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ABSTRACT
Reconnection of magnetic field lines for a wide range of parameters in the relativistic regime is
considered. A newly developed covariant fluid model for magnetized plasmas, incorporating
pressure anisotropy, is used to expand the study of the Petschek-type reconnection in a pair-
plasma governed by slow-mode shocks. The plasma parameters are found to be strongly
modified by anisotropy on both sides of the shock.

Key words: magnetic fields – MHD – shock waves.

1 IN T RO D U C T I O N

Shock-mediated reconnection is a possible source for the high-
energy non-thermal emissions observed in astrophysical systems
such as pulsars and magnetars (Spitovsky 2008), gamma-ray
bursts (Mészáros 2006) and active galactic nuclei (Di Matteo
1998). In such strongly magnetized environments, strong gyrotropic
anisotropy in the pressure is expected to occur due to synchrotron
emission (Asseo & Beufils 1983) and various instabilities (Chou &
Hau 2004; Daughton, Lapenta & Ricci 2004).

Petschek reconnection is a form of shock-mediated magnetic
reconnection which proceeds rapidly and efficiently converts mag-
netic energy into thermal and bulk-flow energy (Petschek 1964).
The speed of the energy conversion, inflow of the order of the
Alfvén speed, is achieved by assuming the dissipation region in
which the magnetic field is annihilated is small. Since the magnetic
field is being annihilated, the field strength crossing from the inflow
to outflow regions must drop. Further, the energy lost due to recon-
figuration of the field geometry causes the temperature across the
shock to rise. As such, the Petschek reconnection is governed by
slow-mode shocks, which follow the above behaviour, analogous to
slow-mode compressional magnetohydrodynamic (MHD) modes.
We will consider a switch-off shock, a special case of a slow-mode
shock in which the component of the magnetic field tangent to the
shock is ‘switched off’ when crossing the shock.

Biskamp (1986) argues that the Petschek reconnection cannot
be obtained without imposing an unphysically large (anomalous)
resistivity to the diffusion region. However, slow-mode shocks have
been observed in the solar corona (Shibata 1996) and via the cluster
satellites in the Earth’s magnetotail (Eriksson, Øieroset & Baker
2004).

Switch-off shocks in the isotropic non-relativistic limit have
been explored by Biernat, Heyn & Semenov (1987). Biernat et al.
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(2002) extended the result to include anisotropic pressure; however,
they restrict the outflowing plasma to be isotropic. Hoshino et al.
(1997) perform a double adiabatic style closure to include pressure
anisotropy; further, they included a phenomenological heat-flow
term. They found including pressure anisotropy and heat flow al-
lowed analytical calculations to better match data from the Earth’s
magnetotail taken via the GEOTAIL spacecraft.

The problem of relativistic shock-mediated magnetic recon-
nection was first approached by Blackman & Field (1994) and
Lyutikov & Uzdensky (2003). The two approaches reached simi-
lar conclusions; however, the plasma was assumed incompressible
and the full energy and momentum balance were neglected in both
the cases. Tolstykh et al. (2007) extended the results of Blackman
& Field (1994) and Lyutikov & Uzdensky (2003) by considering
non-steady-state solutions but retained the same simplifications.
Lyubarsky (2005) took a more sophisticated approach and used the
relativistic generalization of the Rankine–Hugoniot shock jump re-
lations to solve the switch-off shock Riemann problem. Double et al.
(2004) studied the effect of anisotropy on relativistic shocks; how-
ever, they assume a fixed ratio of p‖/p⊥ to complete their closure.
Recently, two groups, Swisdak, Liu & Drake (2008) and Zenitani &
Hesse (2008), have begun simulating relativistic electron–positron
(pair) plasma reconnection via particle-in-cell (PIC) codes, which
naturally allow for pressure anisotropy. Both groups observe strong
anisotropy in the outflowing plasma, giving rise to a Weibel insta-
bility that mediates the size of the diffusion region and allows fast
reconnection to occur.

