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ABSTRACT .

The sharp-boundary model is used to investigate the stability of
straight stellarators to free—bsuﬁdary, long—wavelength modes. To
correctly analyze the heliac configuration, previous theory is
generalized to the case of arbitrary helical aspect ratio (ratio of
plasma radius to periodicity length). A simple Jlow—f criterion
involving the vacuum field and the normalized axial current is derived
and used to investigate a large variety of configurations. The
predictions of this low—g theory are verified‘by numerical minimization
of 6W at arbitréry g. The heliac configuration is found to be
remarkably stable, with a critical f of over 15% determined by the lack
of equilibrium rather than the onset of instability. In addition,
other previously studied systems are found to be stabilized by net

axial plasma current.




I. Introduction

Recently it has been proposed1 that an 2 = 1 (& being the poloidal
mode number of the dominant helical field) stellarator with a helical
plasma surrounding a central, current—carrying conductor (herein known
as & heliac) would have good stability properties; This has been
conf irmed® for the short—wavelenéth, fixed-boundary modes of straight
(non—toroidal) heliaecs. The present work is directed toward
determining the stability of straight heliacs to long—wavelength,
free—-boundary modes. This 1is especially important in light of past
theéretical and experimental work.on the 4 =1 Scyllac,3 in ~which the
stability of free—boundary modes ‘placed the éritica1>reétrictionzonv

high—f plasma operation.

The previous Scyllac stability results - depended on thrie o
parameters: §, the relatiye plasma pressure; 6, the relative
deviation of the plasma boundary from circular; aﬁd ¢ = ha, the product
of the plasma radius and the equilibrium helical pitch number
(h = 2n/L, where L is the length of va helical period). Results
obtained by expanding in either 6 or a‘but keeping ﬁifof order uﬁity'
found? that. the free—boundary mode with k = 0 (the helicél wavenumber)
and m = 1 (the poloidal modenumber) was strongly unstable for £ # 1 and
weakly unstable for £ = 1.‘ In the latter case, the mode could be
. stabilized by wall effects. Other work4 showed that for 4 2 2 this
mode could be stable for smaller . However, later work5’6 foﬁnd that
these systems were unstable to 8 long—-wavelength, free—boundary,
interchange—like mode with kX # 0 for any positive value of g. In
concert, these results indicate the need for detefmjning the stability

of these modes in the heliac configuration.
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All of the above conclusions were obtained by modeling the
confined plasma as a sharp—boundary system in which the plasmavpressuré
is constant inside a given flux surface and vanishes outside this
surface. Later calculations,' in which the plasma was modeled by a
diffuse profile equilibrium, reproduced the above features with only
quantitative modifications.

Motivated by theée previous studies, the two—dimensional straight
heliac is modeled aé a sharp—bounaary system. Because the growth rates
of unstable modes are expected to be sensitivelyldependent oﬁ the
helical curvature, the present analysis genéralizes previous work by
allowing for arbitrary ¢. A sharp-boundary equilibrium is computed for
an arbitrarily shaped plasma by solving a potential problem for fﬁe.,
intérior» domain to determine'the'interior'§acuum:fie1d. Then pressuﬁv
balance gives the exterior surface field.

Stability is investigated in thé usual way7 by minimizing 6W. The
plasma  and vacuum contributions to SW may be minimized holding the
normal surface displacement fixed. The minima are given in terms lof
the solutions of interior and. exterior potential problems. Linear .
stability is then determined by minimizing the resuiting oW with.
respect tq the surface displacement.

A low—f analysis provides a deeper understanding of the previously
fo.und5’6 surface interchang¢ instability. When the plasma pressure
vanishes, a marginally stable mode exists._ With the introduction of
plasma pressure and current, this mode can be either stabilized or
destabilized. If the mnet plasma current vanishes, the stability of

this mode is given by the usual V" criterion.a’9 However, in general

there is a contribution from the interaction of a small axial current




" the low-g theory to arbitrary §. This requires nan"“efficieﬁfxyah

‘mccurate numerical solution to the potential problém;"ln the present
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with the vacuum shear, which is stabilizing for the proper choice of
current. This means that the £ = 2 and 2 = 3 stellaratérs, which were
previously found to be unstable, can be stabilized bj a net axial
current .

Still, there 1is a preference for systems without mnet axial
current, which can more easily be made to operate in sfeady -state.
According to the present results, such systems must have a vacuum
magnetic well. Within the set of helical symmetric systems, this is,
in fact, a property of only the heliac sfstém and .a few other systems

10,11 Thus, theA.requirement of low—f

with helical magnetic axes.
stability to free-boundary modes leads to these systems alone.

To determine the limiting value of f§, it is mecessary to~extehd

>'work, a Fourier expansion technique similar to that of Ref. 6 is used.

12 is used.

However, here the exact free—space helical Green’'s function
The results of the high—f theory are quite optimistiec. In the

case of the heliac configurafion, the limiting f—value is due to loss

“of equilibrium rather than the existence of instabilities. This occurs

at a f-value of over 15%. Relétively large critical—f values are also
found for sharpjgoundary stellarators stabilized by net current.

The remainder of this paper is organized as follows. In Sec. II,
the generalvformulation of the problem is given. After the geometry is
described and appropriate coordinates are introduced, the
sharp~boundary equilibrium problem is formulated. Then 6W is minimized
with respect to the plasma and vacuum perturbed magnetic fields.

Sec. III develops the low—f limit of"the equilibrium and stability
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problems. The criterion for stability at small g is derived and
applied to a number of éonfigurations. In Sec. IV,'.the numerical
procedure for solution of the equilibrium and stability problems at
arbitrary § is developed and applied to the heliac and to the
stabilization of systems with non-zero net axial current. Conclusions

are given in Section V.
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11. Sharp—Boundary Fquilibrium and Stability

The first step in abplying the sharp—boundary model is the
specification of the bounding surface of the plasma. In the present
case,' helical symmetry is assumed. This means that unpertufbed:
quantities depend only on the radius r and the helical angle
¢ £ ¥~hz, where (r,%,z) ére.the usual cylindrical coordinates. Thus,
the bounding surfacé of the plasma éan be specified by two functiéns,
r (t) and ¢S(t), such that the surface is the two parameter family of

points}

rg = rg(t) cos [p (t) + ¢l & + r(t) sin [p (t) + ¢l § + ¢, (.}1)

where 0 <t <2nm, and - o <¢ <-?1 ;Thé7pafameter t is specifigd@b"

requiring the surface area element to béﬂbbhsfant.f;‘ff§: 

dr dr 1/2
-8 S8 2 2\s2 Re2 '
Y x —EE_ = [(1+h ro)rg + rs¢s] = A . (3)

The overdot in Eq. (2) denotes differentiation with respeét to t. The
process of determining t and A given an arbitrary parameterization is
discussed in App. A. |

A complete coordinate system is defined in the neighborhood of the
surface by introducing a normal coordinate 7. It is convenient to
choose 7 to measure the normal distance from the.surface (see Fig. 1).

