr/vA ∼ δBr/B ∼ 10−3 and the MHD nonlinearity does not
play any important role. Then the saturation mechanism is
dominated by the particle nonlinear dynamics, i.e. the particle
trapping by the TAE causes the saturation.

In the evolution of the TAE mode, the nonlinear terms
in the MHD equations generate the fluctuations with toroidal
mode numbers multiples of 4 (n = 0, 4, 8, 12, 16, . . .).
It is interesting to investigate which toroidal mode number
is important for the TAE saturation level reduction. We
conducted two types of nonlinear MHD simulations. In the
first type, only the n = 0 and 4 modes are retained while the
higher-n (n � 8) modes are artificially removed. In the second
type, only the n = 4 and higher-n modes are retained without
n = 0 fluctuations. The results are compared in figure 5 with
that of the linear-MHD simulation. We can see that both the
n = 0 and higher-n modes reduce the TAE saturation level.

3.2. Physics mechanism of saturation level reduction

In this subsection, we discuss the physics mechanism that
reduces the TAE saturation level. We focus on the energy
dissipation that appears in equation (4) from the viscous
heating and the Joule heating terms. They are, respectively,
in proportion to viscosity ν and resistivity η. We analysed the
time evolution of the energy and energy dissipation for each
toroidal mode number n for the initial central energetic-ion
beta βh0 = 1.7%. For this case, the TAE saturation level in
the nonlinear MHD simulation is reduced by nearly half to
vr/vA ∼ 6 × 10−3, while it is vr/vA ∼ 1.0 × 10−2 for the
linear-MHD simulation.

The MHD fluctuation energy is given by

E =
∫ (

1

2
ρv2 +

B2 − B2
eq

2µ0
+

δp

γ − 1

)
dV. (13)

We decompose the MHD fluctuations for each toroidal mode
number n � 0. For example, the velocity fluctuation is
decomposed into

vn (R, ϕ, z) = vnc (R, z) cos (nϕ) + vns (R, z) sin (nϕ) ,

(14)

vnc (R, z) = 4

π

∫ π/2

0
v (R, ϕ, z) cos (nϕ) dϕ

vns (R, z) = 4

π

∫ π/2

0
v (R, ϕ, z) sin (nϕ) dϕ (for n �= 0)

(15)

vnc (R, z) = 2

π

∫ π/2

0
v (R, ϕ, z) dϕ, vns (R, z) = 0

(for n = 0) . (16)

The MHD kinetic energy is expressed in terms of the harmonics
of density and velocity∫

1

2
ρv2dV =

∑
l+m=k or |l−m|=k

∫
1

2
ρkvl · vmdV

(k, l, m � 0) . (17)

We neglect the terms with k �= 0 because ρ0 = ρeq + δρ0 �
δρk �=0 holds. Then, the MHD fluctuation energy is written as
the sum of energy over the toroidal mode numbers

E =
∑

n

En, (18)

En ≡
∫ (

1

2
ρ0v

2
n +

2δBn · Beq + δB2
n

2µ0
+

δpn

γ − 1

)
dV . (19)

For n �= 0, En is reduced to

En ≡
∫ (

1

2
ρ0v

2
n +

1

2µ0
δB2

n

)
dV , (20)

because the terms δBn · Beq and δpn vanish after integration
over the toroidal angle.

We also analyse the evolution of the energy dissipation for
each toroidal mode number n

Dn =
∫ [

νρ0ω
2
n + 4

3νρ0 (∇ · vn)
2 + ηδjn · jn

]
dV. (21)
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Figure 6. Evolution of (a) energy and (b) energy dissipation with
toroidal mode number n = 4 denoted as E4 and D4 along with the
total energy and total energy dissipation of toroidal mode numbers
n = 0, 4, 8, 12, 16 denoted as EALL and DALL for βh0 = 1.7%.

For n = 0, we investigate an alternative form of the fluctuation
energy, S and E′

0, defined by

d

dt
S ≡ DALL ≡

∑
n

Dn, St=0 = 0

E′
0 ≡ E0 − S.

