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Abstract

The stability of symmetric mirror systems, such as tandem mirrors
and multiple mirrors (or equivalently bumpy tori of large aspect ratio)

is investigated when stabilization is attempted with high energy _ : .

particles. The -analysis 1is ‘derived from a zero uLarmor',fadiﬁé<~7
variational form, and the stability criteria for eikonal and long w
wavelength layer modes are obtained. For eikonal modes it is shown |
that line-bending can stabilize the low ¢-number modes and together
with finite Larmor radius effects discussed elsewhere, complete
’ stabilizatioq is_po§sible. For disc-shaped plasma pressuré profiles it
is shown that currents induced by conducting Walis can stabilize the
%=1 layer mode, while the higher-# layer modes require finite Larmor
radius effects for stabilization. For thin ring-like pressure
profiles, wall stabilization of the =1 mode cannot be achieved,
although the line bending term reduces the core beta limit and the
growth rate of low f-number layer modes. The coupling of ﬁhe

precessional mode of a plasma ring to the surface Alfvén wave in a

multiple mirror plasma is also discussed. |



I. INTRODUCTION

In several magnetic configurations such as a symmetric tandem
mirror1 or EBT,2 one attempts to confine plasma stably in an otherwise
unstable MHD trap, by forming a diamagnetic well with a hot component
plasma. It is hoped that the hot component can anchor the magnetic
field lines in much the same way as the quadruple fields of a minimum—B
configuration, but with the advantage of axisymmetry in a tandem mirror
and relative simplicity of the magnetic coil geometry in. EBT. The
conditions which have been satisfied for this to occur are: 1) the
dynamical response of the hot component decouples from the background
plasma - this requires the '"precessional' drift frequency of the hot
component be greater than twice the typical MHD growth rate; 2) the
diamagnetic well is deep enough to cause magnetic particle drifts in
" the opposite direction to the "unstable"‘curvature drifts so that the
background plasma is stabilized by the minimum-B principle; 3) the
background plasma pressure is below a critical threshold.

These stability criteria were first obtained using simple gravity
models3’4ﬁ5’6 where.the‘field linés_ﬁeré stfaight and curvature was
modeled by the inclusion of a fictitious gravity. Later, a z-pinch
model’ was analyzed in which field line curvature appeared naturally in
the equilibrium. More recently, the gyrokinetic equations8’9?lO have
been wused to consider realistic equilibrium geometries, but are
applicable only to perturbations with short perpendicular wavelengths
(eikonal approximation).

In this paper, we discuss systematically the low frequency
stability of axisymmetric mirror cell equilibria and bumpy cylinder

models for a bumpy torus configuration containing a hot plasma
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component, and we extend previous investigations to 1include
perturbation with small azimuthal and axial mode numbers and the effect
of nearby walls. Calculations based on the .z-pinch model7 and a
non—-systematic extensionll of the Antonsen-Lee equations12 for a bumpy
cylinder model have indicated that the longest wavelength modes set the
most stringent conditions for the decoupling of the hot component.
Some of the important results of this paper have already been
reported.13 However, the derivation of the Dbasic equations is
different and somewhat more general than Ref. 13. 1In addition, this
paper contains the rigorous and nontrivial justification of the
boundary conditions at the ends of a tandem mirror central cell, used
in Ref. 14 to describe the coupling of the surface Alfvén wave excited
in a central cell to the hot particle precessional mode excited in the
plugs. New calculations will be presented for layer modes of plasma
rings in bumpy cylinder configuratioms.

In Sec. II we formulate the low frequency eigenmode equation Whiéh
describes the coupled compressional and interchange mode. In Sec. III
we use the_eikopal approximation to determine the dispersion relation,
local on a flux surface, for fhe compressional mode and the interchange
mode, with inclusion of hitherto neglected line bending terms arising
from the axjial variation of the equilibrium. This effect of 1line
bending gives rise to a stabilizing term that becomes more effective
the lower the azimuthal mode number of the perturbations. In Sec. IV
we derive the dispersion relation for the "layer" mode, a global mode
in which the wavelengths of the perturbations are larger than the hot
pressure scale lengths of the equilibrium and the eikonal approximation

is inapplicable. The dispersion relation is similar to that previously
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derived except that the growth rates and the stability limit on the
background plasma pressure are modified by the effect of line bending
for low #-numbers. Especially for g=1, a significant alteration
arises.

For #=1, with a disc-shaped radial pressure profile, the
instability above is proportional to the external vacuum curvature
rather than the self-consistent local curvature (additional curvature
arises at finite beta due to self-consistent bowing out of field lines
from the equilibrium plasma currents). With walls one can completely
stabilize the £=1 mode of a disc-shaped plasma. At higher g-numbers
the new term is less important. However, finite Larmor radius terms,
if large enough, can stabilize the high #-numbers. The theory
developed here uses a small beta expansion. In the MHD regime, the g=1
stébility criterion has recently been obtained at arbitrary beta.15

For a ring-shaped _plasma we show that line bending does not
prevent instability although the critical core beta and growth rates
are significantly altered from‘theories that neglect the line bending
terms. We do find that, fér sufficiently low &, line bending prevents
a new instability that was recently proposed.16 This instability would
arise from the coupling of precessional modes associated with the inner
and outer edges of the pressure profile, if the line bending terms are
ignored. However, when interaction with shear Alfvén are considered, a
new three wave interaction at low core beta arises that produces
instability. At moderate core beta the destabilizing interaction is

between the Alfvén wave and the precessional mode associated with the

outer part of the pressure profile.
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In Sec. V we present a self-contained summary of the most

important stability criteria obtained in this paper.

ITI. EIGENMODE EQUATION

We dintroduce as independent spatial variables the curvilinear
field 1line coordinates (o,68,s) of the equilibrium magnetic field
B = Va x V8. o is the flux variable, 8 the angular variable is the
azimuthal angle, and s 1is the distance along the field line
CEO * Vs = beVs = 1). The mirror cell equilibrium 1is cylindrically

B
0
symmetric and hence independent of 6. The magnetic field 1line

structure is such that Va+V0 = 0, V6+¢Vs = 0. The parallel component of
the equilibrium current is zero gbfh = 0. The metric tensors of the

magnetic field geometry are
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where R(a,8,s) is the position vector of the field line, and (r,6,2)
are the wusual circular cylindrical coordinates. The only non-zero
off-diagonal component is 852 which is related to the magnetic field

line curvature by

[ |



It may be noted that

Vas Vo = rng , V6.V8 =.35 ,
Ir

VseVs = 1 + g2 r?B} ,
VaeVs = —gsarng .

The equilibrium distribution fumnction FO(E,u,a) is a function of

the particle energy E and magnetic moment p, and the flux variable a.

The perpendicular pressure balance equation for the equilibrium is

BO BOG
where V; =V - b bevVy, o=1 +-————E————, and the perpendicular Pl and
B
0

parallel pressure P" are defined by

p, = § [ avupyF,
278, s
0 dudE
- )0 B
i m2 |Vu|
5
27B
0 dudE o2
Py=1— 7 / To ol nvFo

The summation is over all species as well as positive and

parallel velocities.

