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Optical magnetism and negative refraction in plasmonic metamaterials
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Abstract

In this review we describe the challenges and opportunities for creating magnetically active metamaterials in the optical part of the spectrum.
The emphasis is on the sub-wavelength periodic metamaterials whose unit cell is much smaller than the optical wavelength. The conceptual
differences between microwave and optical metamaterials are demonstrated. We also describe several theoretical techniques used for calculating
the effective parameters of plasmonic metamaterials: the effective dielectric permittivity εeff(ω) and magnetic permeability µeff(ω). Several
examples of negative permittivity and negative permeability plasmonic metamaterials are used to illustrate the theory.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A new area of electromagnetics has recently emerged:
electromagnetic metamaterials. The emergence of this new field
happened in response to the demand in materials with the
electromagnetic properties that are not available in naturally
occurring media. One of the best known properties unattainable
without significant metamaterials engineering is a negative
refractive index. The main challenge in making a negative
index metamaterial (NIM) is that both the effective dielectric
permittivity εeff and magnetic permeability µeff must be
negative [1]. Numerous applications exist for NIMs in every
spectral range, from microwave to optical. Those include
“perfect” lenses, transmission lines, antennas, electromagnetic
cloaking, and many others [2–5]. Recent theoretical [6,7] and
experimental [8] work demonstrated that for some applications
such as electromagnetic cloaking it may not even be necessary
to have a negative index: just controlling the effective magnetic
permeability suffices.

First realizations of NIMs were made in the microwave
part of the spectrum [9]. The unit cell consisted of a
metallic split-ring resonator (SRRs) [10] (responsible for the
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negative permeability µeff < 0) and a continuous thin metal
wire [11] (responsible for the negative permittivity εeff < 0).
Remarkably, even in the first microwave realizations of the NIM
its unit cell was strongly sub-wavelength: a/λ ≈ 1/7, where
a is the lattice constant and λ is the vacuum wavelength. In
fact, the condition of a � λ must be satisfied in order for
the effective description using εeff and µeff to be sensible. If
the electromagnetic structure consists of larger unit cells with
a ≥ λ/2nd , where nd is the refractive index of a substrate
onto which metallic elements are deposited (e.g. Duroid in
some of the recent microwave experiments [8]), they cannot
be described by the averaged quantities such as permittivity
and permeability. It is the high λ/a ratio that distinguishes
a true meta-material from its more common cousin, photonic
crystal [12,13].

Developing NIMs for optical frequencies, however, has
proven to be much more challenging than for microwaves.
Microwave structures can be made extremely sub-wavelength
using several standard microwave approaches to making a
sub-wavelength resonator: enhancement of the resonator’s
capacitance by making its aspect ratios (e.g., ratio of the
SRR’s radius and gap size) high, inserting high-permittivity
materials into SRR’s gap, etc. These microwave techniques are
briefly illustrated in Section 1.1 using a simple SRR shown in
Fig. 1. Simply scaling down NIMs from microwave to optical
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Fig. 1. Magnetic field distribution inside a lattice of split-ring resonators. Resonator parameters: periods ax = ay = 1.2 mm, ring size W = 0.8 mm, ring thickness
T = 80 µm, gap height H = 0.44 mm, gap width G = 80 µm. The gap is filled with a high-permittivity dielectric εd = 4. At the magnetic cutoff (µeff = 0) shown
here the vacuum wavelength λ = 1.57 cm.
wavelengths does not work for two reasons. First, to develop a
λ/10 unit cell requires much smaller (typically, another factor
10) sub-cellular features such as metallic line widths and gaps.
For λ = 1 µm that corresponds to 10 nm features which are
presently too difficult to fabricate. For example, the classic SRR
has been scaled down to λ = 3 µm, but further wavelength
reduction using the same design paradigm seems unpractical.
Second, as the metal line width approaches the typical skin
depth lsk ≈ 25 nm, metal no longer behaves as an impenetrable
perfect electric conductor (PEC). Optical fields penetrate into
the metal, and the response of the structure becomes plasmonic.

These difficulties have not deterred the researchers from
trying to fabricate and experimentally test magnetically-active
and even negative index structures in the infrared [14–17]
and even visible [18,19] spectral regions. Because fabricating
intricate metallic resonators on a nanoscale is not feasible,
much simpler magnetic resonances such as pairs of metallic
strips or wires [14,16,17] or metallic nanoposts [18] have been
used in the experiments. Unfortunately, so far there has been
no success in producing sub-wavelength magnetically-active
metamaterials in the optical range satisfying a < λ/2nd , where
nd is the refractive index of a dielectric substrate or filler
onto which magnetic materials are deposited. The reason for
this is very simple [20]: in the absence of plasmonic effects,
simple geometric resonators (such as pairs of metal strip or
wires) resonate at the wavelength λ ∼ 2nd L , where L is the
characteristic size of the resonator. In other words, “simple”
metallic resonators are not sub-λ resonators.