Thus, the cartesian vector is given by

p=rg(tg) + 0 Ate) S (3)




——

for small 7, where i is the unit surface normal

A(t,¢) =AY (rp F—f_ B8+ hr t_2), (4)

One should note that Eq. (3) implies that 2z and ¢ are no longer
identical off the surface.

The metric tensor for this coordinate system is expressed in terms
of the functioms r_(t) and ¢S(t) in App. A

B. Equil'_ibrium

In the sharp-boundary model, plasma currents needed for confining
the plasma pressure exist only at the"plasma boundary. Thus, the

interior and exterior magnetic fields can both be written as gradients

.0of scalar potentials. The interior and extefior'soiutionsﬁ must$fmato“

at the boundary by having the jump in magnetic preséurevoppbsezthé“jpmp S 15%£ﬁr
in plasma pressure.
1. Interior solution

The interior field has the form

B; = aV(z+e) , - (5)

where ¢ 1is a single valued potential independent of z and a is a
constant whose value is determined by matching to the exterior field.
By choice, the value of o is unity when the pressure gradient

vanishes. Thus, the vacuum field is

By = V(z+d) . | »(6)
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The interior potential ¢ is determined by the conditions V‘QI =0
in the interior plasma region, and ﬁogl =0 at the plasma surface.

This gives a Neumann potehtialfproblem for determining ¢:

V2 =0 | (7a)
with

8V6 = —fhoz = A Thr_ # ()
on the plasma surface. The solution for ¢ is found wusing éhe

free—space Green’s function as described in Sec. IV and App. D.

2. Exterior solution_{ -”  

' The exterior field similarly may be written as : =
Bp=V(z +yt+v) , (8)

whgre v is a single—valued potential independent of 2z, and 7y is a
constant. Note that the unit of magnetic field has begn chosen to be
the exterior axial field sfrength far from the plasma, by choosing
unity as the coefficient of 2z 1in Eq. (8). The secular term yt is
included in Eq. (8) to allow for nonzero net gxial current on the
plasma surface. From Ampere’'s law (in rationalized units) the net

axial current is given by

2

dr
I = §Bpedp = é dt Bg « 5= =&y . .(9)
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The constants 7y and o and the value of the exterior potential v

at the plasma surface are determined by pressure balance

6. (o)

0 =
o
=N
Il
=
o
— N
=

where f is the ratio of plasma pressure to external axial field
pressure. From Eqs. (5) and (8), the covariant components of the

magnetic field are, -

L) i
BIt=a——at , BI¢=CX ’ (11&)
_ 3 v o
Bpy =7 + Y 3E¢ =1 , (11b).

“on the plasma surface."quuétions (10) and (11) lead to a quadratic

equation for BEt’

gttBEt + 2g1‘<BEt + gf_f = ang +8 (12)

which is readily solved forvBEt:

Bpy = — (g% +[(8 + o®BD)gtt - aR)1/2) /ptt (13)
The choice of sign in Eq. (13) is such that ¥ =¢ when +v,8 » 0 and
o > 1. Finally, a relation between o, 7, and the axial current I is

obtained by integration of Eq. (13) with respect to t:




I = 2ny

_2m . ‘
[ at {g¥¢ + [(p+a®BR)ett - aR)1/R) gt | (14)
0

The equilibrium for a particular boundary is, thus, completely
specified by the parameters B and I. It is.given by the following
sequence of operations. First, Eq. (7) is solved to obtain ¢ and,
hénce, §OL Then, o is found by solving Eq. (14). Of.qourse,_a
solutioh for o may not exist if one is attempting to exceed the
equilibrium g-limit. Finally, Eq. (13) yields the remaining unknéwn '
component of gE' |

C. Stability

”flldeal magnetohydrodynamic éfabiliﬁy i$ examined by minimizingmgﬁw

" with a suitable normalization.’ Miniﬁizatibh“of_6waith'respeétfto the
parallel plasma displacement results in the incompressibilify'condition

Ve¢g = 0. Under this condition, 6W may be written as

6W = SW, + 6W, + oWy , | (15) -

where the plasma, vacuum, and surface contributions are given by

- | |
oWp = > [ arlprl® . (168)
L
oWy = = [ drlpgl? (16b)
oW = < [ aal¢]® a.vi(B2 — B2) (16¢)
S o _ 2\ E I ! : .

where +the integrals are over the plasma region, the vacuum region, and
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the plasma surface, respectively; EI and RE are the ‘interior wand
exterior field perturbatiqns; and ¢ 1is the normal dispi'acément of the
plasma surface.

In the sharp—-bdundary_model, 6W can be expreséed in terms of £
alone. The dependence of GWS on § is quite explicit. We now show how
GWP and 6Wv can be written _in terms of ¢.

The plasma and vacuum dontributions, GWP and 6WV are minimized
subject to V'EI =0 = V.E . The resulting Euler equations are
VXE_I =0 = VXEE' so that ‘the perturbed fieldé may be exprevssed in terms
of potentials, EI = VuI and EE = VuE. With no conducting wall present,

up is required to be regular at «. Then the minimized v6WP ‘and GWV are

_:'."given by (a unit length in ¢ is chosen here and in the sequel)

~ A A A
6Wp = > [ at ug n»VuI , - (x7a)
0 .
and
A 27 . .
oWy = — > [ dt ug feVup (17b)
0 :
where
VZuI =0 , (18&)
,VZuE =0 , 4 ‘ (lsb)

and, in addition tp regularity, uy and up satisfy boundary conditions.

at the plasma surface.
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These boundary conditions are determined by the requirement that
the perturbed magnetic field be tangent to the perturbéd’plasma

surface, i.e.

(A + 6f) « [B(rg + 6ry) + b(rg+ér )]l =0 , (19)

where 6r_ is the surface perturbation and 6A the corresponding -

-8

perturbation of the surface normal. Using 6£S = ¢ 1 and expanding

Eq. (19) to first order in ¢ gives

) + ¢A(AV)B(rg) = 0 . (20)

S1nce ¢ is an 1gnorable coordlnate for the equ111br1um néf;’,‘

employ the ansatz é é(t) exp(1k C) Further by the constructlon of

the coordinates, the Jacobian :ﬁf the' transformat1qn from. n,t,{ to

cartesian r is the constant area -element A of Eq. (2), and

feVA = gﬁ = 0. Thus, the last term of Eqg. (R0) may be written as
R A VY 3B" ‘ :
e (V0B = £(BT)(BeB) = £ - (21)

The right-hand side of Eq. (21) may be evaluated in terms of surface

quantities by using V+B =

Combining Eqs. (21) and (22) yields




t
¢he (BB = - ¢ - . (28)

The second term of Eq. (20) is evaluated by noting that the

perturbed surface is given by S = n—¢ = 0. Thus,

. R VS . d¢ :

A+ 6i=—=41- Vt — ik ¢ Vz + 0(£2) . - 24
oy =8 - 5 ¢ (¢2) (24)

Combining Eqs. (20), (23), ‘and (24) gives the boundary condition

for the perturbed fields in the final simpleiform:

du A : ,

A -1 _ .9 gt i kB¢

Aeb. = —B _ 9 pt i kB¢
b = P By £) + 1kBj ¢

Gi&en the displacement &, the perturbed potentials are found from the
Neumann problems given by Eqs. (18) and (25). Then the plasma and
vacuum energies are given by Eq. (17). By this means: 6W is expressed

entirely in terms of ¢.