(1

negative
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The perturbed field variables are taken to be of the form

A= Zéz(a,s) exp(-iwt + i26) where w dis the frequency of the
pertjrbation and 4 the azimuthal mode number. Hereafter the subscript
% on the field variables is suppressed.

In the 1limit of =zero Larmor radius and negligible perturbed
E, = E+b (the parallel component of the electric field), the eigenmode
equations for low frequency perturbations of the plasma equilibrium may
be expressed in terms of the perpendicular components of the vector
potential A =-él or equivalently the magnetic field line displacement
© vector § defined by.él =-§§§0.
The eigenmmode equations are derivable from the following quadratic

17

variational form, with ion inertia included:

= = 5
Bo hot JF (w;aD)
oF
+ 3 d3v——°(1—ﬁ)1<+1<]=0, (2)
warm oE w
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Qp = Qb

Q; = Q- bQy
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Pi(a’BO)
Py = PylesBp)

VP, = VP VP, = vp .
1 LIBO , I HlBO

Ny is the plasma density, m and q the mass and charge of each
species. Equilibrium electrostatic potentials (¢O=O) and parallel
electric field perturbations (A"=0, $=0) are neglected. Q, 1is
essentially the Lagrangian magnetic field perturbation. XK implies
averaging of X over the periodic orbit of trapped particles. w, is the
diamagnetic frequency, and W the particle drift frequency.

The equilibrium consists of two components, a main component of
warm plasma and a hot component which may be electrons or ions. The
kinetic contributions to the variational form are evaluated in the low
bOunqg frgsqency (wb) limit for the warm plasma component (w > wy, wp)
and in the high bounce frequency 1limit for the hot component
(wb > w, wD). |

Since k is in the same direction as Vo and £<b = O,

~ ~ +o L]
§ﬂ§3§w1+gw”)_5 Wﬁvaﬁo(wl+vh)
T -= 2,2
r B0
oP oP
'_§+i_.§i_ Bog__gl .E.sgi]
9By T 3By

and the quadratic form is manifestly symmetric. When the subscript £

is made explicit:
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E+

£ > ETeE,, etc.,

and the symmetry of the quadratic form leads to the adjoint condition

Let the covariant components of the perturbed vector potential A,

be denoted by al(a,s) and Bl(a,s):

A= (0qV8 - 81Va) . (3)

£, Q, and Q; can therefore be written in terms of o) and By:

_E. = —B}a (al EXVG et 61 Exva) (4)
3R oo
_ 2 1 1
Q N
EE = Xxpoq t 188 (6)
0
where
~ o = (_E_ b %P.L_ _E_)_) o
1% = e 32, oa | Ssa s’ L
5 A o
= B. % - B — Ko
0 B 08sq — 7 + 7
3o 70 * 9s B0 rBOT ‘1 (7
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p, 9Py 9P 2By

do. da 3BO da

It is more convenient to take o; and Q; to be the field variables

rather than o, and B;, where B; is related to a; and Q by Eq. (6).

Thus,

W(ET,E) = Wal,ay,07,Q) =0

. and the eigemmode equations obtained from stationary variation with

respect to Q{ and d{ are:

OFn (w-wy) _ 3F, Wy
T 0 0
TQ"Z{ 3*3—5 — WK - ] [ dBV“a—E(l“‘““]UK
w ot m—mD) warm w
2.2 2
1{"”30 5 9By 3 (QL Siag) = 0
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22 41rv2 9s 47w 3s BO
~ {werBO ] o’rZBO 9 }(" QL)
X2 e X1% T R
4,,“7!2& s 47 3s B
2
2'[ W 3 o 3
- 27 -~ “‘“}“1
47rvir2BO ds lnrrzBO ds

2 ~ -~
rB(Z) T da da

]0‘1

Byo

2 3 2\ %
+ 2 d-v — u+ mvi ) K
B, ) iot- 3E (wwy) By = T i)

(8)
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—— G———u + mv )K =0 . 9

iZal e s - valialon gsa)al

and

2
v2 = ——jil——
A 4nNomi

Equations (8) and (9) are two coupled integro-differential equations in
QL(a,s) and al(a,s).
In conventional MHD analyses of the dinterchange mode,

compressional perturbations involving QL is to lowest order decoupled

from the perturbation of the variable o . However, this is no longer

valid in the presence of a hot component with magnetic drift
frequencies large compared to frequencies w of interest. It has
previously been shown that there exists a potentially unstable
compressional mode associated with the hot component, with growth rates
larger than the conventional interchange mode. The interchange mode

has a character significantly different from conventional MHD theory.
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The eigenmmode equation for the coupled compressional and
interchange can be derived by first solving Eq. (8) for QL in terms of
a;, and then subsituting for Q, in Eq. 9).

A theory that can be significantly different from MHD theory
arises when it 1is assumed that the hot plasma component has grad-B
drift frequencies larger than the characteristic frequency. The latter
condition is a fundamental assumption of the forthcoming analysis, that
iS-Eé ~ g < 1, with A the radial thickness of the layer where the hot

B 8WPH

pressure gradient 1is finite and BH = the hot component beta.

B

0
Furthermore, the background plasma beta is also considered to be small
8mP,,
BW = 5 ~ €. The smallness parameter e has been introduced as. an
B
0

ordering parameter.

Then writing the particle drift frequency wp as:

wp = Wpp * Op s
where
?
wpp = - bmic " Pig
TqBO o
3P,
0py,c =.&E._E_Eg uBy + mv%) - dmie | Py
q rBy't TqBg a0,
it follows that
Wpg
—_—~ £ .
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Thus,

- - (1+w_—_wDK+ ee.)

1
w=ty YhB 1))

and the eigemmode equation for Qp in the hot plasma region may be

approximated by

200, + g, + 31g, = 0, (10)
where

700qy = q = [ &Fv——u"q (11)

i(l)QL = - z éotdSV

oE —9
“pB
oF ~ Q
D R Sl F R (12)
3E L 2
warm I3 0
- oFn  wy
S(l)a = + z f d3v 0 K CS Bau + mv4)a
1 = 0 =1
hot oE T, rBy T
1 oA -

where the operator D is




~ w r"B or”B
4“Vi 9s 4w 9s

It should be noted that terms linear in «k in L(l)QL and S (l)al are
0(e), and higher order terms are discarded. Frequency and axial
variation terms are ordered to balance the curvature terms.

Let QL be expressed as a power series in the smallness parameter g
1
Qr, = Q0) + Q£ k...

The lowest order equation is

2(0)45(0) =0
L QL
- and the solution is:

L hmic %PLH
= C e don
Q£0) o) B, 9a R (15)

where Cy(a) is a function of a only.