Fortunately, metallic resonators can be miniaturized using
plasmonic effects [20–23]. In the optical regime metals can
no longer be described as perfect electric conductors. Instead,
they are best described by a frequency-dependent plasmonic
dielectric permittivity ε(ω) ≡ ε′ + iε′′. For low-loss metals
such as silver, ε′′ � |ε′| and ε′ � −1. Therefore, there
is a significant field penetration into metallic structures that
are thinner than or comparable with the skin depth lsk =

λ/2π
√

−ε′ ≈ 25 nm. In metals ε(ω) is determined by the
Drude response of the free electron to the optical fields. When
the kinetic energy of the oscillating free electrons becomes
comparable to the energy of the electric field, one can refer
to the structure as being operated in a plasmonic regime. One
of the most serious issues in the plasmonic regime: as it turns
out, even a small amount of losses can drastically reduce the
magnetic response and prevent access to the µeff < 0 regime.

Presently, the only theoretical method of characterizing plas-
monic metamaterials is by carrying out fully electromagnetic
scattering simulations, obtaining complex transmission (t) and
reflection (r ) coefficients, and then calculating the effective pa-
rameters εeff and µeff of the metamaterial from r and t [24,25].
Such direct approach is lacking the intuitive appeal and rigor of
the earlier microwave work that provided semi-analytic expres-
sions for both εeff [11] and µeff [10]. Moreover, the extracted
parameters of a periodic structure exhibit various artifacts such
as anti-resonances [26] that make their interpretation even less
intuitive.

Recent progress has been made in rigorously calculating
the quasi-static dielectric permittivity εqs of plasmonic
nanostructures [22,23,27] exhibiting optical magnetism. In fact,
the frequency dependence of εqs(ω) of an arbitrary periodic
nanostructure can be reduced to a set of several numbers [28,
29] (frequencies and strengths of various electric dipole
resonances) that can be obtained by solving a generalized
eigenvalue equation. However, there has been a very limited
progress in calculating the magnetic permittivity of such
structures. Only for several specific structures has µeff(ω)

been calculated [30–32], usually under highly restrictive
assumptions.

It would be highly desirable if a simple formula expressing
µeff(ω) in terms of several easily computable parameters could
be derived. The increased complexity of new devices based
on magnetic metamaterials [8] further highlights the need for
such rapid and intuitive determination of µeff(ω). Simply put,
it is important to obtain rigorous expressions for µeff(ω) that
are similar in their form and complexity to those available for
εqs(ω). In addition, the formulas for εqs(ω) themselves need
further refinement. For example, when the size of a plasmonic
nanostructures becomes a sizable fraction of the wavelength (as
small as λ/6), the assumption of εeff ≈ εqs loses accuracy.
One of the reasons is that the electric dipole resonances acquire
a considerable electromagnetic red shift [33] that needs to be
accounted for. The main objective of this paper is to derive, in
the limit of a � λ, accurate formulas for εeff(ω) and µeff(ω).
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1.1. Why is optical magnetism difficult to achieve?

Before trying to understand how one can make a sub-
wavelength magnetic material in the optical part of the
spectrum, it is useful to review how magnetism is accomplished
in microwave metamaterials. Consider one of the most basic
design elements of negative index metamaterials: split ring
resonator (SRR). The particular design shown in Fig. 1 has
been recently used [8] for making an invisibility cloak. For
simplicity, we’ve simulated an infinite array of two-dimensional
(infinite in the z-direction) SRRs, with all sizes given in the
caption to Fig. 1. Metal resistivity has been neglected and
PEC boundary conditions used at the metal surface. The non-
vanishing components of the electromagnetic field are Hz , Ex ,
and Ey . The following eigenvalue equation has been solved:

−E∇ ·

(
1
ε

E∇ Hz

)
=
ω2

c2 Hz, (1)

where ε(x, y) is the spatially nonuniform dielectric permittiv-
ity. Finite Elements Frequency Domain (FEFD) code COM-
SOL Multiphysics [34] was used for solving Eq. (1).

