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ABSTRACT

The multiple helicity nonlinear interaction of resistive tearing
modes is compared for the tokamak and reversed field pinch

configurations using the magnetohydrodynamic equations. Unlike the

case of the tokamak disruption, for which this interaction is

~"ftdé$taﬁffizing‘ when 'isignds overlap, the nonlinear coupling of the-

dominant helicities is shown to be a stabilizing influence in the
reversed field pinch. The behavior of the coupled instabilities in the
ﬁwo configurations can be understood as a consequence of the stability
properties of the nontinearly driven modes. In the case of the tokémak
disruption, quasi-linear effects linearly destabilize the dominant

driven mode, which then feeds ené}gy to the driving mode. For the

reversed field pinch the driven modes remain stable, acting as a brake

on the growth of the dominant instabilities. Furthermore, for the

~reversed field pinch configuration numerical results indicate that

nonlinear coupling of different helicities results in noticeably more
rapid saturation of the dominant instabilities than was observed 1in

single helicity studies.

*Research sponsored. by the Office of Fusion Energy, U.S.
Department of Energy, under Contract No. W-7405-eng-26 with the Union
Carbide Corporation. -




. I. INTRODUCTION
It has been suggested that in the reversed field pinch the
sustainment of the reversed magnebtic field configuration against
transport processes may be due to the strong nonlinear interaction of
resistive tearing modes.! On the other hand, the nonlinear interaction
of resistive tearing modes in tokamaks has been shown to provide a
mechanism capable of explaihing and predicting major disruptions.2'3 In
order to gain'SOme understanding into how the nonlinear interaction of
resistive tearing modes might give rise to such different behavior as
dynamo action. in tﬁe reversed field pinch and major disruptions in
tokamaks, we compare the interaction of the dominant modes for the two:.
configurations. HWe denote these modes by (m;n) and the corresponding
helicitiés by m/n, where m is the poloidal mode number and n the
‘toroidal mode number. A simple tokamak disruption model has been found
‘Afor which the dominant instabilities are the (2;1) and (3;2) tearing
modes, while the dominant |inearly unstable modes in reversed field
pinch configurations are of type (1;n) with n > 1.} In the tokamak
disfuption the main driven modes are the (5;3) and (1;1). The (5;3)
mode, with its singular surface lying between those of the (3;2) and
(2;1) modes, plays the dominant role in the coupling.* In the reversed
field pinch the (1;n) and (1;n+l) modes are coupled by the (2;2n+1) and
(0;1). The singular surface of the (2;2n+1) mode lies between those of
sthe (1;n) and (1;n+l) modes, while the singular surface for the (0;1)
is the f?eld reversal surface. One could suspect that the (2;2n+1)
modes in the reversed field pinch will play a similar role to the (5;3)

mode in the tokamak disruption.
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It is possible to describe several phases occurring in a tokamak
dfsruption calculation. Starting with small perturbations of the (2;1)
and (3;2) modes, these instabilfties grow exponentially as independent
linear eigenfunctions. As the perturbations become larger, the growth
becomes algebraic due to quasi—linéar effects,® but the evolution still
proceeds as for independent single helicities. The -disruption is
trfggered when the nonlinear interaction between the (2;1) and (3;2)
modes becomes strong, leading to the explosive growth of the (3;2) and
other- modes. This is followed by a turbulent stage involving the

excitation and interaction of many modes.® Because tokamak disruptions

" arise from a small number of spatially separated instabilities evolving:

ina low Eesistivity plasma, it is possible to observe the preturbulent

.phases clearly in numerical calculations truncated to ifclude

relatively few modes.

In the reversed field pinch configuration‘thebe are likely to be
several unstable modes of type (1;n) with n>> 1, all having siﬁgular
surfaces in a region inside the field reversal surface. Because of the

larger number of instabilities, the close spatial proximity of the

unstable modes, and the large resistivity (in comparison with

tokamaks), strong nonlinear interaction should dominate the evolution
of reversed field pinch instabilities. In comparison with the phases
of the tokamak disruption described above, nonlinear interaction

becomes importént early in the calculation, while the magnetic islands

~are still. small. The numerical study of magnetohydrodynamic (MHD)

turbulence and possible dynamo effects in reversed field pinches will
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ultimately involve steady-state calculations with many interacting
modes.

| As an initial step, a comparison between the nonlinear interaction
of tearing modes in tokamaks and in reversed field pinches is carried

out here in three parts:

1. A brief review of the single helicity behavior of the dominant
instabilities is given in Sec. III. For reversed field
pinches, attention is given to the influence of the plasma
beta and the location of singular surfaces.

