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Abstract:

We userthe hot plasma component formalism.fof a'symmétric tandem mirror
cell to felate the precessional que} that ié, well known from Astron
experiments, to more standard MHb'modés,: The f=1 mode ean be stabilized Ey
conducting ~walls, while higher l»'modes can be stabilized by finite Larmor
radius. Such a configuration is free of remnant dissipative instabilities
because when stability is . achieved, all perturbations are positivéﬁenergy

excitations.




I. Introduction

In tandem mirrors it would be advantagebus to -qpefate @ith azimuthally
symmetric plUgs.(l) However such a system is normall&.highly unstable to MHD
instability.(z) One way to avoid instability is the use of a high energy
compbnent in the plasma, as in the EBT(S), to establiéh‘a,nohiﬁteracfing
in—situAcurpentAthat would produce favorable MHD propef%ies for.tﬁéi femaining
plasma background.(4) However, stability theory has indiégied limitations 6f
this method. These limitations include a low stebility limit for the beta of
the plasma background(S) and the existence o6f negative energy waves at the
curvature drift frequency, that wiil be destabilized by the excitation of
positive energy -Wavgs  (such“.és Alfvén Waves(a)), or with the dissipative

mechanisms of the baékgroundlplaSma and Walls.(7’8)

The méde at the curvature drift.frequéncy is quite analogous to thex'hear.

rigid precessional mode of Astrch(g);v where it was found that a “forwafﬁ”"

[P

precessing mode is a negative ehergy‘mode, that is readily destabilized -by-

dissipation or excitation of 'positive energy waves of the 'background
system.(lg) However it was alsﬁffoﬁnd that image currents génerafed in_neéfby
walls could‘ éﬁange 'ihe sign of the precession, and convert the mode io a
stable positive energy mode;(ll’lg)

In this work we show that a similar stabilization mechanism exists for
the 24=1 mode of ‘the hot plasma compbnent syétem.when a disk—like radial
pressure profile is considered. The stability mechanism is élosely'related to
conventional MHD stebility when a bounding conductor is ﬁresent. The MHD
stability when the pressure is 1isotropic, has been exemined by Haas and
Wesson(13) for a theta pinch and. D’Ippolito et al.(14) for a tandem mirror.

The effect has been overlooked in a recent study of tendem mirror stability of

fhe 2=1 mode(15). “We <find_”that only the externa1 curvature, but not the
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self—induced ;urvature of a finite beta plésma, drives £=1 instability, an
observation consistent with the equations found in réferenéés (13) and (14).
With a conducting shell present, stability is possible, with thé stabiiization
" term proportional to the produc£ of the equilibrium;é éelf—indpced curvature
and the ratio of tﬂe magnetic flux‘enclosed'by the plasma and the éxternal
condﬁctor. For higher £, thé iﬁagé cuprent mechanism is not effeciive>for
stebilization, but one might expect that the finite Lérmor‘\;adius effects
stabilize the shorter Wavelength modes ,b§ converting all perturbations to
positive energy excitations. This is a >§trongér s£dbility mechanism than
conventional FLR stabilization(16), but more stringent brequirements'bare
needéd to achieve it. Such robust stabilization is already indicated_ in
4previbﬁsiy caiculated fﬁnité Larmor radius éalculations in _thé eikonél
approximation.(17) Thus, stability fof MHD-like excitations is in  princiﬁie
achievable for a hot plasmé compoﬁeﬁf’bf,a few Larmor radii, in a symmetric
mirror plug. Unfortunately, this‘stabilizgfion’mechanism for Q¥1 is not as
applicable to a hot 'plasma _;igg-;c;nfiguration, as in EBT} since the

stabilizing wall image current is considerably reduced from that of a -disc

shaped pressure profile.

IT. Analisis

To enalyze our system we consider a mirror equilibrium in the 1qng thin
approximation, where 1 >> ¢ ~‘Krv~ r2/L2,'with k the curvature, r the élasma
radius, L the axial length of the mirror cells. Further, to obtain
stabilization we invoke a subsidiéry ordering e << g; ~ fp ~”L2h/L2 << 1-where
ﬁh and Lh are the beta and'aiialllength of the hot plasma;‘ The subséripf h

will refer to the hot plasma component, and the subscript ¢ to the background




plasma core. | Tﬁe self—induced éﬁr§a£ure of fhe eqﬁiliﬁrium.is competitive
with the vacuuﬁ field curvature when ﬁh‘~ Lg/Lz.