Periodic boundary conditions have been applied to the cell
boundaries. Therefore, the calculated eigenfrequency f =

ω/2π = c/λ = 19 GHz (λ = 1.56 cm) corresponds to
the magnetic cutoff µeff( f0) = 0. Assuming that the wave
is propagating in the x-direction, the dispersion relation for
the entire propagation band can be computed by setting the
phase-shifted boundary conditions between the x = −ax/2 and
x = +ax/2 sides of the unit cell. In this particular case, the
propagation band extends from f = f0 upwards in frequency
and corresponds toµeff ≥ 0 and εeff > 0. Theµeff < 0 region is
just below f0. Because the ratio of the SRR size to wavelength
is approximately 1/20, and because its magnetic response is so
strong, it can be characterized as a sub-wavelength magnetic
resonator.

Why is this structure subwavelength? The natural resonance
frequency of a resonator scales as 1/

√
L RCR . Therefore,

its size can be reduced from its “natural” λ/2 value by
either increasing its inductance L R or capacitance CR . For
this particular design the largest increase comes from the
capacitance which is increased by a factor εd H/G ≈ 36. Note
that both the narrow gap and high permittivity of the dielectric
placed in the gap enhance the capacitance and reduce the
resonant frequency. The role of the dielectric filling is verified
by an additional numerical simulation (not shown) in which the
εd = 4 dielectric filler is removed from the gap. The resonant
frequency increases by a factor 1.8 confirming that most of
the capacitance comes from the gap region. Note that at the
resonant frequency L R〈I 2

〉 = 〈Q2
〉/CR , the average electric

and magnetic energies are equal to each other. This intuitive
result is confirmed by the numerical simulations. The fact that
the average magnetic energy constitutes a significant fraction
of the total energy (one-half) explains the strong magnetic
response of the structure. The results of this dissipation-free
simulation are not significantly affected by the finite metallic
losses because microwaves penetrate by only a fraction of a
micron into a typical metal (e.g., 0.45 µm into copper).
We now investigate if this structure can be naturally scaled
down to optical wavelengths. Because high-εd dielectrics are
not available at the optical frequencies, it is assumed that
the SRR’s gap is air-filled. Instead of using PEC boundary
conditions at the metal surface, metal is modelled as a
lossless negative-ε dielectric with ε(ω) taken from the standard
tables [35]. By scanning the value of the plasmonic ε

(physically equivalent to scanning the frequency), we have
calculated the corresponding size of the SRR that has the same
geometric proportions as the one shown in Fig. 1. Losses have
been neglected for this calculation: ε ≡ ε′. Nontrivial solutions
of Eq. (1) corresponding to the magnetic cutoff were found
only for ε < εres ≡ −330 corresponding to λ > λres ≡

3 µm for silver. As will be shown below, εres corresponds
to the electrostatic resonance of an SRR. The electrostatic
potential φ corresponding to the electrostatic resonance and the
corresponding electric field EE = −∇φ are shown in Fig. 2(a).
Magnetic field distribution for λ = 3.44 µm is presented in
Fig. 1. Clearly, magnetic field penetrates deep into the metal.
This specific wavelength has been chosen because for λ =

3.44 µm the ratio of the wavelength to the SRR’s width is the
same as for the microwave design: 1/20. One may be tempted to
assume that we’ve demonstrated a successful down-scaling (by
a factor 4400) of a NIM from microwave to optical frequencies,
and that there are no conceptual differences between the λ =

1.56 cm and λ = 3.44 µm. To see why this is not the case,
consider the implications of the plasmonic ε of metals at optical
frequencies.

For simplicity assume a collisionless Drude model for metal:
ε(ω) = εb − ω2

p/ω(ω + iγ ) with γ = 0. Then the total energy
density

Utot =

∫
Vm+Vv

d2x

(
H2

z

8π
+

EE2

8π
∂(ωε)

∂ω

)

=

∫
Vv

d2x
EE2

8π
+ εb

∫
Vm

d2x
EE2

8π
+
ω2

p

ω2

∫
Vm

d2x
EE2

8π

+

∫
Vm+Vv

d2x
H2

z

8π
, (2)

where Vv and Vm are the vacuum and metallic volumes,
respectively. The physical meaning of the four terms in Eq. (2)
is as follows: the first two terms represent the energy of the
electric field UE , the third one represents the kinetic energy Uk
of plasma electrons, and the fourth one represents the magnetic
energy Um . Because both the kinetic and magnetic energies
(with H2