—14-

ITI. Low—f Analysis

The low—f analysis presented herein consisfs of two parts. First,
the 0(B) corrections to the vacuum magnetic field are calculated.
Next, the minimal 6W is calculated through 0(8) by inserting the
marginally stable vacuum perturbation into the surface contribution to
6W. This calculation shows that the V" criterion is precise in
determining the sharp-boundary étability of low—f stellarators with.no
net current. However, systems without a magnetic Wéii can be'j
stabilized at low values of g by net.éurrent in the direction that
increases the rotational transform differenée between the extérior. and
the interior.

"A. Equilibrium

©  The low-f equilibrium is obtained by expanding the varidus:

quan‘l:itieS .a’;y’l’ and Vv of Sec. I1IB as poﬁ’er series in 6: €.g.

o =1+ o (28)
Y =76, _ (=7)
and keeping the lowest order parts of each equatibn. From Eq. (11a),

the intermal equilibrium field is obtained,

By = (1+a8) g% = (1+a;8)Bg; - (28a)

and B, = (1+a,8) = (1+a1ﬁ)BOC , (28b)

I¢

in terms of the vacuum field components. Equation (11b) gives BE( to
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all orders in f. Expansion of Eq. (13) gives the remaining covariant
components of the external magnetic field.
o4B§

Bpy = Bpy (1+018) + (= T ——;—) (29)
2B; B

14

At this point the axial current I or, equivalently v, can be

related to the parameter «. Ampere’s law gives

715 ﬁ j "at Bpy = qpo(Vg/2 + ay/h) ' (30)

where q,, and VO are calculated via -Eqs (ClO) and (C15) using th

vacuum fields. The coeff1c1ent _7i¥;: H_érbitrafy, but once it is

spécified the equilibrlum is determlhed:‘:}*‘

B. Stability

All perturbations of the vacuum field are stable or mneutral
~(6W > 0).  For infinitesimal g  continuity demands that strictly
stable perturbations (6W > 0) remain so. Hence, to determine stability
only perturbations that are marginally stable in vacuum need to be
examined to determine whether they become unstable with the
.introduction of pressure.

To find marginally sfable vacuum perturbation, note from Eqs. (16)
that the surface contribution to 6W vanishes, while the plasma and
vacuumAcontributions are non—negative definite. Thus, the only way for
oW to vanish is for ﬁ-y to ~vanish. This condition, +together with

(R5) yields the differential equation,




3 (ot . _
31 Boéo) + kB¢, = 0 (31)

for the marginally stable surface perturbation in vacuum. The solution

to this equation is

‘ t !
¢o = exp(-ikf dat B§/BL)/BE | (32)

which is single valued only if

k = bK/qp, . . | (33)

';*wﬁerev X is an integergijhis perturbation‘isaan'inferchange. It is.

‘constant . on a field liﬁé{ff”hdxﬁﬁé:magnitudeuisppr0portiqnél3td#ph

disfance between field iineé.h

Since the vacuum is stable, fhe<manginally staﬁié_pefturﬁation €0
is the minimizing perturbation. However,'iﬁ the presence of a small
plasma pressure, the minimizing perturbation is altered slightly,
§ = g T 551. Upon inserting such a.perturﬁation into‘Eq. (25a), one
finds ﬁ'EI = 0(B). This implies that oW, = 0(523; Similarly,
GWV = 0(62); Therefore, through order g, only the surface term

-contributes to 6W.

2
Joat 16177 21Bg 1R ~ [B;1%) + o(6) . (34)

oW

il

w |

This equétion, in combination with Egs. (B2) and (32), implies
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_A BT 2 Lie k&
oWy = /0 at (B)) = Bls; g8, o (35)

where W = f6W, + O(ﬁz), eand AB) = Bp) — B;,. When the expressions

for AB, calculated from Eqs. (11b), (28), and (29) are used, Eq. (35)

L

reduces to

27 -3 _; ; .
oy =4[ at(B§) ~ ByS;;[el P (14 BY) - ayeiiBE] (36)

Finally, with the relation (30) Dbetween oq and 71 and .the formulas

(C13) and (C16) for shear and V', Eq. (36) yields the simple_fesult

Q4 dvo o 71 "dqh

-+ — =) .
2 gy dA,T
Bodhe gy A

The interpretation of Eq. (37) is‘str;ighffbfﬁard. When no current. is
present (71 = 0) the low—f stability of the systém depen@s on dV’/dAé.'
Since q < 0, the system is stable if dV’/dA¢ is not positive. This is
the familiar V" criterion. Suppose instead that dV’/dAé is positive.
Then the system can be stabilized by a surface current I1 = 71/2t such

_ that

2
9 qv’ 49, av’ d+
71 = e = ('Q ) . (38)

2 dA{ dA¢ dAf dA¢

Thus, if the shear is positive, 7y must be positive, 1i.e. the current
must be in the direction that increases the rotational transform

difference between the interibr and the exterior.
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IV. High—f Analysis
In this sectidn, the equilibrium and stability analysis of the

previous section is extended to arbitrary plasma g. First, a method

for solving the Neumann potentiel problem in either the interior or the

exterior of the plasma domain is developed. ©Next, this method is
applied to determine ihe interior B field. The exterior B field is
found witneut expansion in g as the solution of a quadratic. The
requirement that.thiquuadratic have a real solution determines an
equilibrium g limit. 'Finally, the stability.probiem is formulated by
expanding the surface displacement ¢ and associated quantities as

Fourier series in the poloidal coordinate t. Resulting matrix

representations of 6W are minimized by standard numerical techniques to

give :approximations toi thet}normeljmode'irequenEies (squared) of:'the

system.