| The équiiibrium'field is given bj B = Vy x V0 where ¢ is the magnetic
flux and o ’the azimuthal_angie about the symmetry axis; The,equilibrium is-

determined from the long—thin equilibrium condition, given by
-~ 2 I ‘ ‘ ‘
= BV(S) = B (S:’W) + BPJ.(S’w) . (1)

where Bv(s) is the external vacuum field and s the distance along  a fiéld
line. . We treat the core beta, g, ~ kr. -Hence’-ﬁc“is neglected in‘the

following equilibrium calculation. The magnetic flux is given,by

¥ = f; Brdr = fgl[Bs(s) —>2Pih(s:¢)]1/2rdr

B (s)r®  r P (s,Br/2) . -, 0
e — rdr + »&(al)
2 o By(s) T T

ol

For simplicity, we take the pressure profile at the :midpléne lés flat- to a
radius r0,~where the contained magnetic flux is w;, and then steeply dropping
tO'zerd, with-the gradient distance A satisfying A/r << 1. Just outside ‘the
hot region the contained magnetic flux is w; = w;. For this model, the radius
‘of the plasma edge is r(s) = ry[By/B,(s)]Y/?{1 + [P (s) - P,,.(0)]/2B%(s))

P g = IglBg/By(s) it 1nt0 v(s
with By = B, (s=0). ‘The curvature, k = @.boVb < dzr/ds2 is then

A

. L1/
B /2P BY/?P L (s) .

L ™ 2
04 By T pas® | p3/2(s) v

The first +term Will,be'referred to as the external curvature Kext set up by
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extgrnal curreﬁﬁs and the secoﬁd term ;s the self éurvature Kg that is induced
, by the bowing out of a fin;te betafequilibriuﬁ.

‘To pro?ide =1 Stability “we iﬁvoke a conducting shell, with skin time
_long compared to instability tiﬁe scéles; placed at ¢ = V() - Bétween_ fhe
plasma boundary wp and v, (s) ﬁe assume é Vacuum.‘ We will comsider iﬁmdetail.
two limiting cases: fﬁé skin time in the conduétorxéhor£ or long compared/ to
the ~iflasma formatioh’vtime. When the skin time'ié‘sufficiently short, the
external cur%aturé Kextlis dﬁe oniy to the curvature Kextv produced by distant
wihdings; . As complete pehetration of the displaced equilibriumﬁmagneticvflﬁx
throuéhnthe'shell occurs, théfé is ﬁo equiiibrium current flowiﬁg Viﬁ vﬁhe
‘cénductor. This is the case’ of:interesi when steady—state confinemen£ is_
achieved. With awlong skin‘ time, ‘cuffeﬁié jaré induced in .the boundiﬁg
conductor which alter the vacuum m@gnetié'field between the plasma and;ﬁhe
conductor. This can be the case during plééma formation‘  Then b& demanding

that at the conducting wall the magnetic flux of the finite beta equilibrium

is the same as the'magnetic‘flux with vacuum fields, we have ,{ji
o 1/2 o
: 2 2 2
By(s)[r2(s) = rZ(s)] + [BS(s) - 2Py ()] rE(s) = Byp(s)rl

where By(s) is the external magnetic field between the plasma and the walls at
finite beta,; BVO(S) is the vacuum magnetic field produced by distant windings,
rw(s) is the radius .of the conductor, and rp(s) the radius of the plasma.
By(s) is then given by

g2 PJ_h(S)

o "’2
T(s) Byg(s) T 2

BV(S) = BVO(S) +

and'from.Eq.'(ﬁ), it then follows that




_ | 2
Kext = Fextv — Xs + B(g%)

Tk

-We. take the perturbed fields in the plasma to be derived from a potential
A= ¢xB = {gVs — Azw)exp(ilﬁ) where ¢ and A are two scalars depending on‘w and’
s. In “the plasma 'E” =0 and it is convenient to introducé'thé Lagrangian

perturbation of the magnetic field, QL,

Q,
Lo (g/B) + itn.
(We have dropped small terms proportional to kr). The situation of interest

to us is a plasma éomposed of a wafm componenf whose magnetic:drift.
frequencies de] are small compared to the mode frequencies |w| we  wish to
consider and ‘d hot component for which ]wdl >> |w|. In this situation, the
quadratic énefgy.chéﬁger6W‘induced.by field perturbatiODS'has .Been giveﬁ  by