z = c2/ω2
| E∇⊥ × EE |

2) scale as ω−2, these two terms
can be grouped into UL = Um + Uk . Again, at the resonance
the “capacitive” energy UE matches the “inductive” energy UL .
For the most relevant cases of |ε| � 1 the following rules
can be established for plasmonic structures: (a) most of the
capacitive energy UE resides in the vacuum region (outside of
the plasmonic material); (b) most of the magnetic energy Um
also resides in the vacuum region. Of course, the same is true for
the microwave structures. The main difference between the two
types of structures comes from the kinetic energy Uk present in
plasmonic but absent from microwave structures.
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Fig. 2. Potential distribution φ inside a lattice of (a) split-ring resonators (SRRs), (b) split rings (SRs), and (c) metal strips separated by a metal film corresponding
to electrostatic resonances responsible for the magnetic response. Arrows: EE = −∇φ. Electrostatic resonances occur at (a) εres ≡ −330 (λ = 3 µm) for SRR, (b)
εres ≡ −82 (λ = 1.5 µm) for SR, and (c) εres ≡ −8.8 (λ = 0.5 µm) assuming that the plasmonic material is silver.
It is instructive to compare the values of UE , Um , and Uk
for the plasmonic structure. From the results of the numerical
simulation shown in Fig. 1(b) it is found that UE = 0.5Utot,
Uk = 0.32Ut , and Um = 0.18Ut . As noted earlier, for
the microwave SRR UE = Um = 0.5Ut . Therefore, the
distinction between the scaled-down plasmonic structure and its
microwave counterpart is the contribution of the kinetic energy
Uk of the Drude electrons vs that of the magnetic energy Um . In
the present example, Uk exceeds Um by almost a factor 2. Thus
it is fair to say that the present structure operates in a stronly
plasmonic regime. This is quite remarkable, given that the
operating wavelength λ = 3.44 µm is fairly long. To quantify
the plasmonic effects in a magnetic structure, we introduce
the plasmonic parameter Tp = Uk/Um . The structure can be
said to operate in a strongly plasmonic regime when T > 1.
Plasmonic SRR can be made even more sub-wavelength by
reducing the operating wavelength to λ = λres. Of course, this
happens at the expense of the magnetic energy: the plasmonic
parameter Tp diverges as the structure shrinks and the operating
wavelength approaches that of the electrostatic resonance. At
the electrostatic resonance Tp = ∞ and UE = Uk . The analogy
between the plasmonic energy and inductance energy has been
suggested earlier [36].

The importance of having a reasonably small plasmonic
parameter for making a magnetic resonator becomes apparent
when losses are taken into account. Achieving µeff = 0
(qualitative threshold for a strong magnetic response) sets a
threshold for the magnetic energy Um in the resonator. The total
energy Utot = 2(1 + Tp)Um increases with Tp. This reduces
the group velocity of the propagating mode, with the effect
of narrowing the propagation band. Even small losses tend to
destroy such bands. To get a qualitative estimate of the role of
resistive losses we assume a finite γ in the Drude model. The
group velocity can be roughly estimated as vg/c ∼ Um/Ut .
The propagation band is assumed to be destroyed by losses if
the transit time across a single cell is longer than the decay time
γ−1, or ax/vg > γ−1. This results in the following condition
for achieving optical magnetism in a lossy system:

γ

ω
≈
ε′′

ε′
<
[ωax

c

(
1 + Tp

)]−1
. (3)

This condition is trivially satisfied for any sub-wavelength
structure as long as Tp is of order unity. It becomes increasingly
difficult to satisfy for the structures operated in a strongly
plasmonic regime as will be shown below. Note that in the
absence of losses strong magnetic response of a sub-wavelength
SRR can be achieved for any λ > λres.

Several instructive conclusions can be drawn from the above
examples of the large (microwave) and small (mid-infrared)
rings. First, for given geometry of the unit cell there exists the
shortest wavelength λres for which a strong magnetic response
is expected. This wavelength corresponds to the electrostatic
resonance of the structure, and for the SRR geometry shown in
Fig. 1 λres = 3 µm. Strong optical response can be obtained
for any λ > λres, with the actual dimensions of the ring
adjusted accordingly. The positive result here is that even for
a very sub-wavelength ring (λ/20) the plasmonic parameter
Tp ≈ 2 is modest and, therefore, finite losses are not affecting
the magnetic response. The negative result is that the standard
SRR design cannot be used for obtaining magnetic response



212 Y.A. Urzhumov, G. Shvets / Solid State Communications 146 (2008) 208–220
for visible/near-infrared frequencies because the electrostatic
resonance occurs in mid-infrared.