The first order equation is

2(00g(D) 4 £(10) 4 51 = g |

Co(e) is determined by multiplying this equation by (4ﬂ£c5PlH/3a)/TBO
ds
0

. The first term is annihilated

and integrating over a flux tube f

and
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P o A
Cola) = - & [ 22 A4mhe Pup (1)
I’ BO TBO 30(,
3
. fc ;,ds 4m Pl 1 A 1
- Us 5 55 22 % 55 B
0 P0 9% g o
5P
ol € "B, (16)
BO rBO da

where

ds 4mic 5P1H (D 4wic 5PLH

1"...
BO TBO o TBO da
Py 9B Piw
ds 9 — . 2.2 0 o ==
¥ ) — |[fcwBy — - f2°¢“Bn —— ——
fBO[ %0 Fa Bo 0 3a Ba B3

2,2 2
p?c?c ®um _ 4me Fum WTRy 3 TBg o 41rc43P_LH]
rBy da By da 4"Vi s 4w 3s B% da

pg and Py are the charge density and Py = P g+ Py is the total
pressure of the hot plasma component. P, is the pressure of the warm
background plasma.

It may be noted that a perturbation al(a,s) of the flux surface
produces a perturbation QL which can be very large if T is small.

Equation (15) is applicable in the region of the hot component,
bounded by of > a> o , where the pressure gradient of the hot
component is finite. This region is referred to hereafter as the hot

+

component "layer", and its thickness (Aa = o'-a << o ) is considered

to be small compared to the plasma radius.

. (17)
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Inside the "layer", the eigenmode equation for the coupled

compressional and interchange mode, obtained by substituting for QL in

Eq. (9), is:
o o
1 a L 4me Py ds 4me 9Py ~ 3 _1L 2 ds ck
S5 02 Poga Bt e Us 5, 5a DPwa bt P g T e
0 o [0 I‘BO o 0 0 [0 o 0 r 0
o
_ 22ck P1g ( ds 4me PPum -~ o 3 B_l 2 [ ds ex 9Py ]
g5 e _° =
2 W oy PP 2%k 3P
4rvir?py 38 4nr?py 98 rp3 3¢

A quadratic variational form in o;(c,s) can be comstructed by
mulitplying Eq. (18) by a; and integrating over the hot component
"layer":

~ 3(11 (x+

'W(al,al) + [[ ds o D-7;;]d_

30(.1 r2B0 3 30‘1 S+

- [f da d3a 4w 9s Ba]s'
2 aa é+
- [Jawa —X 117 -0, (19)
ll-'ﬂ'rZBO aS S

where

et et e e i 1
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2.2 o 2.252 ol
UMY ISP it Y I
10%) = Bs 0 Ba a2 0 80
By 4 *9s 0 da >0 A“Vi do. 70
_ f-ﬂﬁ ( ds 4me P )y 5 B, 8 fﬂ_+ 2 ds ck 9Pm )2
iy By By da a8 "% By rBy 3q A
+ [ dods 42 f g ( Ive . W a2} _ ( dads 27k °°H a% . (20)
By 4ur2 98 4wvﬁr2 Bo rBp da

The surface terms are to be evaluated by matching to the solution
outside the "layer" at the boundaries o=a', a=a~, s=s', and s=s~. The
limits of integration correspond to the boundaries of the "layer" but
have been suppressed for convenience.

To obtain the dispersion relation for low frequency perturbations,
the eigenmode equation must be solved with the appropriate boundary
conditions. In Sec. III, we discuss the dispersion relation, local to
a flux surface inside the "layer" for the compressional mode and the
interchange mode in the eikonal approximation, while in Sec. IV, we
discuss the dispersion relation for the "layer" mode, a global mode

extending over the entire equilibrium configuration.

III. DISPERSION RELATION - EIKONAL APPROXIMATION
A. Compressional mode

In the eikonal approximation where the perpendicular wavelength is
assumed to be much smaller than the eq&ilibrium scalelengths and

parallel wavelengths, the perturbation may be represented by

(Xl(a-,s) = &'1(a,s)ei§(°‘)
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where

|ve(a)| >> | Ve (ay8)| 5 |VBy]
Let

aca(:) -k, s
then

x10p ¥ ikgey

and in the limit appropriate for the compressional mode

.93 >>_&E 4rric OPH 1
vi  r2 Bp da 2 o 5 9.
=BG
Equation (18) may be approximated by
2 . oP 9P 1 A _
(K + =) B3 + 12 p 218 T A g o ame TGy Lo, (o)
B rgz 3 * By By da
0 0
rzBO
where ¥ O
. . tme 9P 1g . .
Multiplying Eq. (21) by-i;— ™ and integrating over a flux tube
0
ds

By
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2 3P iy - 9P 3P 11 A
[(kz + L )T + K2 f-gi 4re 1H D 4me lH} 4 bre 17

§ — —— Doy = 0 . (22)
o o 1
rAB% BO BO do B% dal da _

I is defined by Eq. (17), and it can be expressed as follows:

oP
BO rBO oa
2 2
' - 2 r°8 r°B
BUVOEE REN NSRRI PR Al SNUUR Sl P (24)
A 292  y2 KA 292 12kA
kH A H
oP 1w
H 3
d —_
) 48 5e e BZ
B =+ (25)
v ds Py '
BO rB d0
ds « aPH
Bh rB da
WeH = Py (26)
ds — 37~
f da B0
EE w2r2 (BPLH)Z
2 B 2.2 d0,
V% KA E_S_ K BPH
BO rBO o0
1 3P 2
ds 2.2¢0 ——. 1H
—— 4mor
2a 2 [ 5 4mor Byl B3 “8a
< 5 By = . (28)
LyxA ds « Py
BO rBO 20
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§W depends on the gradient of the warm plasma beta (ratio of the

warm plasma pressure to the magnetic pressure). GKH is the
"precessional" drift frequency of the hot component and is essentially

rZBH

a normalized curvature drift frequency. < > 1is associated with

2
LzkA
H
field line bending arising from the axial variation of the equilibrium

and depends on the hot plasma beta BH’ the field line curvature «k, the
square of the ratio of the radius r to the axial extent LH of the hot

plasma component, and the radial thickness A of the "layer". If

2
BT r°B
Aoy, ¢ H

5 >>> 1,
KLH LHKA

the local dispersion relation for the compressional mode, obtained by

equating the sum of terms imside the square bracket of Eq. (22) to

zero, is:
2 2
2 r°B r°g ~
=< 2H <>+ "B+ aH[1-E,-—2]=0. 29
2 VKA ZL%KA W, g

This dispersion relation for the compressional mode is stable if:

rZBH
~2 2 N >
2(.UKH r BH -~ ZLHKA
1> < >[1- 8y - —=5—1>
KGr?  vika K2r

where

e e e
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Field-line bending is relevant and produces stability at small

enough values of kir2 satisfying

r2 BH

— >/(1 - B (30)
LHKA

k%_r2 <K<

Short wavelength modes are stabilized by finite Larmor radius

effects whens’g’10

e > L (31)

1T
By

where ry, the Larmor radius of the hot component, and EH are given by

ds )
3_.4 hm | — B 1H
r2 3 f d VVLFO E _ BO ( 0 3a ) ag B (32)
L~ ’ H w, = . (32
4“2 / d3VVﬁFO ds « 9Pg ’ ¢ oy
\ _ﬁa I'BO J0