2 P

several -éuthors(la'lg). In the 1limit & ~ «kr ~ Eg'~ EE’ where « ‘is the -
L~ h '

curvature, r the plasma radius, PC the core pressure and Phjthe hot - componént

pressure, the quadratic form for 6W to 0(52)visz

I |



. to - WP —+oo Yy (s) 5 BI'BI
2e56W = o[ ds [ A Woyaaa(#.Qp) + [ ds [ oy 2 T
) ‘ . ' 5
+oo P ‘ QL . R 7Q
2,9 3 Liyv2 , o8 (342 . L
= d d Br*{— (B — 4/B — — + — +— {1+ 2
[ oas [ av [omr?( (B o 8/8 - )+ 2 (G507 4 52 (14 9(s,))
—» 0 r~B . .
Q 2 2 ' -
2 .2 d L\2 L 2 L7k R 0 ~
- w®pr®{(B = g/B — —=)° + —— 4°) - === 4° = (P, +Py,)
Y B BRr4 B Y
—5 ] & R (1 R - (5] s
h @ph ph “ph fh
- WW(;)Q
B 2 *
+ [ ds [ 2" BBy =0 (3)
— ¢b
where §1 is the perturbed magnetic field in the vacuum, 7 = 1 + E —55— wf#_
Y au 9B .\ lxv” . oy o W Py
d = g 3 qrB ' dF ' Ph gB v '
q =
de
o _ : ) (p P ) ) 2P
K = I‘LQL+ K.i(@ T sz) , 0 =1+ 'l‘h—llhd B =_C ,
X P [ B? c B2

&, refers: .to the axial bounce average of o, q is the bharge,:h_refer; to the

hot component, and ¢ to the background éore,component. In Eq. (3) ‘the. terms

proportional to o are field line bending terms, the term proportional to 7 .is
2

the magnetic compressibility of MHD theory, the terms proportional to .w " are

inertia terms, the term préportional t§ kK, the curvature, is thé instabiiity
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drive, and the £erms invoiving K are thé kinetic terms that alter +the
quadratic form‘from conveniional MHD théory.

We divide the p}asma-into two fegions. In region 1 ﬁhefg 0 <y < w;, the
pressure.gradients‘are assumed_negliéible and fiat preséure profiles in  PihO’

PicO’ PHhO' and P, o are present. In region 11 where w; <y < w;, therg is a

r aPL

KB 9y

goes to zero, we will take the mass density to be zero as well. We denote tHe

steep pressure profile where we assume Eh = >> 1. When the pressure
region between the plasma interface and the vacuum' as Tregion III,V and the
magnetic field 1is determined by the vacuum magnetic field equatién fogether
with the bbundafy condition‘gltﬁ =0 at Y = ww(s) and the continuity -of the
normal component of the perturbed maénetic field at the vacuumrplasmé
interface. | |

When we construct the Euief—Lagrqnge equations for the field améLTtudes

Q 2 o
in region I, we find Lo ~ ¥(e), and therefore Q; can be neglected. Then

gB (R

the Euler—Lagrange equation in region I is found to be

JyY Is ds dy 3Is g2 Is
: 2 2 2
3 o
_ 9 o 1 3 + R LY g =0+ ¥(e) (4)
Y By B2
2 9B 2

where we have neglected r = 9¥(e). Note that in this region Br is 'a

Y

constant along a field line. The solution for g is

' ' /e
g = () L)Y

+‘ﬂ(ﬁh51/2)j V<Y, ' ()
vy o : | |
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In region 1III, the solution for B1 in the limjt~§ %E ~-0(51/2) and with
2 s

the boundary conditiony@ogl =0 aty= Yoy 1S

5 - af T eiﬂ@
=1 7 3s  r (s r (s
w D
2 r(s) 2. Wy 2 r.(s) g ‘ '
Al - i) T I (8)
r,(s r Br r (s ' r : : :
where rp(s) is the radius of the plasma vacuum interface. It can be 'Verified

that Eq. (6) satisfies Y+B = YxB = 0 + #(¢1/?), and we demand that there be

continuity with the normal cdmponent,of the region 11 field 1 %é.. If we
. » r- 9ds

substitute Eq. (5) and (6) into Eq.‘(S) and explicitly integrate in regions I

and III, we find

2076w = [ dsdy W, 00 (4.9;)
11 .
+ 2 -2
+ L asiaize) (55 + (5
. L w2r212| ’ :
oL as plp) e () = 0 (7)
‘ BS—2Py )
where
L+ (B)*
z(s) =
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The dominant terms in dWII in our limit of f < 1 arise from the perturbed

magnetic fields. The largest terms involving QL, to zero order in_&, are:

[ apas (raf - [ a® L Bqym (8)
4 h a.wph ' , L =

From the equilibrium conditions, this is to 9(¢), positive definite and to
this order can be eliminated = from 6WII_‘if QL is chosen to be of the

form(la’lg):

Q, = o) % R O

where the boefficientico is a function of the flux variable ¥ only.
The _coéffiéient CO which extremizes 6WII may then be obtained by

subétjtuting this'form.of QL in GWII and minimizing with respect to -CO,

leading to
P, 2.2 -
2 1 1lh w”pr 9 2 3 3 .
Ch=-—=/4a + < or°B B < ,
kK J \ '
ng Iy .
where
5,3 1 P2 :‘wz 21 Py R .
r=/f asoBr®(L = —=) + Ay — [ ds &5 (5 —— U (11)
ds g& 9 B ge _ -
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Ao = — 12/ ds —2 -81—// (PP {1 = == - B} S (12)
rB ' Weh
’ 9 as Fin L5
W a’w _ B 310 Iy P P + P
.- . ap 2 Pe 7 - 3P ’ h ™ *1lh Ih
th 2/ dS L _h f d\S _IS.._ _.__1_1
B° W rBe OV

Note that 5Kh is proportidnalt to:the distribution averaged curvature.

drift frequency although the appeéfange{oflthis term in 6W really a;i;eﬁvwfrom
a charge separation between ho£-:éﬁdiieéld plasmas, ‘Ec ié'thgjratig:bf
background density to the Lee—Van Déﬁvdenéifyvféqujred‘for.dgééqplingt.

For a thin layer, Kg ~ K and Plh >> Plcf.thé aémipaﬁﬁ:téfﬁ;iﬁlnr is the
first one. | | |

Using this result in Eq. (7), we can now write szI in terms of #:

. :
RLTOW,

R _ [ 2o, 2 w? 442
24 '{1 dyds W(g) = {1 dyds ﬂaBr [aS B » (¢/B)]v + o7 (§S] |

g & ’ T
-t (D % (’5/]3)] _ﬁ_} - Lk #° %-(mepuh)}f:

Bor4 2

B®r
_L_ ’\_ 25 1 Pinig g
- [ ay e (1 - 2){J asoBr (Ss 2w )[ 310."(¢/B]]
3P R
S - T a (;zf/B) - 2 fd —ﬁ‘ (;Plh+?||h)}' S (13)

B2 WA B2
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Let uslﬁOW'minimize the vafia#iéﬁal expression W'with respect to 4. The
volume integral exfends over the région. whefe thé hot q;mponent pressure
gradient' is finite. Thé thiékness.'A,of'this region, hereafter called the

layer, is considered to be small éompared'to the plasma radius r. We consider

: LA o wgprz .
a formal ordering in which ¢ << — ~ £ << 1 and ~ Bpkr. Furthermore
BT 7 g |2|B :
let —5— ~ 1, where Lh is the axial length of the layer. Then
Ly« o ~- |
¢ A
0

The largest terms in 6WII are

o ‘ 2
[ [ asoBr®[- B (4/8)]
Il : ) :
(Jasomr?( S Finypa g il (¢/8)]}2
[ ds g2 9y ""ds oy AT o
— -dyy
) o P
WI;I" fdsaBrz[lL(;L ——EE)]Z

ds B2 Y

representing the dominant magneticfbendjng‘ehergy.'
From the Schwartz inequality this is positive definite and 1is equal to

zero only if

B % (4/B) = 2 o (14)

where G is an arbitrary function of ..
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This form of B g% (4/B) minimizes 6W;p. After substitution in 6W;;. we

obtain:

&

eefowyy = aw[cPhg + 20e?fas

3 4
g = (P +Py )
- ° ng 3y 1lh™ Ilh

~ pRfas - 4R 2 (PP )]

rB2 dy -
a2” 3g\°
+ [ dgas B (7). v (15)

11~ Br

Higher order terms in £q have been neglected.
To proceed‘fﬁfther, we note thatfintegfation of Eq. (14) and the wuse of

Eqs.'(5) and (6) yields:

w ) ': . . s,
+ - P P .
aaf 3T _ 8 | dv/_{G—;zf) ih (16)
s ds ds B2 Y _ ,

In the limit of  ~ &;, Eq. (14) and (16) imply that

%(O).+ 0(51)