We present a generalization of the Petschek model to include
the relativistic regime with anisotropic pressure. We employ a limit
of the relativistic, magnetized fluid closure presented in TenBarge
et al. (2008) to perform our analysis. It will be shown that the out-
flowing plasma develops a strong positive anisotropy regardless of
the upstream parameters, and the compression ratio of the shock is
significantly reduced in anisotropic shocks. Furthermore, the down-
stream plasma is found to be firehose-unstable for plasmas in which
the magnetic energy is of the order the particle energy.
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Figure 1. Shock-mediated magnetic reconnection.

We begin our analysis with a development of the conserva-
tion equations, applicable to any shock, necessary to derive the
anisotropic, relativistic Rankine–Hugoniot relations for slow-mode
shocks in Section 2. We briefly describe the isotropic shock limit in
Section 3. In Section 4, we examine the predictions of the Rankine–
Hugoniot relations analytically for the case in which the magnetic
energy is much greater than the particle energy and numerically for a
wide range of parameters. Our results are summarized in Section 5.

2 R ELATIVISTIC SLOW-MODE SHOCKS

We begin by constructing the Rankine–Hugoniot relations for the
fully relativistic pair-plasma fluid system with gyrotropic pressure
anisotropy. Plasma quantities are measured in the rest frame of
the plasma, and electromagnetic fields are measured in the shock
frame. The Petschek-style reconnection for a slow-mode switch-
off shock in the xy-plane is considered, as indicated in Fig. 1.
Inflowing plasma is oriented normal to the shock (normal-incidence
frame), and the upstream magnetic field has normal and tangential
(y and x) components. The downstream plasma flow has normal and
tangential components, while the downstream field will have only
a normal component – a switch-off shock.

2.1 Conservation equations

The original closure presented by TenBarge et al. (2008) includes
heat flow; however, we do not include heat flow in this analysis
because a closure involving both heat fluxes consisting purely of
conservation laws is not possible. Although the Riemann problem
can be solved given a set of equations in non-conservative form,
knowledge of the physics in the dissipation region is required (see
e.g. LeFloch 1989). Knowledge of the dissipation region is required
because the path taken by each parameter while crossing the shock
cannot in general be assumed to be a straight line connecting the
two sides of the shock discontinuity.

The stress-energy tensor of the plasma appearing in TenBarge
et al. (2008) can be summed over species and re-expressed as

T μν
p =

(
p − 1

3
�p

)
ημν +

[
ρW (ζ ) − 1

3
�p

]
UμUν

+�phμhν/h2, (1)

neglecting heat flux, where ρW (ζ ) = mn
K3(ζ )
K2(ζ ) is the enthalpy den-

sity and the Ki are the MacDonald function of ζ = m/T = mn/p,
p = (p‖ + 2 p⊥)/3, �p = p‖ − p⊥, where parallel and perpen-
dicular are with respect to the background magnetic field, ημν is
the metric tensor, Uμ = γ (1, v) is the fluid four-velocity, hμ =
[γ B ·V , B/γ + γ (B ·V ) V ] and h2 = hμhμ. The stress-energy
tensor of the electromagnetic field can be written as

T
μν

EM = h2

2
ημν + h2UμUν − hμhν.

In the preceding and all following expressions, we have summed
over species assuming a pair-plasma: me = mp = m/2, pe = pp =
p/2, �pe = �pp = �p/2, ne = np = n and V e =V p =V . We can
now write the equations of particle flux

∂μnUμ = 0, (2)

momentum

∂μT μi = 0 (3)

and energy

∂μT μ0 = 0 (4)

in conservative form, where T μν = T μν
p + T

μν
EM is the total stress

tensor summed over species.
At this point, an equation for �p is needed to close the system.