The rule of thumb is that the more elaborate is the design
of the plasmonic structure, the longer is the wavelength of the
electrostatic resonance. For example, for a simplified version
of the SRR (no vertical capacitor-forming strips, similar to the
one used earlier [37]) it is found that the electrostatic resonance
occurs at λres = 1.5 µm (corresponding εres = −82). The
electrostatic potential φ and the corresponding electric field
EE = −∇φ are shown in Fig. 2(b). Using a typical dielectric
substrate or a filler with εd = 2.25 would reduce the resonant
permittivity to εres = −186 (corresponding to λres = 2.25 µm
for Ag). At the same time, this design simplification comes at
a cost: for very long wavelengths (microwave) such split ring
(SR) is only moderately sub-wavelength, with λ/W = 5.2.
Again, using a filler with εd = 2.25 would result in λ/W = 7.8.
If a more sub-wavelength resonator is required, one needs to
operate in the vicinity of λres. The drawback of operating too
close to λres is a high plasmonic parameter Tp and, therefore,
susceptibility to resistive losses.

Of course, the structure can be simplified even further:
from a split ring to a pair of metal strips [15,20] or a
pair of metal strips separated by a thin metal film [27].
The advantage of this structural simplification is that the
magnetically-active plasmonic resonance is pushed even further
into the visible/near-infrared part of the spectrum: λres =

0.5 µm without a dielectric filler and λres = 0.7 µm with the
εd = 2.25 filler. The potential distribution for the Strip Pair-
One Film (SPOF) structure is shown in Fig. 2(c). Because of the
promise of the SPOF for NIM development, we have scaled the
structure in nanometers. Of course, the results of electrostatic
simulations can be plotted with an arbitrary spatial scale (as
was done in Fig. 2((a), (b)) because there is no spatial scale
in electrostatics. In the PEC limit (long wavelength) the ratio
of the wavelength to period was found to be λ/ax = 1.85
at the magnetic cutoff for the SPOF structure without a filler,
and λ/ax = 2.8 with the εd = 2.25 filler. Therefore, the
SPOF structure presents a unique opportunity for developing a
strongly sub-wavelength (λ/10 − λ/6) optical (visible to near-
IR) NIM. As was recently shown [27], the addition of a thin
film modifies the electric response of the double-strip structure
and turns this magnetically-active metamaterial into a true sub-
wavelength (ax = λ/6) NIM. The simple qualitative remarks
presented above explain why. Note that no optical NIM with
the cell size smaller that λ/2.5 has ever been experimentally
demonstrated [14–17].

We summarize this section by noting that optical magnetic
resonators are conceptually very different from their microwave
counterparts. Intricate designs of microwave resonators (such
as SRRs) are simply inappropriate for optical frequencies
because they lose their strong response for λ < λres. This is
a rigorous quantitative result: for a given resonator geometry,
there is no strong magnetic response for the wavelengths shorter
than the one corresponding to the electrostatic resonance.
λres enters the electrostatic theory parametrically, through the
dependence of the metal’s dielectric permittivity: ε(λ) <

εres ≡ ε(λres) is necessary for the strong response. Because
intricate SRR designs correspond to extremely large negative
values of εres, they do not exhibit a strong magnetic response
in the visible/near-infrared parts of the spectrum. Therefore,
the transition from SRRs (see Fig. 2(a)) to simple pairs of
strips (see Fig. 2(c)) is not just a matter of fabricational
convenience: it is physically necessary for making optical
NIMs. The price one pays for using the simplified structures is
that they are no longer sub-wavelength for λ � λres. Therefore,
one is forced to operate close to λres. The price for that is
the significant plasmonic effects that enhance the plasmonic
parameter Tp and make the bandwidth of the magnetic response
very narrow. That makes these near-resonant structures highly
susceptible to losses according to Eq. (3). Thus, plasmonic
effects play two roles in optical magnetism. Their positive role
is in turning simple metallic structures into sub-wavelength
resonators. Their negative role is in enhancing the effects of
losses.

Thus, the role of an optical NIM designer is to choose
a structure that (a) has a λres in the visble/mid-IR, and
(b) is sufficiently sub-wavelength in the PEC limit (long λ)
that the structure does not need to be operated too close
to λres. The electrostatic resonance at λres is the natural
starting point for computing the optical response of the sub-
wavelength metamaterial. In the rest of the paper we present
an analytic perturbation theory of the electric and magnetic
responses of a plasmonic nanostructure in the optical frequency
range that uses the electrostatic resonances as the expansion
set. Section 2 describes several techniques of calculating the
effective dielectric permittivity εeff(ω) ≈ εqs(ω) in the quasi-
static regime. Section 3 describes the quasi-static calculation of
the effective magnetic permeability µeff(ω).