By combining Eqs. (30) and (31) a window of stability is found and is

given by

>> 1~ By (33)
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B. 1Interchange mode
For flute perturbations in which al(a) is independent of s, field

line bending is minimized, and

a1 9P

9 = , by 1H

— Y ik +
035 Bo ¥ a1 T 3 THa M

0
a

3 3 _L 5 4w 9P 1H
2w Ty T b
9s 3o 70 3s B% o

In the limit appropriate for the interchange mode

N

L«

L
2 12
vy Ly

and the quadratic variational form [Eq. (19)] may be approximated by

‘ 2
~ ds 1 2 2.2_2
[ dald |2 [u? [ 22 (55 + k5reBj)
L BO 4wvi r2 ¢ 0

1 93P 2 2 3P
- J’fif'_ 41101:2]3% (_'B—z__ﬂ) + d_s_'Q;B_'S_E
BO os 0 da BO Y O 80.
_etygapds k Fm o pds o app (0 : im2y2y
T By TBy oa By 0 3s B da
2 _ 93P
ds 1 ds %°k W
- Jeel@ P T ot 5 T e
bav 0 Thp 9@




2
r~g
gw(1—2_12< —>)
2 0Py A LHKA
- ;ﬁBK = 5 1=0. (34)
0 - 1 rBH
{1-,BW——2—7< 5 >}
L LHKA

The perturbation is assumed to be localized on a flux surface
inside the layer, and hence the contributions to the surface terms are
negligible.

Thus, the local dispersion relation for the interchange mode on a
flux surface is obtained by equating the sum of terms inside the square

bracket of Eq. (34) to zero.

2
~ reg

1f |8, < |1—_1_2< 2H>| ,
28 LHKA

the frequency of the interchange mode is:

2
k 2, 9P
wz f ds L + ds £°k %“*w

BO ZHTVL% BO rBO oo
P
B23q 0% B3 ~ (35)

and the mode is stable when the magnetic well is deep enough to cause

magnetic particle drifts in the opposite direction to the unstable

curvature drifts:
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3B

LU

Jda

0B

0 K
—_—f > = 36
' Sal T (36)
2
e |8, | > [1 —._lz <= LN
28 LHKA

2
k 2 3P
w2 f ds 1 + ds 2%« W

BO 4""% BO rBO da

ds 22¢ Py 1 TRy

ds (1- . < 5 >) =0, (37)
By By da 295 LikA :

and the interchange mode with azimuthal mode numbers satisfying the

inequality

r28H

2
LHKA

22 << > (38)

can be stable.

Since short wavelength interchange modes are also stabilized by

finite Larmor radius effects when8

kir% > 1é- ,
By

the window of stability in parameter space is determined by

e _ . N
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By — < > > . (39)
r2 LéKA kir2

IV. DISPERSION RELATION - "LAYER'" MODE

"Layer" modes are characterized by perturbations of the flux
surface which are to lowest order constant across the hot component
layer. The dispersion relation for these modes is derived by solving
- the eigenmode equation inside and outside the '"layer", and the

solutions matched at the boundaries of the "layer," a=d+, a=o , S=8 ,
and s=s”, The mirror cell equilibrium is assumed to be bounded
radially by conducting walls at o = aw(s).

Two cases will be discussed: (a) disc—like pressure profile
applicable to the end-cell of a tandem mirror where the hot pressure
decreases to zero through the layer [see Fig. (1)]; (b) ring-like
pressure profile where the hot pressure increases ffom ‘zero to a
maximum and then decreases to zero through the layer [see Fig. (2)].
- Such pressure profiles have been produced in the Elmo Bumpy Torus

configurations. 1In this work the bumpy torus is taken in the limit of

infinite aspect ratio (bumpy cylinder model).

S ——
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A. Disc-like Pressure Profile

A solution of Eq. (18) can be obtained for low frequency modes
mzLﬁ Ay
~ g < 1 when the layer is thin = ~ € with € being
N o
introduced as an additional smallness parameter, € >> kr ~ €.

with

The equation for 0 up to first order in g1 is

o
4ne ®uH o ds 4me g~ 3 L
2 9 By Bg da 03 Bo
oP
+ 22 f—;—si-———CK B a;)]=0. (40)
0 rBO da
Now integrating from ot to a yields
o ‘ o
5 I8 _£+ tme 9PIH . ds 4me aP.LHB 5 1
0 3o Bo 2 9a ' By B, 3a 0 3a Bo
IB§ 0 0
6]
2 rds cx ®H (0))] = (DB “l) (41)
cat [ ex O] = B3 5w s
BO rBO o0

where the term to be evaluated on the outer surface a=d+ of the layer

is determined by matching to the external solutionms.

. , 4me 9P g . .
Multiplying by — e and integrating in s over the layer
B
0

(st > s> s):



a -
f 4 4dme BPLH ~ 3 ifL‘* (AO n 22 ds cx 9Pg
ame 9 _ 28K Ry
2 9o 0 3a “0 Ay By rBy da
[o)
r 4re OP1H - _l‘
= [ ds 2% D By — 2
o as — = (0B 20| ko (42)
0 BZ

where

oP N oP
AOEI'+fd£.”rc lHD4TrC 1H
B(% oo B% Ja

2.2 K
C 22 fas < TG g o vy 43)
rB% da Y

Thus, Eq. (41) simplifies to:

%1 opP
3 or2B. 9 = 4¢Py 9 9. D _'
= 0 2By — R = — ¢l= (= or*B, - B — A
3s Bs[ 0 50 BO B% da ] (3s 9t %o 9s 0 Ba’BO) d+ ’ (44)
where

G = - c222 K BPH
A 2 90 1
0 rB0
@2 1 %1 .9 or2p, 5 B 1
A B% da 9s 9s da ~07 1 ¢
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Integrating in s from s=s” to s:

2. B o
B —_—

o
3 L _4m P o 1 Kl
30 20

Z[B. = - =
(B 5. B
2092 %0 32 3a or2B,

Before proceeding with the solution of Eq. (46), it is convenient
at this stage to discuss the external solutiomns outside the layer.
Outside the layer where the pressure gradient is assumed to be

negligible, the equation for o) may be approximated by:

0 — - —— =0 . (47)

In the long thin approximate (assumed to be valid) and for small

r°B
plasma beta, a ¥ 5 O, and the solution for o with 0 = 0 at a= 0 is

2
a; = £7(s) (_i_)m/ , d >a. (48)

o

In the vacuum region o > a> d+, and with the boundary condition

_ Vo
Q.LOL B ‘ V(xl

Q) = 0 at the surface of the conducting wall located at

o= o, the solution for Qg 1s

r = - 3t (o,s) (49)
Qlot— E-g 0yS)

where




(0‘)2/2 (oaw)z/z
(a,s) —a_w o (50)
0,8) =
s (u+)z/2 (aw)zlz
Oy o
Vo
and for Qg = IVS. * Q¢
rB 9
Qe = ~ 77 35 “Ua -
From the continuity of Q) at a = o
day a£t
= =1 = e———— 513.
as a=a+ Q'La'a-:a-*- 9s ( )
5 9o i g of ' ,
2= =22 Ve . =2 % 7, 51b
where
e
1+ (&)
e
Zg’ = + -— .
- (!
%
If the external solutions are substituted in Eq. (47):
o
2 _J__ﬂaPJ.HG]_ s, off (52)
s -0 3q Bo g2 da 200 % 3s
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and from Eq. (46):