To close the system, we use

eαβ∂μMμαβ = 0, (5)

where eμν is a perpendicular projector and Mαβγ is the third-rank
tensor moment, whose full expression can be found in TenBarge
et al. (2008). Equation (5) can be reduced to obtain the conservation
equation from Hazeltine & Mahajan (2002)

∂μ

(
m1U

μ

h

)
= 0, (6)

where m1 is an auxiliary parameter found in TenBarge et al. (2008).
However, we neglect terms proportional to �p2 appearing in m1.
These higher-order terms only need to be retained when consider-
ing heat flow, which requires fourth rank moments and implicitly
includes terms second order in the anisotropy. In this reduced form,

m1 = m

(
p

K3

K2
− 1

3
�p

K4

K3

)
. (7)

In three-vector form, equations (2)–(4) and (6) are

∂t (γρ) + ∇ · (γρv) = 0 (8)

∂t

[
γ 2

(
ρW − 1

3
�p

)
vi + �pk0ki + (E × B)i

]

+∂j

[
γ 2

(
ρW − 1

3
�p

)
vivj +

(
p − 1

3
�p + E2 + B2

2

)
δij

+ �pkikj − BiBj − EiEj
] = 0 (9)

∂t

[
γ 2

(
ρW − 1

3
�p

)
−

(
p − 1

3
�p

)
+ �p

(
k0

)2 + E2 + B2

2

]

+∇ ·
[
γ 2

(
ρW − 1

3
�p

)
v + �pk0k + E × B

]
= 0 (10)

∂t

[
γ (pW + �pK4/K3)

h

]
+ ∇ ·

[
γ (pW + �pK4/K3) v

h

]
= 0.

(11)
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Equations (8)–(11) represent a closed set of relativistic fluid con-
servation equations in the magnetized limit and can be straightfor-
wardly applied to any shock type or geometry.

2.2 Rankine–Hugoniot relations

We now construct the Rankine–Hugoniot relations by considering
a steady state with the geometry of a slow-mode switch-off shock
and integrate equations (8)–(11) along with the relevant Maxwell
equations across the shock. We find

[Ez] = 0, (12)

[Bn] = 0, (13)

[γρvn] = 0, (14)

[
p − 1

3
�p + γ 2v2

n

(
ρW − 1

3
�p

)
+ �p

h2
n

h2
+ B2

t − B2
n

2

]
= 0,

(15)

[
γ 2vnvt

(
ρW − 1

3
�p

)
+ �p

hnht

h2
− BnBt

]
= 0, (16)

[
γ 2vn

(
ρW − 1

3
�p

)
+ �p

hnh
0

h2
+ BtEz

]
= 0, (17)

[
(pW + �pK4/K3) γ vn

h

]
= 0, (18)

where bracketed terms are to be evaluated on each side of the shock.
The h-terms can be expressed in terms of v and B as

hn1 = γ1Bn

ht1 = Bt1

γ1

h0
1 = γ1vn1Bn

h1 =
√

B2
1 − v2

n1B
2
t1

hn2 = γ2Bn

(
1 − v2

t2

)
ht2 = γ2v2nv2tBn

h0
2 = γ2vn2Bn

h2 = Bn

√
1 − v2

t2,

(19)

where 1 and 2 indicate upstream and downstream of the shock,
respectively, and B2

1 = B2
n + B2

t1.
We now normalize the equations and simplify to obtain our jump

relations

Bn1 = Bn2 = Bn (20)

vt2 = −vn1 cot θ (21)

ρ2

ρ1
= γ1vn1

γ2vn2
(22)

γ1
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[
1

γ 2
1

(
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3
dπ1

)
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+v2
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(
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3
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)
+ σ̂ cos2 θ

2

]

= γ2
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3
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)
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n2

(
W2 + 2

3
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)]
(23)

γ1

vn1

[
dπ1

γ 2
1
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]
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= γ2vt2

(
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)
(24)
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(
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3
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)
(25)

π1W1 − 1
3 dπ1

(
K4
K3

)
1√

1 − v2
n1 cos2 θ
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π2W2 − 1

3 dπ2

(
K4
K3

)
2√

1 − v2
t2

, (26)

where θ = arctan (Bn/Bt1), σ̂ = B2
1

γ 2
1 ρ1

, π = p

ρ
= 1

ζ
and dπ = �p

ρ
.