2. Effective quasi-static dielectric permittivity of a plas-
monic metamaterial

Several theoretical techniques are available for calculating
εqs(ω) of plasmonic nanostructures: (a) the “capacitor”
approach described in Section 2.1: voltage is imposed
across the unit cell of a structure, and the effective
capacitance is evaluated; (b) the method of homogenizing
electrostatic equations using a multi-scale expansion described
in Section 2.2, with the two independent spatial variables: the
intra-cell (small scale) variable Eξ and the inter-cell (large scale)
variable EX ; (c) and the method of electrostatic eigenvalues, and
its extension to plasmonic structures with continuous plasmonic
phase described in Section 2.3.

2.1. The “capacitor” model

The most simple and intuitive method of introducing
the effective dielectric permittivity of a complex periodic
plasmonic metamaterial is to imagine what happens when a
single cell of such structure is immersed in a uniform electric
field. For simplicity, all calculations in Section 2 will be
limited to a two-dimensional case, i.e. the system is assumed
uniform along the z-axis; generalizations to three dimensions
are straightforward. To further simplify our calculations, it
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will be assumed that the unit cell is a rectangle of the
size ax × ay in the xy plane: −ax/2 < x < ax/2 and
−ay/2 < y < ay/2. The unit cell is assumed to consist
of a plasmonic inclusion with a complex frequency-dependent
dielectric permittivity ε(ω) embedded into a dielectric host with
the dielectric permittivity εd . The plasmonic inclusion may
intersect the unit cell’s boundary. We assume that the structure
has an inversion symmetry and two axes of reflection (x and y).
In that case the effective permittivity tensor is diagonal: εqs =

diag(εxx
qs , ε

yy
qs ).

Applying a constant electric field EE0 = Eex E0x + Eey E0y
is equivalent to solving the Poisson equation for the potential
φ ≡ φ EE0

:

E∇ · (ε E∇φ) = 0 (4)

on a rectangular domain ABC D (where AB and C D are
parallel to y, BC and AD are parallel to x). The external
electric field EE0 determines the boundary conditions satisfied
by φ: (a) φ(x + ax , y) = φ(x, y) − E0x ax , where (x, y)
belongs to AB, and (b) φ(x, y + ay) = φ(x, y) − E0yay ,
where (x, y) belongs to AD. We now view the unit cell of a
metamaterial as a tiny capacitor immersed in a uniform electric
field which is created by the voltage applied between its plates.
For calculating εxx

qs assume that the voltage V0 = E0x ax is
applied between its sides AB and C D, and that E0y = 0. From
the potential distribution φ(x, y) the required surface charge
density on the “capacitor plate” AB is σ(y) = (En · ED) =

−εd∂xφ(x = −ax/2, y). The total charge (per unit length in z)

on the capacitor is Q =
∫ +ay/2
−ay/2

dyσ(y). The opposite capacitor
plate C D is oppositely charged. The unit length capacitance of
this capacitor, C ≡ εxx

qs ay/ax is thus given by C = Q/V0, or

εxx
qs = −

εdax

E0ay

∫
+ay/2

−ay/2
dy∂xφ(x = −ax/2, y)

≡

a−1
y

∫ ay/2
−ay/2

dy Dx (x = −ax/2, y)

a−1
x
∫ ax/2
−ax/2

dx Ex (x, y = −ay/2)
. (5)

The ε yy
qs component is determined similarly by applying the

voltage V0 = E0yay between the capacitor plates AD
and BC . Both εxx

qs and ε
yy
qs depend parametrically on the

frequency ω because of the ε(ω) dependence of the plasmonic
permittivity. Therefore, extracting the frequency-dependent
components of εqs tensor involves scanning the frequency ω,
repeatedly solving (4) with the described boundary conditions,
and applying the capacitance-based definition of εqs given by
Eq. (5). We refer to this technique of extracting the electrostatic
εeff-tensor as the “frequency scan” technique. As it turns out,
there is a faster and more physically appealing approach to
calculating ε

i j
eff(ω), described in Section 2.3. Note that the

definition of the effective permittivity given by Eq. (5) is
equivalent to the one introduced earlier by Pendry et al. in [10]
which was derived [38] from the integral form of Maxwell’s
equations.