(22)

For the purpose of the saturation analysis, E0 is not a useful
variable because E0 monotonically increases in time, as all the
dissipated energy is transferred to the n = 0 mode. We have
found that E′

0 is a useful variable to understand the saturation
process of the instability, as is discussed below.

The evolution of energy with toroidal mode number n = 4
(E4) and the sum of energy over toroidal mode numbers n = 0,
4, 8, 12, 16 (EALL = E′

0 + E4 + E8 + E12 + E16) is shown in
figure 6(a). At saturation time, ωAt = 380, of the TAE
instability, the energy in the toroidal mode numbers n = 12
(E12) and 16 (E16) are, respectively, 3% and 1% of the energy
of the n = 4 (E4) component. The energy of the modes with
n � 20 is negligibly small and the energy and dissipation were
not analysed, although such higher-n modes are included in the
simulation. We also see in figure 6(a) that at saturation the total
energy EALL is greater than the energy of the n = 4 mode E4 by
40%. The total energy dissipation of toroidal mode numbers
n = 0, 4, 8, 12, 16 (DALL = D0 + D4 + D8 + D12 + D16)

is compared with that of n = 4 (D4) in figure 6(b). The
total dissipation is two times greater than the dissipation in
n = 4 alone.

Let us consider why the saturation level is reduced by the
MHD nonlinearity. The energy evolution for each toroidal

Figure 7. Evolution of damping rate for each toroidal mode number
and total damping rate in the nonlinear MHD simulation, and
damping rate in the linear-MHD simulation (γd lin) for βh0 = 1.7%.

mode number is given by

d

dt
E4 = 2γh (t) E4 − D4 + P4,

d

dt
E′

0 = −D0 + P0,

d

dt
En = −Dn + Pn (n �= 0, 4) ,

(23)

where γh(t) represents the energetic-particle drive and Pn is
the energy transfer from the other toroidal mode numbers. The
factor of 2 arises for γh(t), which denotes the amplitude growth
rate. The energetic-particle drive is restricted only to the n = 4
mode in this work. When the nonlinear coupling is so weak
that Pn can be neglected, the saturation condition for the n = 4
mode is given by γh(t) = D4/2E4. As the TAE amplitude
grows, the particle trapping reduces γh(t) to γd4 = D4/2E4

that is the damping rate of the n = 4 mode, leading to the
saturation of the instability. For the case investigated here, the
nonlinear coupling cannot be neglected. The summation of all
equations (23) gives

d

dt
EALL = d

dt


E′

0 +
∑
n�=0

En


 = 2γh (t) E4 − DALL.

(24)

Here, we used the relation
∑

n Pn = 0 for energy conservation.
As we see in figure 6(a), the saturation of E4 and EALL takes
place roughly at the same time. Then, we investigate the
saturation condition of EALL instead of E4. The saturation
condition of EALL is given by γh(t) = DALL/2E4, which
is a higher level of the energetic-particle drive than that for
the linear-MHD run, corresponding to the earlier saturation
of the instability. We can say that DALL/2E4 is an effective
damping rate for the cases where nonlinear coupling between
the different toroidal mode numbers is essential. In figure 7
the evolution of γd n = Dn/2En and γd ALL = DALL/2E4

are compared with γd lin = D4/2E4 in the relevant linear-
MHD simulation. The total damping rate γd ALL, in the
nonlinear MHD simulation, is clearly greater than the n = 4
TAE damping rate γd lin in the linear-MHD simulation. This
explains why the saturation level is reduced by the MHD
nonlinearity. The nonlinear coupling increases the total energy
dissipation leading to the lower saturation level.
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3.3. Effects of weak dissipation