2. This work concentrates on the effect of coupling two
instabilities of different helicity. For the simple coupling~
scheme described above, a comparison is made betﬁeen the
tokamak and reversed field pinch configurations in Sec. IV.

3. Finally, we present in ‘Sec. IV some initial considerations
concerning the coupling of many modes. Although the
excitation of many modes occurs only in ﬁhe final stages of 2
tokamak disruption, any model for the dynamo in reversed field
pinches that invokes resistive tearing modes must consider the
presence of many such modes in a steady-state turbulent

plasma.

In the following section (Sec. II) the assumptions and equations
used in this work are discussed along with the equilibria used in these

studies.
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II. ASSUMPTIONS, EQUATIONS, AND EQUILIBRIUM
The behavior of resistive instabilities in reversed field pinches
and in tokamaks is studied here using the resistive MHD equations in
three spatial dimensions and time. For reversed field pinch

calculations these equations are solved in the following form:

s

aB-_) .)_. 1 -

=V x (1 51 W
;%Yc__:v‘x (-V'xv) -%V (Vz."'BOP) +JXB»+-%-V§ , (2).

and an equation of state for the pressure which assumes either the form

-QE:—-')‘-)_ 2.2 -2_ _ kR

5= Vp-T'pVevs+ s CF l) 5 J | (3a)
for a compressible plasma model or

V2p=—§a'\7’~ fx@xv) -2V +IxBeg 720, (3b)

which constitutes an incompressible model C& “ V= O) similar to that
used by Aydemir and Barnes.” |

The plasma current satisfies the equation T=VxB, and the
magnetic field is divergence-free, VeB=0. Equation (1) combines

Faraday’s law with the classical form of Ohm’s law, whereas Eq. (2) s
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‘the momentum equation. The sbecific form of the viscosity term
appearing in Eq. (2) is strictly correct only when V- ;Az 0. Although
the equation of continuity for the mass density is frequently included
in the MHD equations, the mass density is assumed to be 2 constant
(p = po) in this work. The effects of density perturbations upon the
growth and evolution of resistive tearing modes are expected to be
minor, so that the neglect of the equation of continuity is justified
here. Equations (1)-(3) have been written in a dimensionless system of
units with all lengths normalized to a (the plasma minor radius), the
magnetic field B to By (the equilibrium toroidal vacuum field at the
plasma major radius Ro),'bthe velocity V to the Alfven velocity.
vp = (B%/ppo)l/z, the time to the Alfvén time Ty = a/vy, the pressufe p
to pg (the equilibrium value at the magnetic axis), and the resistivity |
Mto my (the value at the magnetic axis). :In terms of these -
quantities, Sp = T./Tp is the ratio of the resistive skin time
Tp = a2u/n0 to the Alfven time; Bp = 2 po/B% is the equilibrium beta
at the magnetic axis; and R = avy/v, where v is the viscosity, in units
of (aZ/Ta). The unit vector & denotes the toroidal {or axial in
cylindrical 'gecmetry) direction, and the subscript L denotes the
poloidal {perpendicular to ) plane. Both the resistivity m and the
viscosity coefficient R are taken to be constant in space and time.
The ratio of specific heats is taken to be I' = 5/3 in this work.
Because the evolution of resistive tearing modes is not extremely
sensitive to toroidal curvature effects, cylindrical geometry is used
here. Equations (1)-(3) are solved using-an (r,8,&) coordinate system.

All physical quantities are required to be regular at the origin,
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r = 0. Boundary conditions at the wall (r=1) are taken to be
Br = je = jé =V =-g§-= Eg(O;O) = 0, where the.superscript ~ denotes
the value of the perturbation.

This system of equations is solved using the three-dimensional,
nonlinear, initial value computer code CYL.® The time-stepping scheme
is partially implicit, using finite differences in the time and the
radial - coordinate r, 'ahd a spectral representation with periodic
boundary -conditions in © and §. All time-dependent physical quantities
are expressed in the form f(r,e,g,t) =m¥n [f;n(r,t)cos(me + ng) + f;n
(r,t)sin(mb +vng)]. Because of the up-down symmetry of the assumed
equilibrium, ibt is possible té aéléﬁe.either,the sine or cosine terms:
from each quantity and to refer unambiguéusly to the (m;n) mode or
‘component. In the numerical calculations a specific (finite) set of
modes is included. This facilitates an uﬁderstanding; through its
inclusion or omission, of the role of each mode.