2 oP oP £t
c K H 1 °"1H 3 0
I Y fd__—_a—-zfd —1} (53)
Ay (B2 da 1 32 da 9s X s
0 0
d0.
Now, — —= is continuous at the boundaries. To
s da 5
satisfy continuity of.éi.7;£ at o=o , it is required that
s 0dq
oft | af”
Z, — 4+ — =0 . 55
2 3s ds . (55)
Integrating Eq. (52) from o=a to a=at:
+ -
[3“1]°t _ ft e
9s "o 9s 9s
+ 3P + +
9 (0, 4w °F1H L 0 o
=__ [dog — ——— (G~ - 272, — 1n — . 56
Bsé'aBZ P U R A - 26
30(,1

Now wusing that v is continuous at the boundaries, we have from
s :

Eqs. (55) and (56):

afT B oc'ga 4y 9P g
ds (1+zz) s 3~ B% s (G7o1) - (57)

Furthermore, from Eq. (53):

B O S
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6= -8 p gk P
A0 rB% da
2 oP + |2 + oP
S ) U L O L L B B 2T (Gq) . (58)
0 g2 da 8s s o~ g2 2da
0 0

In order to proceed further with the analysis, the hot plasma beta
is considered to be small, By ~ € - In this case, Eq. (52) implies

that

where ago) is a constant which is taken to be unity. Continuity of 0y

at a=o~ and o=o’ then requires that

O _ 0)

aP _
If-7;£ and Ag is approximately constant inside the layer, so also
a

is G, and G may then be approximated by:

K uNEY
1 -<— (1+ (% >
e 1+ )
G = ’ (59)
A
where
_ ~ w Ks a2
Ap =1 -8y < B (1 + Ca;) ) > (60)
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5P + P u(a7)
fas2nBam 2 gyl 2 Fard)

2 do 23s o ds 2
K + |2 B W B
< —2 (1+(-°‘_)| |)>= 0 0 . (61)
| 2]« %y « 9Py
2] [ ds — —
rB% da

The symbol kg 1is introduced to indicate dependence on the

=

self-curvature, that is, the curvature introduced by the finite beta of

the plasma
2mry 8P +/5 41/2
Kg = s I‘O = (20 /BO) . (62)
B% as2 :

This is the self-consistent expression for the self-curvature in the
limit of BH < 1 and small mirror ratio.

These solutions can now be wused to evaluate the quadratic
variational form [Eq. (19)] correct to second order in &g and thereby
obtain the dispersion relation. The substitution of Eq. (52) for

o1

9 B ‘ga in Eq. (20) yields for the volume integral.§(al,al):

3 By 3
9s da

_ 2, P y
Way,0p) = [ deds 25— [ (B, + =) - (&-D?]
rBO © g

The surface terms are determined by matching to the external

solutions. The boundary terms at o=a’ and a=0, are:
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+ ~ d07.a" 2 Ny( o, s)
[[%ds ay D—-] _ = - [ ds S {la] + oz, 0
100 a brvy No(a™,s)
2 £7.2
o fas L8l gp 302, R
f s 4m { 2(as ] (as ) } ’ (63)
where
2
2 _ 5o
VA— -
ANNO(a",s)mi
The second integral in s may be approximated by
+ 2 =2
2 of of
as L2 {7 +
fas Lz, 350 4 (227
oP P
2 °*1H 2 23 9 “l1H
= [ d d Z __—(c- Ly, ==
Jda [ras al 55— (607 50 ve 55
0
9 K BPH 2 KS
= [da [ds 85— — (-1 < || — vy >, (64)
rB% da K

with v, = 1+ (d+/aw)l2|.

The quadratic variational form is then given by:

f da f ds




+ N+
s 0
- [ds 5 |2) (1 + 2 4] __)
s lmrvA No
+
_ a-g Bocl r Bo 3 Bal 22 Bocl]s (65)
S e I e T gy e e
o LTr“B s

There remains the boundary terms at s=s and s=s+, which are
determined by the solutions of the outer region MHD equations. The

boundary conditions to be satisfied at s=s~ and s=g¥ by the outer

solutions are obtained by integrating Eq. (18) in o from o to o and in

s from s~ to s'. One finds

cr2B0 (_8_ Bal) s+ _ orZBO_?_ Bocl]s+
b 9s da ’’s” 4w 3¥s da s—(a=oa+)
2 3P K
S JAN'S H s
L do ds —— —— (G"‘O’.) 1 -X< v, >
e oo e o0l )
- K
(By + —)(1 = < == v, >)
o & g2 0P 3 4]
¥ - j da f d 2k H KH .
ot 5 rBZ da - " Kg
(1-8,-—~-X< vy >)
3 | 2]
xH

This constitutes a jump condition in the outer solutions across the hot
particle region. This jump condition has been employed in Ref. (15) to
‘investigate the coupling of the mirror cell to surface Alfvén waves

propogating in the central cell of tandem mirror configurations.
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In this amnalysis we assume wLw/vA < 1, where LW’ is the axial
extent of the background plasma. In this case the solutions for s > st
and s < s (the outer solutions) are flute-like, and we evaluate the
boundary term in Eq. (65) for such a flute solution. The boundary term
in Eq. (65) can be related to integrals of the outer solutions over the
outer region by multiplying Eq. (18) by o5 and then integrating in o
from o = o~ to o and in s in the range s < 8 , s > st outside the hot
plasma component region. We then obtain

30!1 r2B0 3 30(,1 s

f da da  &m 9s Sa)

S-I-
- 2.2 +
wrBy 5 T'Bp 5, 390
e L R )
+ o(XAey . (66)

a0
For a flute-like solution oy is independent of s, and we need-7;£
o

to determine a dispersion relation in Eq. (66). The solutions in the
region a < o and a; < o< aw(s) can be determined straight-forwardly
in a manner similar to Egqs. (49)-(51). We find

R N N T P F

ocl o 0(,— 2(1- 2(!0

(67)

1 3(11 2Z

|

Q

+
by
[\~ ]
&

ocl ]e] o 2




-37-

Equation (66) then becomes

doy rzBO 5 %oy s

f do ds  4m 93s da §+
+
- [fas + fras)[ 14 (1 + 2y 2)]
- S 4TI'VA NO

Substituting this expression into Eq. (65) then vyields the

dispersion relation for the layer mode,

- KoV
(Bw + T#LJ(I -< 'z|i >)
0
2 - 2 KH
w YMED N .w stz ’ (68)
(-8, - - i)
®eH
where
+ .
a ds « H ® ds
e i - vy -1, 77, B
2 0 . 0
Yvap = T 5 T ‘ (69)
) © NO
f ds (1 + lel "f:) f (1 + lel _ff)
- Aqv No ~® 4qv Ny

and terms of higher order in & have been neglected.