AN
|

—h
H
|

= ¢(0) + o(ey)

where ¢<O) is a constant which we take to be unity. The first order terms

depend on s and contribute only through the boundary terms. Now, using
Eq. (16),- we minimize the boundary terms in Eq. (7) with respect to 75— , and

we obtain:
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: + 2 -2 P _ P 2
Jasial(al50) + (5007 = f as el @ §§;§} oy
v |

Thus, the variational expression 6W can be written in terms of G:

21f6w > — [ ayas £ 58_ (Pp*Pyy) {(6-1)% - GR(B, + =)
11 rg° W = By
. ,l//+

+ [ as L2Z Z (2 fp ay 6=1) aP_Lh}g

S (1+z) ‘3s 7 _ 52 dy

, Y |
—fas Rl oo _ (17)
' B |y . :
B° Jy3 -

~

1t f,+—— <1,

5 “xh

fds Lk 3
d

rB2 (4

perturbations where this term dominates W (see the unstable compressional mode

the term proportional to G~ is negative (note that

(Pih+PHh] > 0), and the equilibrium is unstable to localized

of Reference (17)). Such localized modes, however, will be readily stabilized
by finite Larmor radius'effects.(l7)
For nonlocalized modes we vary Eq. (17) with respect to. G to extremize 6W

and we obtain for G the following equation:

6 - 1-aG(F, +—)]J éSlg « jl'(Pih+PHh)

ZBKh B2r " a’w
Jﬂﬁﬁmih;Wﬁwwiﬁw&QﬁLo‘4.<m
2 g2 v 3s P/ W 9s 7 _ B2 o ' : '
- |

If parameters are smooth we expect the solution to (18) to depend only on the
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overall characteristics of the proflle To obtain an explicit solution we

assume Plh(¢,s) is separable in ¥ and s, that is

Piy(#:5) = h(¥)e(s) .

31//
and we take —= and /= as constant. Then G is found to be a constant
Iy oy W ~. C : ‘
given by
_ : '1 Ks | 4]
o 1 - TIT <7:n[1 + (wp/ww) 1> 4 S
G = . (19)
. . 1 K
1-F - T <73 [1+ (wp/ww)mb
Yeh - o o
where S
P o2 v |4
3 - 1lh
o [ aslEER) 1w (52) ]
< [1+-(f]ll|]>=% B s (20)
W [ ds . (P 1h*Pin)

anval and P, are the values of the pressure in region I, the interior plasma.

- Substituting for G in Eq. (17), we obtain the dispersion relation:

- K Yo 4]
Aap(Fe + )01 - o <F [+ (B -
S = “kh —— '-w WIJ&I + () o (e1)
o w1 s ] '
1 = Be ™ _ 12 <K. [1 + (ww) 1>

where
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. y
. 2] [ ds B? (P1*Pin)
r
TMHD (22)
[ ds o/B |

and all quantities are evaluated in the interior region (the denominator in

Eq. (22) 1is the integral over the entire flux tube, while all other integrals

-~
~

are integrated only over the region where there are hot particles).

I11. Discussion

The dispersion relation, given by Eq. (21), is much like the previously
derived form for layer modes(zo), except. that there is an additional
self—curvature term. This term gives rise to the possibility of only positive

energy perturbations, and hence complete stability, if

1 K

Bop(R) = 1 - T <TS [1 + (wp/ww]ll|]>-< 0 . (23)

In previous analyses only the caserﬁcr(l) > 0 was considered and then MHD
instability always occurs if ﬁc > Ecr(l). Even when Ec < ch (with Ecr > 0),
instability can arise from Egq. (21) if the hot particles are not sufficiently
energetic, or if there is positive dissipation(a) or there 1is excitation of
additional positive energy waves (e.g. Alfvén waves) of the background plasma
near the frequency w ~ GKh (which 1is the negative energy mode of
Eq. (21)).(21) For [2] =1, and the conducting wall at infinity, Ecr(ﬁ) >0
since —Kkg < —k, but it is only external curvature (not the +total curvature)
which drives instability. If the walls are close enough and the hot beta

sufficiently large so that
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Bop(2) =1 — <% [1 + (%E)b <0 . S (24)

MHD stability is achieved for 2=1 and the excitations are positive energy.