Note, σ̂ = σ/γ , where σ is parameter commonly appearing used
in pulsar literature which represents the ratio of the Poynting flux
to particle energy.

In the non-relativistic limit, this system reduces to the Rankine–
Hugoniot relations for a double-adiabatic (Chew, Goldberger &
Low 1956) plasma. As such, the system reproduces previous results
in the literature (Biernat et al. 2002) when appropriate limits are
taken and smoothly connects non-relativistic shock theory to a fully
relativistic generalization.

3 ISOTROPIC LIMIT

In the limit with no pressure anisotropy on either side of the shock, a
cold plasma upstream and a relativistically hot plasma downstream,
Lyubarsky (2005) found the following inflow velocity

v2
n1 = σ̂ sin2 θ

1 + σ̂ cos2 θ
. (27)

To obtain analytical results for other parameters, Lyubarsky as-
sumes σ̂ � 1 and performs expansions to find

vn1 = tan θ, (28)

vt2 = −vn1 cot θ = −
(

1 − 1

2σ̂ cos2 θ

)
, (29)

vn2 = sin θ

2σ̂ cos3 θ
, (30)

π2 = B2
1 cos2 θ

2ρ2
= σ̂ γ 2

1 cos2 θ

2

ρ1

ρ2
, (31)

ρ2 = 2ρ1 cos2 θ

√
σ̂

cos 2θ
. (32)

We reproduce these results in the limit �p1 = �p2 = 0 and use the
results as a baseline for comparison.

4 A NISOTROPIC RESULTS

Combining equations (21), (24) and (25), we can express the inflow
velocity as

v2
n1 =

(
σ̂ − dπ1

γ 2
1

1
1−v2

n1 cos2 θ

)
sin2 θ

W1 − 1
3 dπ1 + dπ1

sin2 θ

1−v2
n1 cos2 θ

+ σ̂ cos2 θ
. (33)

The inflow velocity is abated when the numerator vanishes, which
corresponds to the onset of the firehose instability (B2

1 < �p1)
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for the inflowing plasma. Note that equation (33) corresponds to
the Alfvén speed in the shock frame of the plasma and has no
dependence on the downstream parameters.

For the same case as considered by Lyubarsky (2005) except
with the inclusion of pressure anisotropy in the downstream plasma
(upstream cold and isotropic), one finds the following results:

ρ
�p

2

ρ2
= 4

7

v
�p

n2

vn2
= 7

4

v
�p

n1

vn1
= 1

π
�p

2

π2
= 3

4

v
�p

t2

vt2
= 1

dπ
�p

2

π2
= 3

2

dπ�P
2

π�P
2

= 2,

where x�p represents results with downstream anisotropy. The
downstream plasma is marked by the presence of a strong pres-
sure anisotropy which occurs regardless of the anisotropy of the
upstream plasma. Upstream pressure anisotropy plays a small role
in the dynamics of the system until it is of the order of the magnetic
energy, �p1 � B2.

4.1 Exploration of various parameter regimes

Having explored simple analytical solutions to the relativistic
switch-off shock with pressure anisotropy, we now turn to examin-
ing numerical results computed via Mathematica

R©
. We choose

an intermediate shock angle of 22.◦5 for all of the shocks ap-
pearing in this section. All downstream parameters are plotted
against the normalized upstream plasma temperature, T 1/m, so
that the far left of each plot represents non-relativistic inflow
temperatures.

We begin by examining three relativistic cases in which the up-
stream anisotropy is zero (Figs 2–4). In each log–log plot, dashed
lines are results with downstream anisotropy and solid lines are fully
isotropic results, while dash–dotted lines are downstream tempera-
ture anisotropy. In Fig. 2, σ̂ is chosen to be an ultrarelativistic value
of 100. If we define the strength of our shock by the compression ra-
tio, ρ2/ρ1, we see the anisotropic shock is weaker than its isotropic
counterpart. The shock is also cooler than its isotropic counterpart
but features a downstream anisotropy roughly twice its tempera-
ture. The outflowing normal velocity is enhanced but remains small
compared to the tangential velocity, which is unchanged in the
anisotropic case since it is proportional to the inflow velocity and
determined solely by upstream parameters.