Whereas Egs. (1)-(8) are equally valid for tokamaks and for
reversed field pinches, the dominance of a nearly constant toroidal
field in tokamaks may be used together with their large aspect ratio to
derive a reduced set of  equations.® At low beta in cylindrical’
geometry, two scalar field equations in three spatial‘dimensions and
- time, one for the poloidal flux function ¢ and the other for the
velocity stream function ¢, are obtained. These equations have been
shown to provide rgsdlts in excellent ’agreeﬁent with those of
Egs. (1)-(3) in the tokamak limit.® These equations have been discussed -
extensively elsewhere,2:7:10 and, because they are significantly faster

computationally than the full set of equations, they are used here,

3
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rather than Egs. (1)-(3), for tokamak cases using the "RSF code
described in Ref. 10.
We have studied Eqs. (1)-(8) using the following variations:

1. solving Egs. (1)—(35) as written (compressible fluid),
including ohmic heating;

2. solving Egs. (1)-(8a) (compressible fluid), without the ohmic
heating term;

3. solving Egs. (1)-(3b) as written (incompressible); and

4. deleting the resistive diffusion of the equilibrium, n jeq,

from Eq. (1) for any of the above choices.

The compressible equations with ohmic heating lead to substantial
increases in equilibrium pressure since no losses are included in the
energy (pressure) equation. Although the rate of ohmic heating is
-inversely proportional to Sy, it is significant for experimental values
(Sp 2 10*). The deletion of the ohmic heating term in the compressible
equations allows the initial plasma beta to bé maintained throughout
the calculation. For the incompressible equations, the equation of
state can lead to a significant increase in pressure due to the fast .
resistive diffusion of the equilibrium. Sizeable pressure gradients
are induced to maintain force balance with the J X B force resulting
from this resistive diffusion. Turning off the resistive diffusion of
the equilibrium eliminates this type of generation of J % B force and
allows the study of the evolution of the resistive instabilities for a
given equilibrium rather than for a sequence of equilibria related

through resistive diffusion. Although results in this study are
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presented using all four variations, it is arguable that without
self-consistent resistivity profiles and energy loss mechanisms the
~neglect of equilibrium resistive diffusion and ohmic heating are the
preferable options. In this case it is possible to focus on the
stability and evolubtion for a particular equilibrum. However, the most
important results presented here (namely; the effects of coupling
instabilities of different helicity) are found to occur for all the
above choices. From a practical standpeint it is easie#t to make
numerical computations using incompressibility because compressibnai
_ Alfven waves are then eliminated, allowing greater time step sizes and
~reduced.coﬁputer time.

For the reversed field pinch calculations, the initial state has
been taken to be a cylindrical, axisymmetric, ideal, zero flow
equilibrium of Egs. (1)-(8) plus 2 small perturbation. This

equilibriun is a solution of the equation

€q
ﬁOd eq eq dB Be
PR T —S—‘TBF( " 89) - *)

\

In order to solve Eq. 4 it is necessary to provide two additional

eq

relationships between the three unknowns p®d, Bg ., and ng. For the

calculations here, this is done by specifying the pitch parameter

u(r) -—-§q— o, G




where € = 2ma/L with L being the length of the cylinder and a the

minor radius, and the Suydam parameterl

o dp®9 1 B \2 4 (8)

c(r) = 3088° e o

The equilibrium is stable to localized pressure driven modes when
C(r) < 1/8. For the calculations of this paper a zero beta equilibrium
(due to Caramana et al.l), which is stable to ideal ﬁodes but unstable
~ to resisﬁive tearing modes, has been chosen. This equilibrium was
obtained by alfowing the resistive evolution (according to =
one-dimensional transport code!?) of a tearing mode stable equilibrium
due to Robinson.!? The parameters are p(r) = 0.6125(1 - 1.8748r2 +
0.8323r*), C(r) = 0, and €. = 0.2, which results in a safety factor
profile q(0) = 0.1225 2 q(r) 2 q(1) = -0.005145 with the field reversal
surface at r =0.93. The dominant m=1 instabilities for this
equilibrium have toroidal mode numbers in the range 10°'< n < 15 with
n =11 and 12 having the largest |inear growth rates. 'Figure 1 shows
the safety factor and current profiles for this equilibrium. Note the
close spacing of the singular surfaces associated with the dominant
instabilities.