The capacitor model can be shown to be equivalent to
another intuitive definition of εqs based on the dipole moment
density. The total dipole moment of a unit cell Ep =
∫

dxdy EP
(where EP =

ε−1
4π

EE is the polarization density) is linearly
proportional to the external electric field EE0. In a homogeneous

medium with anisotropic pi =
1

4π

(
ε

i j
qs − δi j

)
E0 j ax ay , where

ε
i j
qs is the effective permittivity tensor. Therefore, εqs can be

defined by requiring that

ax ay(ε
i j
qs − δi j )E0 j ≡

∫
dxdy(ε − 1)Ei . (6)

Because
∫

dxdyEi = ax ay E0i , this dipole density definition of
εqs simplifies to

ax ayε
i j
qs E (k)0 j ≡

∫
dxdy D(k)

i =

∫
dxdyεE (k)i , (7)

where the external field E (k)0 j ≡ E0δ jk applied to the unit cell

produces the total internal field EE (k), and k = 1, 2. The internal
electric fields are computed by solving Eq. (4) subject to its
EE (k)0 -dependent boundary conditions. Eq. (7) is equivalent to
the capacitance-based definitions of εqs given by Eq. (5). Owing
to an identity

∫
dxdy Di =

∮
dsxi ( ED · En), where En is the unit

normal to the closed contour of integration (unit cell boundary),
Eq. (7) is expressed through a contour integral of the first kind:

ε
i j
qs E (k)0 j =

1
ax ay

∮
dsxi ( ED(k)

· En). (8)

This contour integral indeed reduces to the surface charge
on the capacitor plates. For example, for x-polarized external
field (k = 1) we obtain

∮
dsx( ED · En) = (−ax/2)(−Q) +

(ax/2)Q = ax Q, thereby completing the proof of equivalence
between definitions (5) and (6). All formulas of this Section can
be generalized to 3D. Also, note that Eq. (8) can be used for
determining all (diagonal and off-diagonal) elements of tensor
εqs of an arbitrary nanostructure (with or without inversion
symmetry of a unit cell), because the number of unknown
components of εqs is equal to the number of equations.

2.2. Effective medium description through electrostatic homog-
enization

While the capacitance model developed in Section 2.1 is
simple and intuitive, it needs to be justified in the context of
the rigorous homogenization theory. In this section we review
a multi-scale approach [39,40] to calculating the effective
permittivity of a metamaterial and show its equivalence with the
capacitance model. Also known as the homogenization theory
of differential operators with periodic coefficients [39,40], it
is the most vigorous approach to homogenizing a periodic
metamaterial with a unit cell size a being much smaller than
that of the typical variation scale Λ of the dominant electrostatic
potential Φ. As in the previous sections, the key assumption
leading to the electrostatic approximation is that ωa/c �

ωΛ/c � 1. Under this set of assumptions, the frequency ω
enters only as a parameter determining the plasmonic dielectric
permittivity ε(ω). The basis of the method is the two-scale
expansion. Let EX be the macroscopic coordinates enumerating
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the cells (large spatial scale Λ), and Eξ the local coordinates
inside the unit cell (small spatial scale a). The potential φ( EX , Eξ)
and the local permittivity ε(Eξ) are periodic in Eξ ; the latter can
be restricted to one cell.

Using τ = a/Λ as the small parameter, we expand
φ(x) = φ0(X, ξ) + τφ1(X, ξ) + τ 2φ2(X, ξ) + O(τ 3)

and use ∇x = ∇ξ + τ∇X to solve the Laplace equation
∇xε(x)∇xφ(x) = 0 order-by-order in τ . The goal of
homogenization theory is to show that there exists a
macroscopic potential φmacro(X) that obeys Laplace–Poisson
equation in a certain homogeneous, possibly anisotropic,
medium. In doing so, both the rigorous definitions of φmacro(X)
and εi j

eff are discovered. This goal is achieved by expanding
Poisson equation in powers of τ . Terms with different powers
of τ must vanish independently, resulting in three equations:

∇ξ ε(ξ)∇ξφ0(X, ξ) = 0, (9)

∇ξ ε(ξ)∇ξφ1(X, ξ) = −
(
∇ξ ε(ξ)+ ε(ξ)∇ξ

)
∇Xφ0(X, ξ), (10)

∇Xε(ξ)∇Xφ0(X, ξ)+
(
ε(ξ)∇ξ + ∇ξ ε(ξ)

)
∇Xφ1(X, ξ)

+ ∇ξ ε(ξ)∇ξφ2(X, ξ) = 0. (11)