Moving on to Fig. 3, for which σ̂ = 1, the same overall trends
as the ultrarelativistic case are observed. However, the compression
ratio crosses below unity for T 1/m � 0.45. As in non-relativistic
shocks (Zel’dovich & Raizer 2002), the second law of thermody-
namics requires the compression ratio to increase across a shock due
to irreversible dissipation occurring in the shock. Thus, the shock
in this regime is weakened to the point of becoming continuous
for temperatures above approximately 0.45 m. Further, in Fig. 4, in
which the magnetic field is moderately relativistic, σ̂ = 0.001, the
shock ceases to exist at a yet lower temperature and is significantly
weaker than its isotropic counterpart.

Fig. 5 explores the effect of upstream pressure anisotropy on
the switch-off shock in the relativistic regime of σ̂ = 1. Repre-
sented by red in this figure is the case �p1 = p1(p‖1 = 5

2 p⊥1),
blue is the case �p1 = −p1(p‖1 = 1

4 p⊥1) and black has
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Figure 2. Log–log plot of downstream parameters of a switch-off shock
with respect to upstream temperature. σ̂ = 100,�π1 = 0, θ = 22.5.
Dashed are results with downstream anisotropy and solid are fully isotropic
results. Dash–dotted is downstream temperature anisotropy.

�p1 = 0 – all three cases permit downstream anisotropy. For
non-relativistic inflow temperatures, the anisotropy of the up-
stream plasma plays little role in determining the downstream
plasma. Also, upstream anisotropy has a negligible effect on
the downstream temperature. Examining the compression ratio
curves reveals positive upstream anisotropy serves to weaken the
shock, while negative anisotropy strengthens and stabilizes the
shock.

Fig. 6 presents the case one might expect to find in a strongly
magnetized pulsar magnetosphere. Relativistically strongly magne-
tized plasmas will rapidly radiate away their perpendicular energy
(temperature) due to synchrotron radiation (Asseo & Beufils 1983),
leaving p‖1 � p⊥1.

We take a brief aside to note the quantity �p/p is bounded.
Explicitly,

�p

p
= 3(p‖ − p⊥)

p‖ + 2p⊥
, (34)

which has two limits:

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 403, 335–341



Relativistic Petschek reconnection 339

0.001 0.01 0.1 1
T1/m

1.0

2.0

3.0

1.5

0.001 0.01 0.1 1
T1/m

1.00

0.50

0.20
0.30

0.15

0.70

T2/m

0.001 0.01 0.1 1
T1/m

0.10

0.15

v2 n

0.001 0.01 0.1 1
T1/m

0.45

0.5
0.55

0.6
0.65

v2 t

Figure 3. Log–log plot of downstream parameters of a switch-off shock
with respect to upstream temperature. σ̂ = 1,�π1 = 0, θ = 22.5. Dashed
are results with downstream anisotropy and solid are fully isotropic results.
Dash–dotted is downstream temperature anisotropy.

(i) p‖ � p⊥: in which case �p/p → 3;
(ii) p‖ 
 p⊥: in which case �p/p → −3/2.

Therefore, �p/p ε (−3/2, 3).
In Fig. 6, dashed lines represent the case which is likely to be

seen in a pulsar magnetosphere with anisotropy up- and down-
stream (dash–dotted line), solid lines represent an isotropic up-
stream plasma with only downstream anisotropy (dotted line). As
noted above but enhanced by the stronger positive anisotropy, the
shock in the pulsar case is weaker than the isotropic case and shuts
off above T 1 � 0.1m for this parameter regime. The shut off sug-
gests this form of shock may not occur in the relativistically hot and
magnetized regions of pulsar and magnetar magnetospheres.