For the reduced equations, as solved in RSF,1° the pressure does
not appear in the dynamic equations and the toroidal magnetic field is
assumed constant. Hence, an equilibrium solution is completely

specified by giving the safety factor profile. For the calculations

presented here we assume the functional form q(r) = q0
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[1+ (r/r)]1/A with qp = 1.344, ry = 0.56, and A =3.24 (so that
q(0) =1.344 < g(r) £ q(1) = 4.32). This equilibrium has been chosen
because it is linearly unstable to both the (2;1) and (3;2) modes and
because the evolution of these modes leads to strong nonlinear
interaction and disruptive behavior for this equilibrium. The safety
factor and toroidal current profiles for this'equilibriﬁm are shown in
Fig. 1. Note the relatively large separation of the singular surfaces

of the dominant instabilities when compared with those for the reversed

field pinch.
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ITI. SINGLE HELICITY CALCULATIONS

Before considering the coupling of instabilities having different
helicities it is important to understand, as a reference point, the
nonlinear evolution of a single helicity.. For the instabilities
involved in the tokamak disruptioq, the single helicity evolution has
been studied and modeled in great detail,5:34-17 poth numerically and
analytically. For such instabilities the initial energy growth, which
is exponential in time, slows to algebraic, due to quasi-linear
effects, when the magnetic island width exceeds the tearing layer
width. Eventually the instability saturates. For a given mode and
equilibrium ~the linear growth rate, the algebraic growth of the:
magnetic island, and the saturation amplitude of the instability can
all be estimated quasi-analytically. _

The single helicity evolution of tearing modes in a reversed field
pinch configuration has not been as thoroughly examined. Numerical
calculations carried out by Caramana et al.! for the 1/10 helicity at
Sy = 10° and the equilibriun described above show a double reconnection
~ process in which a3 first reconnection of the magnetic island expels the
original magnetic axis from the plasma, much the same as occurs for the
m=1 mode in sawbooth oscillations in tokamaks. However, this is
followed by a second, slow reconnectibn in which the magnetic axis
re-forms and moves back into the plasma at a rate proportional to 1/Sy-
These calculations were carried out using a fully compressible set of
equations including the evolution of the mass density and ohmic

heating.
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In the present work, single helicity calculations are carried out
at §p = 10* for modes having poloidal mode number m = 1 and toroidal
mode numbers n = lQ,.ll, and 12. The singular surfaces for these
helicities in the initial equilibrium are r1/10 = 0.32, ri/11 = 0.38,
and r1/19 = 0.43, respectively (Fig. 1).

For the m/n = 1/10 helicity, complete reconnection of the magnetic
island and expulsion- of the magnetic axis followed by a slow, second
‘reconnectioﬁ and the re-emergence of the original magnetic axis (as
described by Caramana et al.l) is obtained using the compressible
equations with ohmic heat}ng and with the incompressible equations,
including resistive diffusion of the equilibrium (see Figs. 2 and 3)..-
When the ohmic heating term is turned off in the compressible equations.
and when the equilibrium resistive diffusion is turned off in the
incompressible equations, the nonlinear growth of the instability
saturates before expulsion of the magnetic axis (Figs. 2 and 4). For
both double reconnection cases, beta increases substantially (Fig. 5)
due to ohmic heating in the compressible case and to resistive
diffusion and force balance in the incompressible case. Both of the
saturating cases remain at low beta. As can be seen in Fig. 5, the
Suydam criterion for stability to localized pressure-driven modes
[C(r) < 1/8] is violated at the 1/10 singular surface quite early in
both of the double reconnection cases. The evolution of the
equilibrium to high beta is destabilizing in ﬁhese cases. The dynamic