As we mentioned in section 2, the viscosity, diffusion and
resistivity coefficients employed in the previous subsections
and in the next subsection are chosen to be ν = νn =
10−6vAR0 and η = 10−6µ0vAR0. Of course, in realistic fusion
experiment plasmas the dissipation coefficients are lower by
orders of magnitude. For example, normalized resistivity
is η ∼ 10−9µ0vAR0 for hydrogen plasma with electron
temperature 1 keV, ion density 1019 m−3, magnetic field 1 T and
major radius 3 m. Thus, it is important to examine the effects
of weak dissipation. On the other hand, simulation with lower
dissipation coefficients needs a larger number of grid points.
As the dissipation terms are second-order spatial derivatives,
dissipation coefficients that are three orders of magnitude lower
need 101.5 times larger number of numerical grid points in one
direction. This leads to 104.5 times larger number of total
grid points. Since such a simulation is not possible at the
present time, we investigate the effects of weak dissipation by
simulating a case with diffusion coefficients reduced by 1/4 to
ν = νn = 2.5 × 10−7vAR0 and η = 2.5 × 10−7µ0vAR0. The
number of grid points for each of the cylindrical coordinates is
doubled leading to 256 × 128 × 256 grid points for (R, ϕ, z).
The number of computational particles is increased by a factor
of 8 to 4.2 × 106. The radial velocity evolution is compared in
figure 8(a) for the linear-MHD and the nonlinear MHD runs
for βh0 = 1.7%. The saturation level of vr/vA is ∼7 × 10−3

for the nonlinear MHD simulation while it is ∼1.4 × 10−2 for
the linear-MHD simulation. We thereby demonstrate again the
reduction in the saturation amplitude by the nonlinear MHD
effects but now with weaker dissipation. For the linear-MHD
run, another unstable TAE with major harmonics m/n = 6/4
and 7/4 affects the evolution of the TAE focused on in this
paper, leading to the second amplitude peak higher than the
first peak.

Shown in figure 8(b) is both the evolution of the damping
rate for each toroidal mode number together with the total
damping rate in the nonlinear MHD simulation and the
damping rate in the linear-MHD simulation. Comparing the
results for the lower with the higher dissipation case shown
in figure 7, we find that in the lower dissipation case we
have a lower damping rate for the linearly growing phase
prior to ωAt = 250. However, the total damping rate γd ALL

increases in the nonlinear phase, just in the same way as
the stronger dissipation case illustrated in figure 7. As seen
from figure 8(b), the damping rate for the higher-n modes
increases significantly in the nonlinear phase leading to the
high level of the total damping rate. This result suggests that the
saturation level would similarly reduce by the nonlinear MHD
effects even if the parameters for more realistic dissipation
were taken into account. We would also like to point out that a
mechanism for substantial dissipation of higher-n modes might
be arising from the continuum damping that does not depend on
the dissipation coefficients [20, 21] yet exists within an MHD
model. Further work to verify this conjecture is needed.

3.4. Spatial profile and evolution of nonlinearly generated
modes

Let us examine the spatial profiles and the evolution of the
nonlinearly generated modes. We have analysed the spatial

Figure 8. Comparison of the radial velocity evolution for the
linear-MHD and the nonlinear MHD runs using the cosine part of
m/n = 6/4 harmonics at r/a = 0.42 (a), and evolution of damping
rate for each toroidal mode number and total damping rate in the
nonlinear MHD simulation, and damping rate in the
linear-MHD simulation (γd lin) (b) for βh0 = 1.7% and
ν = η/µ0 = νn = 2.5 × 10−7vAR0.

profiles of the n = 0 poloidal flow for different times of the
nonlinear MHD simulation with βh0 = 2.0%. The radial
velocity evolution for the n = 4 mode was already shown
in figure 4. The spatial profiles of the n = 0 poloidal flow at
ωAt = 189 and ωAt = 227 are shown in figure 9. When
we compare figures 9(a) and (b), we see that the n = 0
poloidal flow profile remains constant during the linear phase
of the TAE instability. The profile peaks at the maximum
position of the TAE mode amplitude. The largest harmonics
are the m/n = 0/0 and 1/0 cosine (∝ cos ϑ) harmonics. The
evolution of the 0/0 harmonic of the poloidal flow, namely the
zonal flow, is shown in figure 10(a) along with the 1/0 sine
harmonic of the pressure fluctuation. The amplitude evolution
of the zonal flow and the principal harmonic of the TAE radial
velocity at the same magnetic surface are shown in figure 10(b).
As can be seen in figure 10(a), the zonal flow and the pressure
oscillate with the same frequency after the saturation of the
instability. This oscillation is a GAM because the frequency
of the oscillation ω = 0.11ωA is close to the theoretical
GAM frequency ωGAM = ωA