" When the skin ,fime of the bounding conductor .is sufficiently short so

thaf Kext = KextV: the stability conditioch~can be roughly.written as

. 2 N |
WE a“P Do :
2 —g > T Kextv - : - B - (28)
Yw B®  ds® . : '

" In the opposite limit of an idealj conductor on‘ the eQuilibrium time

scale, we have found that

2
_ Y. r_d Plh
Kext = extV 2
ZWWB ds

so that_the stébility condition roughly becomes

W

2 :
~%p : Plh —k | | (26)
Y BR as? = Kextv - _ - : :

“w S . : )

which is more optimistic' than Eq. (25), by a factor of 2 and can be uséfﬁl,in

establishing stability during blasma buildup. A similar factor of:2'afises in

the stabilization of the Astron precessional mode.(lo’ll) However, now fhere

is an equilibrium beta limit that arises. Whén




- 13_ ’

2
- ¢b —E'd Plh > —K .
z,ww Bg dsg extV v

<t changes s1gn which 1mplles that the mlrror ‘mode 1nstab111ty criterion,

P .
1+ —L < 0, 1is satisfied. .‘This readlly follows from the equilibrium

BJB

~condition,

and that —2§§£ <0 if Kext = 0. Thus, the stability window with an ‘ideal

conductlng shell

E d Plh_fg S thV. ‘
oB®  ds® Y o 2:

“KextV ~ (27)

At  values of Ec where the above dispersion relation predicts stability, there

exists a precessional mode with real frequencey,‘approximately given'by"

~ 1 Ks ’ I'Ql
=1-B - <o [+ lypim) 1> (=8)

When w/&Kh >'O? this mode has mnegative energy and it is destabilized by
dissipation or coupling to positive energy excitations of the plaéma.(zl) For
w/&Kh < 0, the precessional mode is positive energy and there are no remnant

instabilities. (?1) To illustrate this aspect we note that in Ref. 21 the
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generalization of Eq. (21) with an Alfvén surface wave in the central cell Iis

found to be for || =1,

rgm(Fe + —)(1-¢)
2 2,2 “kh
0° — (Z+1)KPVE = (29)
(1 -F,-&g-—)

with V, the Alfvén speed in the central cell, k_ = ﬂn/LC with n an integer, L

n c
the central cell length and g =1 — <— [1 + (=5)]>. 1If we look for a mode
: K
» )

when paf&meters are such that the surface Alfvén wave and precessional.mode‘

are at the same frequency, i.e.
1/2 . S
(Z+1) / k V) = (1—g~3c)vaz wg
we find that Eq. (29) yields with o = wy+dw,

: 2.2 .
—g Y
6of = —E8 (30)
2(eB.)

which is unstable if g — EW’> 0, and always stable if/g<0.

 For |2] > 1, Eq. (21) still indicates the characteristic instability
structure even with walls close by. For 1argerii ﬁumﬁers we can:exbgct'the
finite Larmor radius of the hét component to cause a similar stabiiiéétion
's£rucfure as in Eq. (R1). Pf@per'analysis of this problém has mnot yet been
pgrformed, buf we can extrapblate results of eikonal theory(17) and theA FLR

investigétion: of the lajer mode for the Z-pinch mgdel(zz) to conjecture the

form of the results. The expected dispersion relation for the layer mode is




‘ 2 2
1 K Yp . |21 Fnkleften o
yoapll - —— <= [1+ () "> - 22 (4 B
5 I , , «h .
w” = . 5 5 (31)
] . K ’ v |2| B k a . :
[1 _ W B _‘_1_ .<_S_ [1 + (_B) >__l}._£'_e_ff_g]‘
~ e Tl Tk Yy 2A

where ay is the Larmor radius of the hqt combonenf, kieff .the éffective

perpendicular wave number which for layer modes have the .form

kfeff = (22—1)/r§, and A the pressure gradieﬁt scale length of the hot plasma

near r = rp. When :Q— + Ec_are‘the largest terms of the denominator, Eq. (31)
w

(23) for our

agrees with results'gbtained from solving Newcomb’s FLR equations
eqﬁilibrium. | | |

Equation (31) indicates that if the hot plasmé consists of oﬁly a few hot
‘gyro-radii, a robust stabilization meéhanism occurs for all MHD-like modes and
precessional modes become StabLé “poéiti&e *enérgy waves . The remaining
instability qugstions in the ténéémvﬁouid £hen Be how to deal with ballooning

" and trapped particle modes associated with possible loss cone and anisotropy

instabilities of the hot qomponeht plasma.
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