growth rates for the magnetic and kinetic energies, defined by
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~are seen to follow closely the linear growth rates for the evolving
equilibrium (Fig. 8), thus verifying the equilibrium evolution as the
' déstabilizing factor.v
For' the m/n = 1/11 and m/n = 1/12 'helicities, in which the
singuiah magnetic surfaces lie farther from the magnetic axis, the
‘magnetic islands saturate without expulsion of the magnetic axis
(Fig. 7), .regardless of the specific choice of dynamic equations. The
maximum sizes of the islands obtained are, however, strongly dependent
upon the choice of dynamics, with the larger islands resulting with
increasing equilibrium beta. In Fig. 7 the magnetic axis is seen to
move back toward the center late in the evolution, as in the second
reconnection. This phenomenon is not observed when the resistive

diffusion is turned off, so that the second reconnection is probably

caused by the resistive diffusion.of the equilibrium after the initial

instability  is saturated. For the m/n = 1/12 magnetic island, the
results are similar to these .for the m/n = 1/11, except that the
maximum island sizes are smaller and the islands are farther from the

~ center of the plasma.
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IV. NONLINEAR COUPLING OF TWO UNSTABLE MODES

If the dynamo effect observed in reversed field pinch devices is
cauéed by resistive tearing modes, it is almost certainly due to the
nonlinear interaction of many such instabilities. Unlike tokamak
profiles, for which at nost a few tearing modes are unstable, there can
be many unstable modes in reversed field pinches. Of these the
dominant modes inside the field reversal surface are resonant with
poloidal mode number m =1 and high toroidal mode number n ~ 10.
Because of the profiles in the reversed field pinch, the singular
surfaces for these dominant modes are spaced fa}rly cloée together
(Fig. 1) inside the 'field reversal surface. As a first steprim
vunderstanding the interaction of these domiﬁant instabilities, we focus
ﬁere on the nonlinear interaction of two of these modes. It is
instructive to compare and contrast this sitﬁation with the analogous
one in tokamaks,'which provides a well-understood theoretical model of
the major disruption.2:*:8

Using this model, we consider tokamak profiles in which both the
(m;n) = (2;1) and (3;2) modes are linearly unstable. When these
instabilities are small they grow independently, much as single
helicity solutions. Consequently, the current profile is flattened
around both the m/n = 2/1 and 3/2 singular surfaces and steepened
between these surfaces. During this time the (5;3) mode is driven
nonlinearly by the beating of thé (2;1) and (3;2) modes. However, for
certain profiles the steepening of the current gfadient at the 5/3 mode
rational surface is sufficient to quasi—lfnearly destabilize the

(m;n) = (5;3) mode, which couples the (2;1) and (3;2) modes. After
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this destabilization, the resonant coupling of the (2;1) mode with the

(5;3) pumps energy into the (3;2) mode. The rapid growth which follows

leads to the destabilization of other modes in a disruptive process.®

The destabilization of the (5;3) mode and the consequent explosive
growth of the (3;2) have been st‘,udied.analytica!l_y.'*'B In particular,
it has been found that the nonlinear J X B force resulting from the
coupling of the (5;3) and (2;1) modes after the destabilization of the
(5;8) drives a rapid increase in the kinetic energy of the (3;2) mode.
The analysis considers the growth of a test mode [the (3;2) mode]
coupled by driven modes [dominated by the (5;3)] to a static background

of modes [dominated by the (2;1)]. The influence of the background-

modes uﬁon the'growtﬁ of the test mode is found to depend upon the
value of A” of the driven mode. For A’ < 0 the effect is stabilizing,
and the nonlinear coupling damps the growth of the test mode. For
A” > 0, the nonlinear coupling drives the growth of the test mode, and

the growth rate is estimated to be*

2t B A a2 (B 2 ) (9)
JT P
where gft is the radial magnetic field of the static background, W fs
its radial extent, and A" is the value for the driven mode. Because
this nonlinear effect is due to the J X B force, either when damped or
driven, the effect of the nonlinear coupling upon the test mode appears
first in the evolution of the kinetic enérgy. If A" of the driven mode
is positive, the test mﬁde will obtain a rapid growth on the MHD time

scale. The test mode will have the structure of a localized vortex at
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its singular surface, and one expects this nonlinear mechanism to

trigger a rapid conversion of magnetic to kinetic energy.