√
γβbulk(1 + 1/2q2) = 0.12ωA

[22, 23]. Furthermore, the coupling between the zonal flow and
the 1/0 sine harmonic of the pressure fluctuation is consistent
with the theory of GAM. We see in figure 10(b) that the zonal
flow amplitude grows at twice the TAE growth rate. This
suggests that the n = 0 modes are primarily generated by
the coupling of two n = 4 harmonics of the TAE mode.

Let us discuss the n = 0 mode in its exponentially growing
phase and how the GAM is excited. When the n = 0 mode
amplitude is sufficiently small and the source generated by the
nonlinear coupling is neglected, the n = 0 mode evolution can
be described by the linear MHD equations (8)–(11). This can

6
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Figure 9. Spatial profile of each poloidal harmonic of the poloidal
flow with n = 0 during the linearly growing phase of the TAE
instability at (a) ωAt = 189 and (b) ωAt = 227 for βh0 = 2.0%.
Solid (dashed) lines show cos(mϑ) [sin(mϑ)] harmonics with
poloidal mode number m labelled in the figure.

Figure 10. Time evolution of (a) the zonal flow and pressure
fluctuation and (b) the zonal flow amplitude and the TAE amplitude
for βh0 = 2.0%.

be expressed in the following form

∂

∂t
z + Meq (z) = 0, (25)

Figure 11. Spatial profile of each poloidal harmonic of the radial
velocity with n = 8 during the linearly growing phase of the TAE
instability. Solid (dashed) lines show cos(mϑ + nϕ) [sin(mϑ + nϕ)]
harmonics with poloidal mode number m labelled in the figure.

where z is the n = 0 mode fluctuations z = t (δρ, δv, δB, δp)
and Meq is the linear-MHD operator which is a function of the
equilibrium variables. Next we consider the source vector s

which is generated by the nonlinear coupling of the TAE eigen-
function. The evolution of z at the linear phase is described by

∂

∂t
z + Meq (z) = s. (26)

The source vector can be expressed as s = s0e2γTAEt using
the TAE growth rate γTAE because the nonlinear coupling of
the TAE eigenvectors generates the n = 0 fluctuations with
zero frequency and growth rate 2γTAE. We also see from
the simulation results shown in figures 9 and 10 that the
n = 0 mode fluctuations can be expressed as z = z0e2γTAEt .
Here, s0 and z0 are independent of time. Equation (26) is
reduced to

2γTAEI (z0) + Meq (z0) = [
2γTAEI + Meq

]
(z0) = s0, (27)

where I is the unit operator and both I and Meq are linear
operators of z0. Then, the spatial profile of the n = 0 mode
fluctuations is given by z0 = (2γTAEI + Meq)

−1(s0). The
zonal flow profile shown in figure 9 is a part of the solution z0

that contains the n = 0 fluctuations of all the MHD variables.
It should be emphasized that the spatial profile z0 depends on
2γTAE, the growth rate of the nonlinear source during the TAE
linear phase. When the instability saturates, the growth rate of
the nonlinear source approaches zero. Then, the n = 0 field z0

that is matched to the TAE linear growth is no longer a solution
of equation (26) during the nonlinear phase. This leads to the
excitation of the n = 0 MHD waves that include the GAM.