Eq. (68) has only real roots when

VoK
Blg| =1 - <> <0 (70)

|2«
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and when this condition is satisfied the layer modes have a robust
stability. However, as Kk = Kg + Ky with Ky the correction vacuum

curvature due to external currents, we have

1+ (et /ey + 1= 11+ (@7l */l

Blal 31 - -
[ 2] (1 + wy/xg) 1+ xy/ kg
o - 2+ [ES (4 i) + )
) T T
B Ky (71)
Iﬁl[l + (l +-E;]/Z|z|]
and we notice that since KV/KS > 0 only |#] = 1 can satisfy the robust

stability condition when the conducting wall is close enough to the

16 and

plasma surface. Other investigations, to be presented elsewhere
discussed in Ref. (13), have shown that finite ILarmor effects can
introduce a similar robust stability for higher |2|—numbers.

When glll > 0, stability from Eq. (68) is possible if
€y = YﬁHD/miH and §W are below certain critical threshold wvalues.
These threshold values shall be referred to as the decoupling

conditions.

Let
€9 < ev/gz > By = Bw/gz > Weg T 80y -

Eq. (68) can then be written as
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2 e, (y + B,)
y2 = j; - - 2 (72)
Weg L

This is a prototype form of the dispersion elation discussed in
Ref. (7) for eikonal modes. However, with a reinterpretation of
parameters, the dispersion relation applies to layer modes. Notice
that €y and Ez is largest for smaller 4.

First of all we investigate stability for El << 1, so that we can

neglect §£ in the numerator. The stability condition is then

1 gg] . ~
or
£ 28
Vel -2y, (73)
g 4 gy

Because gy < 8041 the decoupling condition is hardest to achieve for
the low f-modes if gy > 0 (it is of course automatically satisfied if
g, < 0). We also observe that as E% increases, a smaller value of o
is needed to satisfy the decoupling condition (physically this means
higher hot particle energies).

If we consider ey > 0 (the limit of arbitrarily high hot-particle

energy), the decoupling condition becomes

By =—¥< 1. ‘ (74)




-40-

This is the appropriate ideal ILee-Van Dam—Nelson core beta limit, but

it is now a function of g-number. The critical core beta threshold is
determined by the %=1 mode.

For a finite €ys the critical core beta limit is below the upper

limit given by Eq. (74). If e, << 1, the shift below the ideal limit

can be determined from Eq. (72) by setting Ez =1 - 652 and assuming

1> ylaéz, Eq. (72) then becomes

2 €2
y - 582

and stability requires

< 1/3
By <1 - 3@%&) / , (75)

and when Ez = ], the growth rate is

(912 el/352/3

2

An interpolation formula can be obtained from Eqs. (73) and (75)

for the stable range of Ew‘ With theassumption =93 > 0, we find

2
g9€y.1/3
i.vj ] (76)

¢
¢

aS
™
1

o]

W

. 32
er Mln[zr - 2€V, 8¢ = 3(




-l
and it is clear that the g=1 supplies the most restrictive conditions
for the stability window.

Above marginal stability the dispersion relation approaches the

predictions of MHD theory, with the growth rate, y, given by

Y= 53 "M -

At higher frequencies where o ~ GKH >> YMED * there exists a

precessional mode with frequency

> - By,) - (77)

When w > 0, it is a negative energy mode. It can be destabilized by

dissipation effects or by coupling to positive energy modes (for

15,18

example, Alfvén modes which can be excited in regions outside the

hot plasma component layer). In this case, Eq. (67) is no longer

appropriate to represent the perturbations in the region s < s ,
s > sT. This problem has been considered elsewherel?, Eq. (65) with
the boundary term at s=s and s=sT determined by Eq. (66) provides the
framework with which to discuss the coupling of the precessional mode
to other modes excited outside the layer.

Throughout, we have neglected finite Larmor radius (FLR) effects.
However, we note that if FLR effects of the hot particles are retained
in the layer mode analysis, a recent investigation16 has shown that a

dispersion is obtained similar to what we have presented, except that

g|2|’ given in Eq. (70) needs to be redefined as
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Ks . a1 2] 2 LB m
glg| * L <|z||<[l+(—) ]>-@" -1« r2KA>,
where
o ds 3 2 Py
4 é_d f 32 3 (PlHrL) '—B-OL—'
ry, 511{> Bpr
2c? < [ as . 2H
Bgr da

Robust stability to all modes is then achieved if gg < 0. Roughly,

this is fulfilled for all g if

2
rL B-LH K

S
> 1, —K—(1+ )J>1 .

o
Zr%KA g

(B) Ring-like Pressure Profile
In the case of a ring-like pressure profile in a single cell where
the pressure maximum is at %> a > oy > o , Eq. (41) is solved
separately in the two regions of the layer, % > a> a and
dk>a>aw
By repeating the manipulations described above and making similar
approximations, similar solutions are obtained, and it is readily
doy day T

verified that from the continuity of _i.———-and-——— at o= 0o , 0 :
9s da 9s
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+ -
g O L B3F _
2 3s 3s
+ oP
3s 9s o g2 o
o, oP
0
+(6-1) 2 [ Cae i T
o g2 da
0
4mP
¥ (6 - ¢hH 2 i ,
3 B2
0

where

+ W L.
G[l-sw—__%)=l+(G-G)<——-————2>
kH . Iz'KLH
rR -
(1 --2) =1+ (66")< ____£H_2 >
W IZIKLH
*
. J.ds BP_LH K 5 Pim
3s Y2 5s 9s o2
T8y Bo
4KL§ [ ds K aPH
2 da
rB0
The superscripts ‘+’ and ‘-’ are used to differentiate the two

oP 1

regions a > a> oy and o > a > o respectively. is considered

to be constant over most of each region, and approximate solutions for

¢t and G~ determined as before. PiH is the maximum of P_LH which occurs

at a = 0&0-




byl

If the following equalities are assumed

< > =L —=>
2 2
KLH KLH
‘4‘ —\ﬁ—
Y T Yu

G--|- - Wen
~ ~ gV
[(1- By - ) -2 - S
Wegq W 5 4|£|KLH
| (-, - )
G = 3

[(1- By - -2 - By < 2
Wy W g 4|2|KLH

As before, the solutions for o; are substituted in the quadratic

forms of Eq. (19). The volume integral is:

ﬁ(alyal)
CX+ 22K SPH +2 ~ o + 2 _2 © _ 2
= [Tda [ds =5 ——[¢" (B, + —) - (€-D - ¢ —+ (¢-1*] , (78)
) % By d’S: ! W

where the additional assumption



5

+ oP ) 2., 9P
[Paa [as XX ZH o dajdsﬁ_;_H
oy rpl 20 o rg3 00

has been made. The surface integrals [Eqs. (63) and (66)] are:

+ -~ 3(11 0L+ S+ w2 N+
[f ds alD-jii]a_ = - g_ds 4“vi tzl(l + lel-ﬁr)

+ [%da [las 25— (€62 < ———= >, (79)
o & rBy 3 A
80&1 r2B0 3 30‘1 22 30L1 S+

d — + —_ =
f S( 900 4m 3s da % 4nr230 9s ‘g™

-}

= (f%as + [fas) [ 12l (1 + 25 =2)] - (80)
- 8 4—TI'VA NO

Flute-like perturbations are assumed to extend into the range S>S+,

s<s .,

The dispersion relation obtained from Eq. (19) [analogous to

Eq. (68)] is:

Yaan B
2 MHD "W (81)

4I£IKL%
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where

2 %
27 kP
f ds i
9 rB%
D < T "
+-c0 0 2
| 2] des [l + lel-j:)/4nvA

No

To analyze Eq. (81), let

- W = BWYI\ZGHD
x:—v—, b = <2 H
Y ey

[(2 - 8 + (B2 + B, <

N

2
| 2] k15

Lo

The dispersion relation can be written as follows:

2 _ b
(x-ay)(x-a;)

X

rBlﬂvg 5 1/2

(82)

] .
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In the 1limit of EW + 0, such that a, = 1 and a = 1, the

N
dispersion relation has four real roots if

b = WYﬁD < i , (83)
52 16
kH

which implies that there is always stability as é@ +>0. If D <<-§g,

the roots are

1T
—
l
Nlml

+ _ ,.1/2
i=tb

+
The =x; roots are the interchange modes of the background plasma .

1

stabilized by the diamagnetic well. The xg roots are the precessional

modes associated with the inner (the X; mode) and outer (the x; mode)

parts of the pressure gradient.

11

However, a more careful analysis of the wvariation of the oy

eigenfunction in the plasma ring to higher order in zAa/ao shows that a
finite upper bound on YﬁHD/G%H does exist as EW + 0. The validity of
Eq. (81) requires E& > (2Aa/a0)1/2.

In the limit of small YﬁHD/a%H + 0 (arbitrarily hot particles),

the dispersion relation for the interchange mode ds
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2 ~
Yamm P
wZ - %HD W¥B ~ (84)
1= - < lH§>
|2|KLH
The mode is stable only if
-~ -~ — l
BW< BWCI‘ = rBle . (85)
L+ ¢ —1L
4|£|KLH

Thus the bending energy term lowers the threshold for the Lee
Van Dam—-Nelson beta limit.

In order to obtain the stability threshold somewhat more

accurately, consider b <<-§g and take Ew = Ewcr - 6§W with 5§w <L Ewcr‘
The dispersion relation then becomes:
2 B Y2
%% = - wery MHE (86)

and the stability criterion is:

3 ZYI%H{ 1/3 | '
By < Bycr (1 _'EE__E"— Buer(2 = Buer)] 1 - (87)

~
Wen
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When 6§W = 0, the growth rate y is

3B YA B 1/3
(- Bibectini!>

(2-8

wCY

When Ew >> §Wcr, the growth rate is

Y
MHD (89)
rBigVy N 1/2

2
4] 2 eLg

Y >
[1+<

and the bending term substantially lowers the growth rate from that
obtained in a previous calculation.11
The dispersion relation given in Eq. (81) can be generalized to

discuss EBT configuration in which N mirror cells are connected to form

a torus. The flux surface perturbations are then of the ‘form

o] = ¢(0,s) cosks

or

g ¢(als) sinks ,

where ¢ is a periodic function of s with periodic length equal to the

length of the mirror cell L, and

k=, n = integer .
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For simplicity we deal with the cosks term, and the sinks term can be
treated in exactly the same way (except that there 1is then no
nontrivial n=0 term). If n is sufficiently small, cosks is nearly
constant over the region occupied by the hot particles in each cell.
Thus, the lowest order solutions in each cell are essentially the same
as those determined for a single cell. However, in evaluating the
quadratic forms to determine the dispersion relation, the additional
factor (namely cosks) introduces terms which take into account the
presence of long wavelength Alfvén waves. Thus Egs. (79) and (80) for

the surface integrals are modified as follows:

+

N-1  + s .of N1 4+ 2 N
Yol ®dsa,D —l] == fsds 1+ 2z —9-] cos?k(s+pL)
- 17 3a - 2 |9«| -
=0 S o p=0 8 va N
2, N a2 | 2
- k“(1 + ZMI) sin k(s+pL)} o
N-1 + 2 TRV
- Z ffds i—;— P:I(G'I' - G_)2 < I > coszk(s+pL) (90)
p=0 8 rBg 4| 2| KLy
" and
- 2
n-1 f 4 da; 7By 5 9oy N 22 3oy st
) oc( da 4w 3s oo b Sy S Pl
p=0 brr BO 5
N-1 - 2 N©
L
= - Z {fsds + f ds}{i— (1 + Z|,Q,| —O-) coszk(s+pL) - k2(1 + lel) sinzk(s+pL)} _|_2,|_ .
p=0 0 st vi N, bm

9D
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The cells are all assumed to be the same and the summation is over the
N cells.

Thus the dispersion relation determined from Eq. (19) is:

Y B
m2 _ k2 <Vi? - MHD"w P ,
w ~ w ¥ 1H"¢
(-0 - By - ) - B, a
W g W g 4|£|KLH

where
N-1 o
- Y [ds IRLK PE cos?k(s+pL)
5 ~ p=O 0 rBO
YD = N-1 N+
-1 L 4
g dsz (1 + lei —é%] coszk(s+pL)
p=0 U 4mvy N

+
-l 2| [Cds 5 Py

_ s rB%
+
N
des 4nv2(1 + Z 9
A | o] =
0 Ny

L
g ds(1 + Z| 4|)

2 -
<v A? = N+
des iz(l + Z|2| ——g)
0 VA NO

When k=0, the dispersion relation is the same as that previously

discussed for a single cell.
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Even if k=0 modes are stable, k#0 modes can be unstable due to

coupling of Alfvén modes w =k <v%}1/2 to the precessional modes

~

Let d2 = <vi}/5iH. The dispersion relation can then be written as

x2 - k242 = b (92)
[x - (1-B,/2)1% - §2)°
with x and b defined in Eq. (82) and
gV ~
A2 =11+ ¢ -—J‘—H-z—z >/8,;)
& 4£KLH
When wa/b1/3 < 1, one finds a band of instability given by
1/3 2
- _§_ pl/3 ¢ k2% - (1 - 8 /2)2% < b1/3(3§__) : (93)
A
W

This band of instability dis broad band (the width of stable k

comparable or larger than k itself) if

1/3 2
/3 51
B..A

w

the mode of instability if interpreted as the interaction of the two

precessional modes associated with each side of the hot pressure
gradient being destabilized by the additional coupling with a backgound