Although Eq. (9) was derived under the assumptions of tokamak

ordering, it is also valid at low beta in the interior of the reversed

field pinch, away from the field reversal surface, where the toroidal

field is significant. A discussion of nonlinear dynamics in reversed

field pinches has been given in Ref. 18 with further details to foliow
in Ref. 19. Let us compare and contrast the coupling of the dominant
modes in a tokamak disruption with that of the dominant modes for s

reversed field pinch profile. In the tokamak disruption the test mode

is taken.to be the (m;n) = (8;2) mode; the static background is

dominated by the (2;1) mode; and the (5;3), with a singular surface
between those of the (3;2) and the (2;1) modes, is the dominant driven

‘mode. Numerical calculations at Sy = 108 show.a destabilization of

the (3;2) mode with the kinetic znergy growing most rapidly
[Fig. 8(a)]. Prior to the destabilization of the (3;2) mode, A’(5;3)
becomes positive [Fig. 8(b)], and this quasi-linear destabilization
changes the character of the mode [Fig. 8(c)]. No longer driven, the
(5;3) instability then pumps energy from the equilibrium into the
vorticity of the (3;2) mode, causing the destabilization observed in
Fig. 8(a).

For the reversed field pinch equilibrium studied here, the largest

linear growth rates are obtained for the (m;n) = (1;11) and (1;12)

modes, respectively. The (1;12) will be considered as the test mode,

so the background is dominated by the (1;11), and the dominant coupling

~mode is the (m;n) = (2;28) with its singular surface between those of
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‘the (1;11) and (1;12) modes. A nonlinear calculation at Sy = 10* shous

that the (1;12) mode is stabilized noticeably more rapidly, ‘in
comparison to its single helicity behavior, by its coupling to the
(1;11) mode [Fig. 9(a)]. The kinetic energy stabilization precedes
that observed for the magnetic energy. The value of Az2;23) remains
less than zero throughout the calculation [Fig. 9(b)], and the
character of this mode remains unaltered until the kinetic energy
growth rate of the (1;12) mode becomes negative [Figs. 9(a) and (c)].
Hence, the (2;23) mode remains driven, extracting kinetic energy from

the (1;12) mode and pumping it into the equilibrium. The nonlinear

coupling of the (1;11) and‘(1;12) instabilities for this reversed field:

pinch profile is stabilizing. Although the results presented in Fig. 9
- were producéd using incompressible dynamies without resistive diffusion
of the equilibrium (hence at low beta so that the model of Ref. 4 s
applicable away from the field reversal surface), the same conclusions
are obtained numerically when the other dynamic options are employed.
The coupling is stabilizing and the (2;23) mode is not quasi-linearly
destabilized.

It is appropriate to discué; the physics considerations which
underlie the difference in nonlinear evolution of tearing modes in the
tokamak and the reversed field pinch. In the tokamak, where q 2 1,
q” > 0, the resonant surfaces of the primary helicities, 8/2 and 2/1,
are well separated. Hence, significant steepening of the current

profile occurs as the 3/2 and 2/1 magnetic islands grow toward overlap.

By way of contrast, in the reversed field pinch, where q< 1, q” <0,

the resonant surfaces of the primary helicities are quite closely
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spaced. At initial overlap, the 1/n island has width W, N-ET%7Tm
Hence, little or no profile modification occurs before island overlap
and the ensuing nonlinear coupling.

The difference between the results in the tokamék and reversed
field pinch cases is consistent with the difference in q(r) profiles
and, ultimately, with the standing of each relative to the Taylor
minimum energy state. In the tokamak configuration, which is
relatively far from the minimum energy configuration, the widely
separated unstable (A” > 0) islands grow large enough prior to

overlapping to distort the equilibrium current gradient, thus causing

further instability. In the reversed field pinch configuration, whichu

deviates (by resistive decay) only slightly from the minimum energy

.state, the closely spaced unstable islands do not grow large enough
prior to overlapping to distort <J>’. Hence, the driven (2;2n+1) mode
remains stable (A” < 0) and acts to stabilize the primary modes. Thus,
tearing mode interaction does not lead to reversed field pinch
. disruption. ’

We now consider calculations ‘involving 2 larger number of
interacting modes. The nonlinear MHD calculations for the reversed
field pinch configuration may be thought of as proceeding in three
phases. The first phase involves the independent single helicity
evolution of the dominant instabilities. Because of the large number
of unstable modes and the closé proximity of their respective singular
surfaces, the duration of this phase is .short. The second phase
involves the nonlinear interaction of the dominant instabilities and is

illustrated by a sequence of field line plots in Fig. 10. Several
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magnetic islands, including the m/n = 1/10 » 1/14, are visible in these
plots. The interactions in this phase lead to spectrum broadening as
the energy of the instability is spread among more and more modes. As
discussed ‘above, these interactions are stabilizing for the dominant
modes. This is illustrated for the (1;11) mode in Fig. 11. The
numerics of this run allow a large number (3 80) of modes to
. participate.