A. Solution of the Potential Problem

The formulation of the sharp boundary equilibrium and stability
problems described in Section Il leads to Neumann potential problems
for tne unperturbed and perturbed megnetic scalar potentials. | These
problems are transformed into integrel equations and solved by a
g.5.6,12

technique previously use

Consider the Neumann potentiel problem

AeVu =f o A (39)

for either the interior or the exterior of the plasma domain. An
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efficient and accurate algorithm for such problems is derived by
combining Green's third identity with Fourier transform techniques.
When this identity is applied to the function pair consisting of

~

the fundamental solution, G, of the Laplacian which is regular at'W,

and the unknown solution {l, there results the integral equation5’6}

~-

f(r) = 2 [ aA(r’) [§(z’) A-V'G(r.r)) - &(r,) &+V'8(x)] . (40)

where the integral is taken over the plasma -surface, the normal is out
of the plasma, and the upper (lower) sign holds for the interior

(exterior) domain, respectively. The integral of Eq. (40) 1is to be

interpreted in a principal value sense. The - Qriginally - present ; .

-6—;un§ti§n‘sfngular;ty,has been removedlanalytiCally.

F”;With‘£héAéo§fd;ﬁafés of Seci 11, all eqﬁilibriﬁm quéntities .are
independent of +the axial coordinate z. Because of this, it is
»cdnvenient to Fourier analyze the surface quantities. Thus, ﬁ(t,z,n=0)
= / dk exp(ikz) w(t), f(t,z,7=0) = J dk exp(ikz) f,(t), and
a(t,z,n=0,t’,z’,ﬁ'=0) = J dk exp[ik(z—z')] Gk(t,t'). Fixing k as a

parameter for the subsequent discussion and suppressing k as a

subscript, Eq. (40) may be Fourier decomposed to give

_m _
u(t) = #2A f dt’ [u(t’) 4'«V'G(t,t’) — G(t,t’) £(t')] , (41)
0 : :

where G satisfies the fundemental equation

— k2 + 2ikh 2 + n2) ¢
. g

32

V4 G(r.o.r’,0) = | dp?

S =

d 3 1
— __+_—
ar | or r2
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1 ) ’
== 6(rr") o(pp") | (42)
The solution of Eq. (4R2) regular at « is eésily expressed12 in
terms of the modified Bessel functions I, K as
=1 K _ -y eiP(9—¢") ’
G - g I|P|<lk hp | r<} Kip|(1k-hp| ry) e*%. , (43)

where r_ = min(r,r’) and ry = max(r,r’).

The one—dimensional integral equation, Eq. (41), is discretized by
Fourier expansion of the unknown u as a function of t. This e#pansion
7v§onv¢rges ‘rapidly and thus, when truncatéd :and combined with fast

Fourier transform techniques gives an accurate and efficient mumerical,

scheme. Because of the f&—fold symmetry of the plasma surface in't,
only harmonics which differ by an integerbmultiple of £ are coupled in

the integral Eq. (41). Expanding

u(t) = eth z uqeilqt )
- -q . ’ ‘ . N
AeVu(t) = Mty fqe”‘-qt , | (44)
q-

gives the matrix problem

U = * ) Mpigq,Mieq U’ * L GeaqMengifqr - (45)
q’ q’

where the matrix elements are

L Bm o 2m ' . |
2 at far e HBERIE) gvig(se) (46a)
0] 0

=z
I




ol

A 2 2m ) L
G =—= [ at [ dt’ eimt-n't’) gy 4oy (46b)
o 0

A numerical solution of the potential problem of Eq. (39) is
obtained by truncating the sums of Eq. (45) ‘to 'a few harmonics
(typically 20-40). Then N, G become finite matrices and the solution

vector u is found by matrix inversion to be

u= #(1¥N)"lg ¢ . (47)

Because of singularities in G, 4'+V’'G and slow convergence of the
series of Eq. (43), the numerical evaluation of G;.ﬁ’ov’G and the

matrix elements of Eq. (46) requires sbme*caré.7;Thefdétai1s fbf:ftheSe.f°

‘caléﬁlafionsjﬁre:gi#en'iﬁpréffﬁ
B, Eguiiib}iﬁm L
The determinétion of:equilibfium surface quéntities is described
in this section. The method of Se@. IVA is used to solve Eq. (7)‘ to
determine ¢ and hence tﬁe interior B field on an arbitrary plasma
surface. Then, the exterior g'field is found from equilibrium pressure-
balance. It is convenient to specify § and I and déterﬁine o from
Eq. (14). The condition that Eq. (13) give a real B ihposes- an
equilibrium g limit, 60. For any particular plasma surface, ﬁc gives
the>va1ue of plasma § below which equilibria exist.

- From Eq. (47) with M = 0, the solution of Eq. (7) is obtained as:

o = (1-N)"lg £ : | (48)

where




h 2m sat.
f =— = [ 4t e 1M
q 2mA f st
0
. 2n ) :
= iblg gy -ilgt p2 : ‘ (49)
TA 0 S

To simplify the calculation of the sequel, the plasma surface is

assumed to have a reflection symmetry about t = 0. Thus, the parities

ro(t) = rg(=t)
ps(t) = - o (-t) . (50)
are assumed. Then f becomes an 1mag1nary quantlty and the Herm1t1an .

: matrices N .and G become real symmetrlc matr1ces - The real quantltle:

 i¢q: are found by standard matrlx technlques fram Eq (48) Then By-1is
" evaluated by Fourier synthesis of iq ¢ to obtaln ¢(t)

The equilibrium solution is completed by the specification of the
two parameters § and I. Then o is determined by numerically finding the
root of Eq. (14). This determines the covariant components of §1 and
Bp from Egs. (11) and (13). | |

The square root occuring in Eq. (13) constrains the allowable

values of the equilibrium parameters f and I. Since the radicand must

be positive, a? is constrained by

2 2 A2 - ggtt (51)
ac > o = min . 51




Thus, since the right-hand side of Eq. (13) is a monotonically
decreasing function of «?,

_m
dt ' _ o
I'<Ipax =~ é BT (6%¢ + {Be*t + a2, e''BZ - A472)1/2) . (s2)

The inequality of Eq. (52) determines the allowable values of ‘the

parameters § and I. If I = O is chosen, Eq. (52) is satisfied for § =0

and for values of B less than some critical value, the equilibrium §

limit, fg,. For values of § and I satisfying Eq. (58) equilibria exist
and may be computed as described here.

C. Stability

To examine the stability of an arbitrary . sharp boundaryé?plasma\':

'Fequilibrium.surface:Qﬁaﬁfﬁt_.?igféf&éﬁéﬁﬁiﬁéd §;Jd;éé;ib;&ié# ééeL#IYB}
As a trial function;:é iéEegféﬁéédzfih'iéiipoﬁfier seriesp:6£{ §e#é£ai
harmonics in t. The perturbed’mégnetid ééalar potentials are similgrly
expanded and determined by the method of Sec. IVA. Combining all these
expressions leads to a matrix representation of 6W. The eigenvalues of
this .matrix are found by standard numerical erchniques as
approximations to the hormal mode frequencies (squared> §f the system.