A strong anisotropy downstream of a pair-plasma reconnection
event has been observed in PIC simulations performed by Swisdak
et al. (2008) and Zenitani & Hesse (2008). In their simulations,
they observed a maximum downstream anisotropy of Ttt/Tnn � 4,
where T is the stress tensor of the plasma. Also observed was an
enhancement of the out-of-plane magnetic field. They argue that
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Figure 4. Log–log plot of downstream parameters of a switch-off shock
with respect to upstream temperature. σ̂ = 0.001,�π1 = 0, θ = 22.5.
Dashed are results with downstream anisotropy and solid are fully isotropic
results. Dash–dotted is downstream temperature anisotropy.

the anisotropy drives a Weibel instability in the downstream plasma
whose generated turbulence serves to limit the length of the re-
connection current sheet, thereby facilitating fast reconnection. The
source of the Weibel instability is the two ‘streams’ of plasma having
different temperatures. In non-relativistic pair-plasma simulations,
Daughton & Karimabadi (2007) observed the possible signature of
a firehose instability in the strongly anisotropic downstream pair-
plasma. The role the instability played in the reconnection dynam-
ics was not explored. Further, evidence of firehose unstable plasma
downstream of a slow-mode shock was observed in ISEE 2 data
(Walthour, Sonnerup & Russell 1995).

In our case, Ttt/Tnn � 1/7 + 10γ 2
2v

2
t2/7 for the relativistically

strongly magnetized shocks with relativistic downstream tempera-
tures considered in our analysis. For the cases considered herein,
Ttt/Tnn can be of the order of 100. An out-of-plane magnetic field
was not included in our analysis; however, the Weibel instability in
the form of two warm streams is a purely kinetic instability. The
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Figure 5. Effect of Upstream Anisotropy (σ̂ = 1, θ = 22.5). Cases: Red =
dπ1 = π1, Blue = dπ1 = −π1, = dπ1 = 0. Dashed represents dπ2 in all
cases.

only fluid analogue progenitor of a Weibel instability is to impose
cold beams on the plasma.

Although we cannot observe a Weibel-like instability in our fluid
approach, we can examine the firehose instability. In all parame-
ter regimes explored, the downstream plasma exhibits a positive
anisotropy on the order of the downstream temperature. Since the
firehose instability threshold is unmodified for relativistic plasmas
(Chou & Hau 2004), the threshold for the downstream plasma can
be expressed as

B2
2

ρ2
− �p2

ρ2
= σ̂ sin2 θ

γ1γ2vn2

vn1
− dπ2 < 0, (35)

the strong positive anisotropy produced by the shock results in a
firehose unstable plasma for relativistically strongly magnetized
(σ̂ = B2

1
γ 2

1 ρ1
� 1) upstream plasma. This instability likely leads to

turbulence in the outflowing plasma, which may play the same role
as the Weibel instability for these relativistic cases.
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Figure 6. Pulsar/Magnetar Case (σ̂ = 1, p‖1 � p⊥1, θ = 22.5). All
results calculated allow for downstream anisotropy. Dashed are results
with upstream anisotropy, dπ1 = 3π1, and solid have upstream isotropy.
Dash–dotted is downstream temperature anisotropy for the full anisotropy
case and dotted is downstream anisotropy for the case with upstream
isotropy.

5 C O N C L U S I O N S

Our new relativistic fluid model produces interesting new results for
relativistic slow-mode shocks compared to conventional relativistic
MHD (Lyubarsky 2005). The downstream plasma always develops
strong positive (p‖ > p⊥) anisotropy, regardless of the isotropy
of upstream plasma. Anisotropy in the relativistic system always
weakens the shock (decreases the compression ratio) compared to
the fully isotropic case. In some cases, the anisotropic shock is
abated due to entropy considerations, while the isotropic shock
remains well behaved. The strong downstream anisotropy for cases
in which σ̂ ∼ 1 leads to a firehose unstable plasma. We posit
the effect of the downstream plasma being firehose unstable to be
constraining the length of the reconnection current sheet, analogous
to the effect of Weibel instabilities observed in PIC simulations.
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