Alfvén wave. The growth vy is
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~ 1/2
= b - B2 (94)

Y

Ger k2% - (1 - B /2)2

if k2d2 - (1 - 55/2)2 >> bl/3. Near resonance, we have a direct
three-wave interaction of the Alfvén wave and the two precessional

modes with a maximum growth rate

stz oy 1/3,

Ymax = T3 X UeH
2 2-8 K
W

arising when kv, = EKH(l - E@/Z) .
As bl/3/§wk decreases, the two precessional modes begin to be
mismatched and the unstable band in k narrows. When §WA < bl/z, the

unstable spectrum of k is less than k itself with k ~ (l—gw)/d. When

~

B> b1/3

W ~ >

Alfvén wave and the precessional mode associated with the outer edge of

the plasma. Hence, we look for frequencies near

E -~
x=___=1-7W-3WA

and wave numbers near

the instability is due to the direct interaction of the.
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We find that the unstable k-~spectrum is given by

~ 2.2 ~ ~
b \1/2 8 ~ J1/2 kTvy B b (1/2 8
2] (- - g - (- g) <2fF) (-E-e
B\ 2 w%H 2 B\ 2
(95)
and when
2_2 <
kv 2
A _ _ B oy
52 —(1 2 BW)\) ’
KH
the growth rate is given by
Oq b 1/2
v=— [ |

B AL = By = ABY)

In an EBT, the k-modes are quantitized with a spacing 27/NL. If

~

e (b )1/
v ~
-%% > é; i ; = Ak ,
B . \1/2
(-5 &)

then the quantitization interval is 1larger than the instability
spectrum, and the instability may be avoided. However, when
2m/NL < Ak, unstable modes will exist if 2mnv,/NL ¥ GKH(I - é%/Z - E&A)

with n an integer. Another way to avoid the precessional mode
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¢

w0

7% - EWA) so that

resonance with the Alfvén wave is avoided. However, this condition is

interaction is to have k . v, = vaA/NL > wKH(l -
generally incompatible with establishing a decoupling condition when
N >> 1.

The highest frequency for the shear Alfvén wave is approximately
w vA/LH and if Weg > VA/LH the precessional-shear Alfvén wave
coupling may be avoided. The decoupling condition requires at
sufficiently small é%

2 2 .2 K 4]
Wer 2 “Mp ¥ 2VA 7 BlH . (96)

(1 + <v231Hr/4|2|KL%>>

Thus, the combined condition for decoupling from the MHD interchange

and not having a shear Alfvén resonance is

wZKHL2 L2 ZBlHKLz
—5 7 > el ey (97)
R'VA ,Q,LH ['2| + < J.IZ'I,Q>]

4LHK

where we assume kj. . ¥ l/LH. This condition is most difficult to
satisfy for the £=1 mode. It indicates that when §W <K 1, the hot
particle energy needs to be a factor L/BiézLH larger than the energy
needed to establish decoupling from the MHD interchange mode.

One should note that dissipation mechanisms in the background

plasma can also destabilize the precessional mode as discussed in

Ref. (14).
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V. SUMMARY OF RESULTS

We have analyzed the hot particle stabilization of a symmetric
mirror system which can either be a tandem mirror, or a multiple mirror
system (the mathematical limit of large aspect ratio bumpy torus).
Throughout this work it is assumed that the diamagnetic well of the hot
particles produces strong grad-B drift reversal, the linear frequency
response 1is well below the ion cyclotron frequency, and that the hot
particle beta is low even though there is strong drift reversal. The
work differs from most past studies in that it systematically
.investigates the effect of 1low #-numbers, both in the eikonal
approximation (the mode can still be radially localized) and for long
wavelength layer modes. For such modes the positive energy bending
term of the quadratic form is important and can lead to significant
consequences., Finite Larmor radius effects are not treated in this
work, but results from other investigations are used to obtain robust
stability criteria.

Without finite Larmor radius effects, hot particles change the
character of MHD modes, but the negative energy curvature drive that
can cause instability still exists.1? The stability criteria for hot
particles differs from MHD predictions because the negative energy
drives are so strong that negative energy modes can decouple from
positive energy modes, and instead of an unstable mode one can find a
stable negative energy wave 1if positive dissipation mechanisms are
neglected (or overcome by negative energy dissipation). As coupling to
positive energy waves 1is increased by increasing positive energy

coupling, the negative energy waves are destabilized, Thus one finds

that a small increase of a positive energy source that arises from line
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bending energy and magnetic compressional finite Larmor radius effects
is at first destabilizing. However, with enough line bending and
finite Larmor radius effects, all perturbations can be converted to
positive energy and robust stability «can be found in some
configurations.

One finds that a disc-shaped hot particle pressure profile

achieves robust stabilization if

r%BLH Ks Gp
>1, —(1+=)>1, (98)
23 K Oy

where 1y is the Larmor radius of the hot plasma, g the radius of the
plasma edge, BLH the perpendicular beta of the hot component, «k is the
total curvature, Kg is defined in Eq. (62) and for a disc-shaped plasma
at low beta it is self-induced curvature from the equilibrium currents,
A is the scale length of the pressure gradient of the hot componenf, ap
is the magnetic flux enclosed by the hot plasma, and Oy is the magnetic
flux enclosed by the conducting wall.

For a thin ring shaped plasma, wall stabilization of the 2=1 layer

mode is not obtained. However, line bending does cause a decrease in

the core beta limit of layer modes. The critical beta limit, chr’ of
the background plasma is roughly given by (we assume P"/P_L K1)
= 28 (99)

Buer [1+ (1 + ap/aw)/K} ’
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where Kg is given by Eq. (62) but it is not the induced self-curvature
for a ring-like pressure profile.

The higher f#-layer modes is stabilized by FLR effects if the first
expression in Eq. (98) is satisfied.

Complete stabilization of eikonal modes can be obtained by
combining the positive energy effects of line bending and FLR. The

stability condition is

2
1 KsPh

—_—1, (100)
rOAZK2

which is easier to fulfill than the layer mode criteria given in
Eq. (98).

We note that the finite Larmor radius robust stability conditions
are not likely to be satisfied with hot electrons except at extremely
high energies or low magnetic fields. However, hot ions can satisfy
the stability conditions at reasonable energies for reactor plasmas
(typically ~ 1/2 MeV). If robust stability conditions are. not
achieved, it appears difficult to find a window of stability. This is
because (1) the negative energy spectrum of the precessional modes is
broad band and there are likely to be modes of excitation to match
those of the background plasma, and (2) there is enough positive
energy bending and FLR sources so that the critical core beta limit is
reduced over a broad spectrum if BW/ZKA is not too small. As an
example of the first type of destabilization, the excitation of surface
Alfvén waves in a bumpy torus configuration has been discussed in this

paper. Other examples exist in the l:’Lteraturell"18’20’21’22 (these
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citations also describe the destabilization of the precessional mode by

positive energy dissipation).
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FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Disc~like pressure profile of the hot component.

Ring-like pressure profile of the hot component.
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