The final phase is turbulent, involving a broad spectrum of many
modes. Using the incompressible équations, it is seen in Fig. 12 that

the global energies do not change significantly as the number of modes

included in the calculation s increased but that they are:

significantly different when a compressible model with no ohmic heating
is employed. This illustrates the need for a proper energy evolution
equation that incorporates in a self-consistent way the transport
induced by tearing mode turbulence and edge effects. This subject will-

be considered in a separate publication.'®
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VI. CONCLUSIONS

The nonlinear evolution of resistive tearing modes for a reversed
field pinch cohfiguration has been examined numerically in cylindrical
géometry using several variations of the full MHD equations. The
details of the single helicity evolution depend upon the evolution of
the equilibrium and upon the location of the singular surface. The
double reconnection process described by Caramana et al.! is observed
when the dynamics leads %o sufficient beta and when the singular
surface is close to the center of the plasma. Otherwise, the
instability saturates prior to the first reconnection.

The nonlinear coupling of two unstable modes was considered in.
detail, and the behavior was contrasted with that observed in tokamak
disruptions. Although the quantitative results depend upon the
specific choice of dynamic equations, the coupling wés seen to be
stabilizing in all cases, uniike that in a tokamak disruption. This
nonlinear stabilization can be understood in terms of an anafytical
~ model .*8 |

Finally, it was seen that this stabilization carries over to cases
in which many modes are included. However, serious studies of
turbulence in reversed field pinches will require a2 self-consistent
transport model incorporating tearing mode turbulent transport and edge

effects.




-99-
ACKNOWLEDGMENT
The authors wish to acknowledge wuseful discussions with
M. N. Rosenbluth, R. A. Nebel, and D. D. Schnack.
This research was sponsored in part by the bffice-of Fusion
Energy, U.S. Department of ‘Energy, under Contract No. W-7405-eng-26 o
with the Union Carbide Corporation. |




-23-
REFERENCES
aycc-ND Computer Sciences, Oak Ridge, Tennessee 37830.
e 4. Caramana, R. A. Nebel, aqd D. D. Schnack, Phys. Fluids 28,
1305 (1983).
2B. V. Naddell, B. A. Carreras, H. R. Hicks, J. A. Holmes, and
D. K. Lee, Phys. Rev. Lett. 41, 1388 (1978); B. V. Waddell,
B. A. Carreras, H. R. Hicks, and J. A. Holmes, Phys. Fluids 22, 896
%(1979).
" 3. R; Hicks, B. A. Carreras, J. A. Holmes, and ,V. E. Lynch, Nucl.
Fusion 22, 117 (1982)."

*B. A. Carreras, M. N. Rosenbluth, and H. R. Hicks, Phys. Rev. Let&..

46, 1131 (1981).

5P. H. Rutherford, Phys. Fluids 16, 1903 (1973).

Sp. H. Diamond, R. D. Hazeltine, Z. G. An, B. A. Carreras, and
H. R. Hicks, I.F.S. Report 116 (1988), accepted for publication in
Physics of Fluids.

A, Aydemir and D. C. Barnes, Proceedings of the U.S.-Japan Theory

Workshop on 3-D MHD Studies for Toroidal Devices (ORNL CONF—8110101,

Oak Ridge, 1981), p.187.

- 8J. A, Holmes, B. A. Carreras, T. C. Hender, H. R. Hicks, V. E. Lynch,
and B. F. Masden, Phys. Ffuids_2§, 2569 (1983).
4. R. Strauss, Phys. Fluids 19, 134 (1976).

194, R. Hicks, B. A. Carreras, J. A. Holmes, D. K. Lee, and
B. V. Waddell, J. of Comput. Phys. 44, 46 (1981).




-24—

118, R. Suydam, IAEA Geneva Conf. 31, 157 (1958).

12R. A. Nebel, R. L. Hagenson, R. W. Moses, and R. A. Krakowski, Los
Alamos National Laboratory Report, LA-8185-MS, 1980.

13p. C. Robinson, Nucl. Fusion 18, 939 (1978).