The spatial profiles of the n = 8 harmonics have also been
investigated. The radial velocity profile is shown in figure 11.
The profile peaks at the TAE peak location. The largest
harmonics are m/n = 10/8 and 11/8. The m/n = 11/8
harmonic is consistent with the nonlinear source generated by
the coupling of the TAE harmonics m/n = 5/4 and 6/4. The
m/n = 10/8 harmonic may be generated from the nonlinear
source with m/n = 11/8 through toroidal coupling. The
evolution of the 11/8 harmonic and the frequency is shown
in figure 12. We see in figure 12(b) that the real frequency of
the n = 8 mode is twice the TAE frequency.

7
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Figure 12. Time evolution of (a) the cosine part of m/n = 11/8
radial velocity harmonics and (b) the frequency for βh0 = 2.0%.

4. Discussion and summary

The nonlinear MHD effects on the evolution of the Alfvén
eigenmode were investigated with hybrid simulations of an
MHD fluid interacting with energetic particles. To clarify
the role of the MHD nonlinearity, the nonlinear MHD results
were compared with results from a reduced model, where only
linear-MHD equations were solved together with a nonlinear
response of the energetic particles. Specifically, we studied the
evolution of an n = 4 TAE mode destabilized by its resonant
interaction with energetic particles in a tokamak plasma. When
the TAE saturation level is δB/B � 10−3 no significant
difference was found between the results of the linear-MHD
simulation and the nonlinear MHD simulations. On the other
hand, when in the linear-MHD simulation the TAE saturation
level is δB/B ∼ 10−2, the saturation level in the nonlinear
MHD case is found to be reduced to half the result of the linear-
MHD simulation. We found that the nonlinearly generated
n = 0 and the higher-n (n � 8) modes provide increased
energy dissipation that appears crucial for achieving a reduced
TAE saturation level.

The effects of MHD nonlinearities on the increase in
TAE damping rate were discussed in previous works [11, 12].
We found in this work that the total damping rate of all
the toroidal mode numbers increases before the saturation
of the instability. The increased dissipation leads to the
reduction in the saturation amplitude even though the damping
rate of the n = 4 component, which was the original TAE
carrier, decreases slightly before saturation. We emphasize
that this is a new picture for the mechanism by which
nonlinear MHD effects cause saturation that is different from
the previous works. In the simulation results of the TAE
bursts presented in [1], the energetic-particle loss takes place
when the TAE amplitude reaches δB/B ∼ 5 × 10−3 while

the saturation amplitude is δB/B ∼ 2 × 10−2. It was also
demonstrated in another study [10] that synchronized bursts
of multiple TAEs take place when the MHD nonlinearities
are taken into account. In contrast, in this work, we have
focused on the evolution of a single TAE and demonstrated
that the nonlinear MHD effects reduce the TAE saturation
level. Computer simulations of multiple Alfvén eigenmodes
have been conducted [6, 10, 12, 24]. There is still a need
to investigate the nonlinear MHD effects in multiple mode
evolution by comparing the linear and nonlinear MHD
simulations as has been performed in this work. For
future work, it is important to reproduce the TAE bursts,
using realistic parameters. The challenge is to demonstrate
saturation amplitudes that are closer to the value inferred from
the experimental plasma displacement measurements.

Another interesting discovery of this work is the excitation
of the GAM after the saturation of the TAE instability. In the
linearly growing phase of the instability, the zonal fluctuations
are matched to the growth of the nonlinear source, with a spatial
profile kept constant. When the instability saturates, however,
the spatial profile of the zonal fluctuations is no longer matched
to the evolution of the nonlinear source. This excites the n = 0
MHD waves that includes the GAM. It is evident that the
GAM is excited through the nonlinear MHD effect because
the n = 4 fluctuations of the energetic-particle current density
retained in the simulations cannot directly drive the GAM. This
excitation mechanism of the GAM is different from the direct
destabilization by the energetic particles [25, 26]. We note
that the excitation of zonal flow and GAM through the TAE
nonlinearity is an interesting phenomenon for burning plasmas
since its excitation may lead to improved plasma confinement
and to bulk plasma heating through the damping of the GAM.
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