Evaluation of 6W as a functional of the surface displacement ¢ is

accomplished by expanding ¢ as a Fourier series in t:

¢ = oiMt I% ¢ gifmt ' (53)

The surface term may be easily evaluated:
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* A -
oWe = We &, == ¢Tow , . 54
S mgm,-fm.Smm ém 2 ¢ Sé : (54)

0 =

where the * indicates complex eonjugation, the T Hermitian conjugation,
and ¢ and GWS are now written for the vector and matrix representations

of these quantities. The matrix elements of Eq. (76) are given by

17 ikt
_ —il{m—m’
GWS Sl é dt e

x [s4, (BB — BiBY) + 2st¢(BEB§ - B{B{) + S, (BfBf - B{B{)] . (55)

To obtain the corresponding matrix representation fer'GWP and 6WV,

the boundary conditions pf Eq.>(25)vare Fourier analyzed. Thus, ferv»

oW, Eq. (25a) is analyzed as |

ﬁ‘vuI‘= eth Z fI ,eilqt

§ q
so that
) 1 iﬂdt i (M)t {ji (B ¢) + ikB§ L
Ig = on 0 ' o : a é)-
=i % Fromén -
or
fi =1 F;¢ _ | o

where
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e
1 —j —
Fiagm = 5o / dt e i2(q m)t{(M+£q)B1f + kB{)} . (58)
SN ,
Note that FIqm is a real (non—square).matrix. The plasma energy is

expressed using Egs. (17), (47), and (57) as

_A _ A e | | |
oWp = 5 urlty == ¢fowpt | | (59)
where
W, = FIT(l—N)‘lc;FI . _ ' (60‘)

In a completely similar,méhnér,‘the;vacuum energy is given by-f

where
(SWV _ FE_I_( 1+N)_]'G FE , . : (62)
and
’ 271 g i t '
FEqm = 2n é at e~14(qm) ((M+QQ)BE + kBE} : (63)

To evaluate 6W - numerically, the Fourier transforms of

Egs. (55), (58), and (63) are carried out by fast Fourier transform

“

techniques. Then Egs. (60), and (62) are used to evaluate 6Wp, and




6%#. This gives the matrix representation of 6% = é%s + G%P + 6%v.
Because of truncation errors associated with truncating the sums over
q, the numerical representations of Sﬁp and 6§v are not exactly
symmetric. The order of dccuracy is increaseéd by replacing dﬁ by the
average of this numerical representation and its transpose. The
resulting matrix representation of 6% is real and symmetric.

The final step of minimizing with respect to the mnormal
displécement is accomplished by finding the eigenvalﬁes of the matrix
6% by standard methods. The vgorrespoﬁding' normalization (kinetic

energy) is

D. Applications.

Using the equilibrium.soiution described in Sec. iVB above,. a
large number of 2 =1, 2, and 3 configurations have been inyestigated
for low—g stability. For venishing axial current, I, low—p stability
is éqﬁivalent -to the existence of a magnetic well. ~The only
configurations found which have such a well are 2 = 1 systems of the
heliac type. The -stabilization of a system with a magnetic hill by
1+# 0 has also been investigated.

Figure 2 shows the cross section of a stable £ =1 heliac

configuration. For this case, h = 0.8 and the surface is given by

x (1) = x + (rgtr cosT) cosy v ‘ (65)

¥5(7) = (rg+r cost) siny o (66)




¢ (T) = Arctan ys/xS (67)

Y = ¢y sinT (68)

with ¥ =0.2, rg = 0.5, r; = 0.25, ¢p; = 1.6. This is the same section
chosen for the conducting 'boundary. in én eariier, diffuse—profile,
local mode S£ability study.z

The existence of a deep magnetic well for this configuration is
confirmed by evaluation of 6W1 from Eq. (37). Evaluation of oW at. 
finite p shows that the g =0, marginal eigenmode indeed has w?
increasing linearly with §, and confirms that stability is acheived for
_ gll vglues of the axiallwavenumber, k.

. This 1low-f behavior persists as g is increased to quite large

ifaluési jFQr‘thé bbﬁfiguration‘SHOWh‘in‘Fiéjyzﬁﬁétdbility for all kK is j;u

reaiized 'up' theA the equilibrium g, of‘gisz; : These fresultéb'ﬁ}é
summarized in . Fig. 3, -where 2 vvé;‘k  ’ iS": Plo£féd.q;bf§r‘
g =0, 7.5%, and 15%. |

To examine the stabiiiéing effect of I.# 0 on a system with a
maghetic hill, a previously studied6 uﬁsiable L =3 system is
considered. Fig. 4 shows the cross séction corresponding to 6§ = 0.24
for the surface specified in Ref. 6. A helical wave number h = 0.3 was
chosen and the plasma radius was taken as unity.

Evaluation of 6W1 confirms the low—f instability of this sysfem
with I = 0 and indicates that low—f stability rqquires I = 611, with
I, =R2.281. Fig. 5 shows w? vs. k for a small § = 0.5%. The predicted
current for stability iS‘confirméd by the.solid curve there. As the
plasma f is increased, complete stability is realized for I nearly as

predicted by 6W1. Figﬁre 6 shows w2 vs. k for f = 10%, a value close




_28_
to the equilibrium limit. The broken curve indicates complete

stability for I = 1.1611.
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V. Conclusions

The . freeQboundary stability of straight, ‘sharp—boundary
stellarators 1is closely related to the vacuum field properties. If no
net axial‘current is allowed to flow oﬁ the surface, stébility is
equivalent to the existence of a magnetic well. This seems realizable
only for £# = 1 heliac configurations. This low—g prediction is found
to hold up to the equilibrium g limit, which is‘gréater than 15% for a
heliac with deep magnetic Qell.

The low—f analysis also predicts that any nontrivial configuration
may be stabilized by adding a small net axial current. For a _

conventional & = 3 system this is ‘shown to lead to a stable.

‘ configuration with an average f of 10%.