14p. B. White, D. A. Monticello, M. N. Rosenbluth, and B. V. Waddell,
in Plasma Physics énd Controlled Nuclear Fusion Research (TAEA,
Vienna, 1977), Vol. 1, p. 569.

18p, B}skamp and H. Welter, in Plasma Physics and Controlled Nuclear
Fusion Research (IAEA, Vienna, 1977), Vol. 1, p. 579.

8. B. White, D. A. Monticello, and M. N. Rosenbluth, Phys. Fluids

20, 800 (1977).

17g. A, Carreras, -B. V. Waddel!, and H. R. Hicks, Nuecl. Fusion 19,
1423 (1979).

187. G. An, Bull. Am. Phys. Soc. 28, 1189 (1983).

13p H. Diamond, private communication.




-95-
FIGURE CAPTIONS
FIG. 1. Equilibrium safety factor and current profiles for the
reversed fieldlpinch’and tokamak cases considered in this paper. The
singular surfaces of the dominant modes are indicated by arrows:

tokamak equilibriun — rgjo = 0.49, r5/3 = 0.56, rojy = 0.65

reversed field pinch equilbrium — r1/10 = 0.32, r1/11 = 0.38,
r1/12 = 0.43, r1/13 = 0.47, r1/14 = 0.50, r1/15 = 0.52,
Po/o = 0.93

FIG. 2. Magnetic island widths vs time for the single helicity cases

discussed in the text. Expulsion and re-emergence of the magnetic axis -

are observed. for the 1/10 mode in the incompressible and ohmically

heated compressible calculations.

FIG. 3. Magnetic surfaces at several times for the 1/10
incompressible single helicity calculation. The expulsion and

re-emergence of the magnetic axis can be seen.

FIG. 4. Magnetic surfaces at several times for the 1/10 compressible
non-ohmically heated single helicity calculation. The island growth

saturates without expulsion of the magnetic axis.

FIG. 5. <> vs time for the 1/10 single helicity calculations
considered here. For the cases characterized by ’expulsion and
ré—emergence of the magnetic axis, the beta increase is significant and
the Suydam criterion is violated at the 1/10 singular surface during

most of the calculation.
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‘FIG; 8. (1;11) kinetic and magnetic energy growth rates vs time for
the 1/11 single helicity incompressible calculation. The (1;11) linear
growth rates for the evolved eqyilibrium show good agreement with

dynamic growth rates.

FIG. 7. Magnetic surfaces at several times for the 1/11
incompressible single helicity calculation. The magnetic axis remains

in the plasma throughout the calculation.

FIG. 8. Mode coupling in a tokamak disruption. (a) (3;2) kinetic
and magnetic energy growthurates vs time for a tokamak disruption
calculation and the single helicity magnetic energy growth rate. In-
the disruption, the (3;2) kinetic energy is destabilized first.
(b) (5:3) magnetic energy growth rate compared with the average of the
(2;1)'ahd (3;2) kinebic and magnetic energy growth rates vs time. If
the (5;3) mode were purely driven the curves would compare closely.
Quasi-linear destabilization of the (5;3) mode occurs when A’(5;3)
changes sign. (¢) ¢(;:g) vs time. The quasi-linear destabilization
changes the character of the mode causing the turnover of the ¢avg

curye.

FIG. 9. Mode coupling for reversed field pinch profile. (a) (1;12)
kinetic and magnetic energy' growth rates vs time with coupled
helicities, compared with the single helicity magnetic energy growth
rate. With mode coupling, the (1;12) kinetie enérgy is stabilized
first. (b) (2;28) magnetic energy gréwth rate compared with the
average of the (1;11) and (1;12) kinetic and magnetic energy growth

rates vs time. The close agreement between the curves as well as
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A'(2;23) <0 ‘indicates that the - (2;23) mode remains driven.
(c) 8?2;23) vs time. The turnover occurs after the stabilization of

the (1;12) mede.

FIG. 10. Magnetic field line plots showing the interaction of the

dominant instabilities along the axial length of the reversed field

pinch.

FIG. 11. (1;11) magnetic energy growth rate vs time in single helicity
and coupled helicity reversed field pinch calculations. The nonlinear

couplings are 'seen to be stabilizing.

FIG. 12. Total kinetic energies vs time for reversed field pinch
calculations. "The behavior is critically affected by the dynamic

assumpbions.
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