- These’ reéﬁlts"for free;baﬁndéfyv stability, when taken togethe

’wﬁth'e&rlief‘internal"mode stability results, are extremely bptjmisiié‘, vj“

for  théA heliac configuration. Tﬁe :ﬁredicied stabilizing;effect:df
axial current on conventional (non-heliac) stellarators vsﬁould be o o
investigated in a more realistic, diffuse equflibriﬁm. The rather
Asignificant f values predicted‘by thev Simple model qonsidered here
might be realized in a hybrid toroidal system with small toroidal

current.
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Appendix A

Geometry and Coordinates

The development of Sec. II relies on the coordinate systém (n;t,t)‘
as defined by Eqs. (1-3). In this appendix it 1is shown how the
parameter t is found, and how the components of the metric tensor can
be written in terms of the surface functioms r (t) and ¢s<t)._

For an arbitrary parametérization rS(T) an ¢S(T) with 0 < 7 < 2m,

the surface area element is’

dr ar or ' @
<8 “8 Sy2 2.2 2 S1271/2
T ¢ [ 67) (1+ h,?s) Trs (87) ]

It follows form this equatibﬁ énd’Eq. (2):ihétf{:énd‘7:sqtisfy the  * .

relation,

or 3¢ )
A gi = [(?;?]2(1 + thg] + r% (?;?)2]1/2 . (A1)

The requirement that t increase by 27 when 7 increases by 2n determines

A to be

& ar ‘ . dgp
_ 1 _s _ _Sy271/R
A= o fo dar [(87)2(1 + h2%r2) + rg ( )2] . (AR)

After determining A from Eq. (AR), t(7) can be found by integrating

Eq. (A1).
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The surface unit normal is given in the usual way via

A=Al =28 .  (483)

feV = A_l [r 3 i - (f's/rs)(l +.h2r§) aa—go + hrsf's aiz] . ‘, (A4)

The elements of the covariant metric -tensor are found from

= aif‘ajr‘ This formula, together with Eq. (3) gives the following

gij
" values,
&y = 1
gyy = 15 + r34d
Beg =1+ h?r2 , gy =0 , (A5)
for the metric tensor elements on the. surface. As wusual, the
contravariant metric tensor is found by matrix inversion. The
resulting expressions on the surface are
g"?"f =1 , g"')t =0 ,
gtt = A472(1 + n2r2) . gt =22y
gff = A‘Z(fg + rgég) , gfn =0 - (AB)

From these results it follows that thé volume element is simpiy A
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Appendix B

The Normal Gradient of the Dot Product of Two Tangent Curl-Free Vectors

A formula useful for calculating 6Wg expresses theﬁnofmal gradient
of the dot éroduct of any two tangent, curl—freé,fields in terms of
their surface values. Let P and Q satisfy VxP=VxQ =0 and
‘ﬁog = 10+Q = 0 on the surface. Then fi.VP.Q = g%,pjgijk with the usual
summation over repeated indices understand. vThus,

/
fi+VPeQ ( . gix)Q (an gjPl)et + P (an‘ngQ ) . | ( )

o The vaniéhing of ‘the last two terms of Eq. (Bl)”foliows;

since g,’7j = 0 unless j = 9, but P" = ﬁoE = 0 by assumption. Thus,

fisVp.q = Pls,

S j

& (B2)

0 [

where.

Six = (B3)

9 L.
In Ejx

|-

and the indices j,k assume only the values t,¢.
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This matrix is calculated by using the identities, gjk = ajg . akg
dr

and n = — :
an

1 y A Ry
S]k = - E (SJn ® E)kg + GJK ¢ Skn] .

" The required derivatives of A may.be computed from Eq. (4) to give the

final form of Sjk:

73]
o
|

= —A"1 2 2 22 '
A h(rg f rs o%) ,

S,, = —A"n%rZ o




o 1. Sign of B
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Appendix C

Vacuum Field Properties

In this appendix several properties of helically symmetric vacuum
fields are discussed. It is shown that the contravariant component Bt, w
the component in the surface but not in the symmetry direction, is
negative. Next, the calculation of the mdgnetic well and the shear are.
discussed. Finally, it is shown that ap is negative, Whiéh_implies
that vacuum rotational transform per field period, <+, is always lesg

than 1/2%.

A flux function must have the property that -any magnetic field .

  11#¢:i§17S6hfined  to.‘6ne of its cbhtduf;.b_ I fgiigwé:}figﬁilfhe"
ighorgbility. of the original coordiﬁate z>'oj (r,¢;2j §nﬁ?£héiﬁé£h;d‘
of construction, that the new coordinate ¢ of (7,t,¢) ‘is ignoragle;
This implies that the vector potential can be chosen such that its

covariant components do not depend on ¢.

A= 8 0OT + AT + A0, 1)T¢ (c1).

For such a vector potential B . VA§ = 0. Hence, A( (the helical flux)

is a flux function.
Computing the magnetic field from Eq. (Cl1) and using the usual

formulae of differential geometry yields

Bt = - —</

/A (c2)




g covar1ant components :Of ;.B’.?ﬁs? glven bY Eq. (6)'/ Dividing this

_3'6_.
where the unsubscripted A is simply the area of Sec. II. Equation
(C2) +tells us that the flux surface spacing is proportionél to (Bt)_l.
This also shows that Bt must not change sign. Were it to change sign,
(C2) would imply that a‘surfaée.of a slightly different valpe'of AC
would be inside the present surface for some values of t and outside
for other values.

The sign of Bt is determined by considering the equation,

BY = A7®[(1+n"r 2) = —nrf 5], . . (c3)

‘which comes from using the‘meﬁric‘tensor’(AS) to calculate Bt from the

wequatlon by 1he factor l 2(1+h2 2) and integréting:fpverv £,

'j'obtalns

A® jiﬂdt BY/(1+0°r 2) = - / "at nrlp /(1+0%r%) (e

The integral on the right side of Eq. (C4) is simply the .area integral

of 2h/(1+h2r§) over a constant—z cross—section of the stellarator:

on '
fo dt hr2_/(1+h°r®) = [dpdr 2hr/(1+h%r?)

As this integral is manifestly positive, Eq. (C4) indicates that a
certain average of Bt is negative. ' Since'Bt cannot change sign, it
must be mnegative for all wvalues of t. This fact, together with.

Eq. (C2) shows that A< increases outward.
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2. Rotational transform
The rotational transform per field wperiod is defined by the

formula,

. -1 At
= L + —— ,
M v LYYy

(c5)
where At and A¢ are the changes in the coordinates t and ¢ as one
moves along a field line. This formula is easily remembered if omne
notes that a point at a fixed value of t has a rotational transform
per field period of 1/8. The periodicity in t and lack of dépendence
1~9n~3«,§' allows thek inverse‘ hglical transform to be calculaﬁédA_*:A

- explicitly,”

Combining Eqs. (C5) and (CB8) yields

+ = (1+qpt)/e . (c7)

3. Sign of ap
To prove that 9 is negative for a vacuum field, we wuse the

integral form of Ampere’'s law;

$B.sde=0.  (c8)

The path of integration consists of two pieces. The first piece starts




s
at (t=0, ¢=0) and moves along a field line to t = 2r at which point
h¢ = @nq;, according to Eq. (C6). The second part of the path stays at
a constant value of t = 2n. It starts at the endpoint of the first
path ¢ = Bﬂqh, and it ends at the beginning of the first path. Eor

this path, Eq. (C8) becomes

_m 0 ‘ '
[ dt B . dig + / d¢ B< =0, _ - (c9)
0 _ dt R_mgy,/h

where dfg/dt = 3L/t + (Bé/Bt)3£/8¢ describes - the field 1line path
through real space. With our mnormalization, B¢ = 1, .and Eq. (C9)

reduces to

. =— [ at|B|®/B R

which, since Bt<0, shows that qy, is negative.

4. Shear
The shear parameter is defined - to be the ‘derivative of the

rotational transform with respect to the helical flux.

dq
Froii T (c11)
¢ Lqy ¢

From Eq. (C86)




-3 g_

dg 2 ¢ t 2
, _h — £ dt (Bt ai_ - B( .@.)/(Bt) ,
dAg 2m 7o aAg aA(
which yields
dq en ¢ t
h __.b dt Bt 9B* 8¢ oB ) (c12)
dAf 2mA 0 (Bt)S 37) 87;

This expression canvbe further reduced by using the identity (BR2). TFor
example,
SRR 11

gt e o
Jemm— = =~ (B.V = Jg. \ = 2]

& Application of this‘resu1t and‘ihéfbompanion expression for aBt/anfﬂpo

Eq. (C12) yields

dqy h R gt

A, 2rh o (pt)3

tpic ¢ _ némic ity ,
(B'B S;;8 B°B'S,; ;e } . (c13}

5. Specific volume, V’
The specific. volume V', which is the derivative of the volume
enclosed by a flux surface with respect to the toroidal flux, can be

put in the form,

] .
[ ds/B
V' = Lim —

s>= hlz(s)-2(0)] "

(C14)




“yield -
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where s parameterizes distance along a field line, and z(s) gives the
value of the z—coordinate of a point moving along that field line.

With periodicity the following expression for V’ is'obtained.

2n :

-1 dt ty—1

V' = — (B Ci5
qh f 5 ( ) ( )

6. Stebility factor, V"

The stability factor V" is the derivative of V' with respect to
toroidal flux. Here it is more convenient to use the derivative of v’

with vrespect to helical flux. The previously introduced ieéhniques"‘l

— B!s..glt /(B . C16
orh 1j8 ./( ) (c1e)

Since toroidal flux and helical flux both increase outward, dV’/dAQs and

V" have the same sign.
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Appendix D

Evaluation of the Green’s Matrices

In this appendix, the numerical procedure used to evaluate the

matrix elements of Eq. (46) is outlined. The -evaluation of these

elements involves four major tasks. First the modified Bessel
functions and their derivatives must be evaluated for the calcﬁlation
of the sum of Eq. (4@) and the corresponding series representation of
A'eV'G(t,t’). Second, the convergence of these series ié unaéééptabl&

slow and must ‘be accelerated by subtracting the asymptotic term from

the general +term and summlng the_ asymptot1c series analytlcally e

‘Third,x the 1ntegrands of Eq (46) conta1n logarlthmlc s1ngu1ar1tles atfiz"':

v'tét'g these are resolved by addlng and subtract1ng a quantlty w1th

same SIngularlty whose Fourier integral IS known Flnally, the R—i'ld

periodicity of equilibrium quantltles causes ‘a decoupllng of harmonlcsh" B

whlch d1ffer by other than an integral multiple of &; +the efficiency

of the calculation is increased by accounting for this symmetry.

1. Modified Bessel Functions
It is convenient to scale the modified Bessel functions so that
the numerically computed scaled quantities are of order unity. Thus,

instead of Ip,Kp and their derivatives, the scaled quantities

1,(2) = —PL 1 (5) (D1a)
(z/2)P P
i:(z) = —R1— 12 (4 (D1b)
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Ro(a) = CLEE ¢ (o) | (D1c)
R = 2y (o)

are computed. Note that fﬁ,ﬁi dre not the derivatives of ip;ﬁﬁ" These'
scaled quantities are bounded as z = 0 and grow only geometrically as
P - © with z = p¢, ¢ of order umity.

The scaled modified Bessel functions of Eq. (D1) are evaluated
from the following recurrence relations14

o (2) =4_‘—‘P—(§ﬂl,-[fp._il'(.z)'m_'j—__"_.jp’('v'z)]_v,_ LTI (Dza) .

L - St
CI(z) = 2 (or1) Io41(2) + . i,(z) . - {D2c)
Ry(a) = - B g (2 + 2 R(z) . | (D24)

ane KO and Kl are  evaluated by polynomial approximation14,
Eq. (D2b) is iterated forward with p = 1,2,... wuntil the desired order
is reached. A similar iteration of Eq. (D2a) is unstable. Thus,
Eq. (D2a) is iterated backward from p = using a continued fraction

techniquels.
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€. Acceleration of Series Convergence

The series of Eq. (43)fexpresses the desired Green’'s function in
terms of the scaled modified Bessel functions. For r close tor’,
however, the terms of the series decay only as 1/[p|_sq that an
excessively large number of terms is required to obtain G b.to
sufficient accuracy.

To obtain an efficient summation technique, the asymptotic form of
the géneral term in Eq. (43) is subtracted from the general term and
the resulting difference series summed numerically. The series of the
asymptotic term is summed analytically is terﬁs'of'elementary fﬁnctions

and added to the difference series to.obtain G. -

Thus
wheré
g =7 g elPlov’) (D4a)
P
= - L (i - L VTS tog u) . - (Deb)
&g an | 000 T 5 Vi< o8 : - |
=T o — ) 3 4_
£p om (IIP|K|P| 2 VIT, ol - ] . p#0 , »(D c)

In Eq. (D4), the arguments of [,R are as in Eq. (43), o = sign p, and,

= 1/(1+h2p§)1/2 (D5a)

+3
I

=3
I

1/(1+0%r8) /7 | ~ (D5b)
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r. 1+(1+h2r§)1/2

u = exp[(1+h2r§)1/2 - (1+h2r§)1/2] , (D5¢)

rs 1+(1+h2r§)1/2

>
Il

exp f[(mﬂrﬁ)l/z - (1mPr3) R . - (D5q)

The remaining term in Eq. (D3) is the sum of the asymptotic'terms:'

. 1T - A% ulPl ip(p—¢’)
H=- - JTT —— !Pl¥¥
an VT<T> [log ud ) 2 e ]
1 —: ' . * ) ' ) . -
== VT Ty [log u — A log(l-z) — A 1 log(l—z')va:“ . (D6)

on

and the = indicates complex conjugation.

For P large, the asymptotic .expression14 for TP,Rishow that _'
.gp ~ 1/p2. Thus, the series of Eq. (D4a) 'cénvergesy suff?cientl&
rapidly that an accurate numerical sum may be evaluated using 10 to 50
terms (the required number depends on £ and the surface shgpe).

A similar - acceleration scheme is applied to the ~ series

representations for 3G/dr’', 3G/J¢p’. Thus

G )
FY =g, +H., , (D8a) .
oG .

g B THy (D8b)




where
g, =2 grp eiP(o=0’) (D9a)
= ip(p-¢’)
8 =L g,y € S | (D9b)
- L [w, — Lt (D, + D 15 -u)]' (D10a)
Erro T Tgp WMo T g Vihs Wy + Up log ’
Do + oD, + a D
1 ) A — o Ip’ T A o u
o= — - = VT_T_ A D + , p#£0 D10b
8y0 =0 o (D10c)
‘ g , =L [pi K - LT AC ulpl(a + &)] p#b . : o 4. (D104)
S¢'P T 2n pfp 7 5 VI p T T e
" In Eq. (D10) -
pfp o Tt |
W, = |k~hp | 4 o _ , (Diia)
p Kf’) , r" >r
D, = i% , o (D11b)
D, = % -52},— , (Di1c)
- -1/2 3 1/2
Dp = [1.1,]7VR « Lr r,] = (D11d)

and
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3 2 3 2
ST<—5T< k~T 3T>—5T> kTS xn

< 2me 2me
a, = - - + r — (r>T> + r<T<] . (D11e)
24 2h2 24 2h2' 2
The remaining term in Eq. (D8) are the sums of the asymptotic
terms:
1 A i
H, = - — yT_T_ {D.[1 + =% + —%—] + Dplogu
r <> W - T
4m 1-z %(1—2*) ]
. _ '* ‘4
~ (Dpe#D,+2,D, )Alog(1~2z) — (Dg-D,+a_D )\ 119g(1—z )} . (D1iRa)
. A * *
H, = VT [ Z. _ z — Aaylog(i-z) + A_la_log(l—z )] . (D1ieb)

< > — . Lo
oA ST (1-gT)

“Combining Eq.;KDS)pwith.Eq ’(7):giVes’ihé fequired“expréssionu for

’fhe.ﬁétméi giédieh£ of G:

ABV'G = gy, 4+ Hy . (D13a)
where
— 1‘1 _r_’_ 212 —_ 4 }.y
g =19 g o (14h*r )g¢, ikhr'r'g |, (D13b)
H, =r'g H, - r (1+h°r'®Y)H , - ikhr'r'H . ‘ (D13c)
r r’ »

The acceleration scheme described here is a simplification of that
described in Ref. 12 in that only terms of order Ipl"1 are added and
subtracted from +the general terms. Because of this, the accuracy

obtained when 2 given number of terms are summed ‘numérically is
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reduced. It has been found that this may be easily compensated by

~increasing the numbef of terms included by a modest amount.

3. Resolution of the Logarithmic Singﬁlarities
The construction of the series of Eqs. (D4) and (D9) assures that

g.8, are continuous at t=t'(r=r', ¢=¢’); The remainder series H,Hn,,

however, have logarithmic singularities (in addition to the )

function - singularity already. explicitly removed in Sec. ;V); After

extensive dlgebra it is found that

2A

H - - log|sin + (t=t')| ~ — 1og 22 , (D14a)
2m e o RBm o ! . o

~ (ARl B 4r (1+h2 2)(£'¢ —r’g‘o’]] S

. 2.2, S ‘
~ 2ikhr'r’ - 2L @ 14, @ , (D14b)
1+h8r ' ?
where
T = 1/(1+nfr B)V/R (D14c)

in the sense that the difference between the right— and left—hand

members of the approximate equalities tend to zero continuously as

t >t




To numerically evaluate the Fourier integrals of Eq. (65), fast

Fourier transform technique are applied to the continuous functions

o»
Il

g+H - log|sin 1 (t-t")] , v (D15a)
. 2 R _ : ,

hBrIZéY
4ﬂ(1+h2r’2)3(2

1og|sin'% (t-t*)] . (D15b)

2

gn,+Hh, +

These functions are evaluated for t =/t by the expressions of

Egs. (D4), (D6), (D9), (Di2), and (D13). For t =1t’, the right-hand

sides of Eqs. (D14) replaces the indeterminant differences_of H,Hn, and -

the logarithmic terms in Egs. (Di5).

. The desired matrix eléﬁéﬁiv

. N N y’2. ? ’
o+ =6 fo at’ e i(mm’)t r e , (D16a)

(1+nPr R)3/2

A 27T 27T _i (nt_nr t ’ ) ~
G _, =~ dt’ e G
m = gt
A en —i(n-n’)t’ ‘
- — 6 dt’ e T |, : D16b
47 fo . ( )
where
6g = log ? , (D17a)
6, = ——  nf0 .- (D17b)




4. 2—fold Symmetry

The Fourier transforms of Egs. (D16) are of the form

. : em 2 - ') —if(gt—q’t’
K =2 ap [ late e iM(t-t') omiat-a’t')g(y t0)  (D1ga)
aa’ " x /g 0 |
where
K=gq+J Ry(r,r') eiPloe’) (D18b)
) ,

The equilibrium periodicity properties

©r(t4em/e) L>‘(Di§g)

"L'(Dugbbfgﬁ

" @(t+Rm/2)
' may be used to reduce the integral of Eg{;(D1Ba) to the following:
2m en : et
K ., = lf dr [ _dr’ e~i(a=a' ") (7 10y, (DR0a)
9 =g 0 ,

where L is a compressed doubly periodic functions of T,7° with

periods 2m, 2m given by:

y . o
g Rptegp exp(i(M+£p)[¢(%) -9 (%f)]} ) . (D20b)

Note that the equilibrium periodicity properties insure that L “is a

- doubly periodic function.




For the same accuracy, the evaluation of qu, using L requires
only 1/£8 the number of R  evaluations as that using K. The
procedure of Eqs. (D20) is thus applied to the transforms éf Eqs. (D16)

with a large reduction of computations for 2 > 1.
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Figure Captions

Figure 1: Coordinates for sharp boundary calculation. r,p,z are

helical coordinates. n,t,¢ are surface coordinates.
Figure 2: Cross—section of a stable heliac configuration.

Figure 3: Eigenvalue wg .

as a function of axial wavenumber k for g = 0.0
(solid curve), 0.075 (dashed curve), and 0.15 (dotted curve) for

the heliac configuration.

Figure:4i Cross—Sectioniofjanfﬁnétable'R,= 3 COnIigurétion.'

;"5§f:Eigénvélué i&?‘*asvvaf:fﬁnciion of axial

e

‘wavenumber
='0.005 and 1=0 (dotted curve), I = BI, (solid curve), ‘end

-1 = 28I, (dashed curve) for the & = 3 configuration.

Figure 6: Eigenvalue w2 as a function of axial.wavenumber'k at g = 0.10
and 1 = 0 (dotted curve), I = B1,, (solid curve), and I = 1.1611

(dashed curve) for the & = 3 configuration.
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