Eq. (9) is satisfied by φ0(X, ξ) ≡ φ0(X), where the role of
the macroscopic potential is played by φ0(X). Next, φ1(X, ξ)
is expressed through the macroscopic gradients of φ0:

φ1(X, ξ) = −
∂φ0(X)

∂X i
φ(i)sc (ξ), (12)

where φ(i)sc (ξ) (i = 1, 2 in 2D) are periodic basis functions
satisfying the local Poisson equation:

E∇ξ · ε(ξ) E∇ξφ
(i)
sc (ξ) =

(
E∇ξ ε(ξ)

)
· Eei , (13)

where Eei is the i th basis vector of Cartesian coordinate
system. Note that the periodic potentials φ

(i)
sc are linearly

related to the φ EE0
defined by Eq. (4) through φ EE0

≡(
E0iφ

(i)
sc (ξ)− EE0 · Eξ

)
/| EE0|. The difference between Eqs. (13)

and (4) is that the macroscopic electric field EE0 ≡ −E∇Xφ0
is explicitly included in the rhs in (13) and embedded in the
boundary conditions in (4).

Finally, the macroscopic equation for φ0(X) is obtained
by substituting φ1 from Eq. (12) into Eq. (11) and averaging
over the local variable ξ : ∇X i ε

i j
qs∇X jφmacro(X) = 0, where

φmacro(X) ≡ φ0(X) ≡ 〈φ(X, ξ)〉 and

ε
i j
qs = 〈ε(ξ)δi j − ε(ξ)∇ξiφ

( j)
sc (ξ)〉

≡ 〈ε(ξ)∇ξi (ξ j − φ
( j)
sc (ξ))〉; (14)

angle brackets denote averaging over the unit cell, 〈F〉 ≡∫
Fd2ξ/

∫
d2ξ . It can be shown that this definition of εqs

is equivalent to the one obtained from the capacitor model.
Indeed, note that EE (i)(ξ) = E∇ξ (−φ

(i)
sc (ξ) + ξi ) is the total

electric field excited by external electric field EE0 = Eei with
the unit amplitude. Therefore, Eq. (14) is equivalent to εi j

qs =

〈ε(ξ)E ( j)
i (ξ)〉, in exact agreement with Eq. (7).
2.3. Eigenvalue expansion approach

The frequency scan technique described in Section 2.1
is a simple yet time consuming approach to calculating
the quasistatic response of sub-wavelength metamaterials.
Electrostatic eigenvalue (EE) approach [22,28,41] enables
calculate this response for a wide range of frequencies by
evaluating the position and strength of the electric dipole
active plasmonic resonances in that range. As we shall see
from examples below, there are only a few eigenmodes that
contribute to εqs, making the EE approach extremely efficient.
Additional theoretical insights (such as the Hermitian nature
of εqs that is not evident from Eq. (7)) can be gained from
the EE approach. In addition to reviewing some of the known
facts about the EE approach [28,29,41] to calculating εqs, we
extend the original theory of plasmon resonances to include
plasmonic metamaterials with continuous plasmonic phase.
Such structures have become increasingly important in the field
of negative index materials (NIMs) since the introduction of
the so-called fishnet structure [14,17], as well as the SPOF
structure [27].

One way of obtaining eigenvalue expansions is the
generalized eigenvalue differential equation (GEDE) [22,41].
Another, essentially equivalent, method is based on a surface
integral eigenvalue equation [33,42]. The steps of the GEDE
approach are briefly described here, with the details appearing
elsewhere [22,23]. We assume that a periodic nanostructure
consists of two dielectric, non-magnetic materials: one with
a frequency-dependent permittivity ε(ω) < 0 and another
with permittivity εd . Local permittivity of such a structure

is ε(Er , ω) = εd

[
1 −

1
s(ω)θ(Er)

]
, where θ(Er) = 1 inside the

plasmonic material and θ(Er) = 0 elsewhere, and s(ω) =

(1 − ε(ω)/εd)
−1 is the frequency label.

First, the GEDE

E∇ ·

[
θ(Er) E∇φn

]
= sn∇

2φn (15)

is solved for the real eigenvalues sn . Spectral properties of the
GEDE are discussed in detail in [29,41] and references therein.
Second, the solution of Eq. (4) is expressed as an eigenmode
expansion [41]

φ(Er) = φ0(Er)+

∑
n

sn

s(ω)− sn

(φn, φ0)

(φn, φn)
φn(Er), (16)

where the scalar product is defined as (φ, ψ) =
∫

dxdyθ E∇φ∗
·

E∇ψ , and φ0 = −E0x represents x-polarized external field.
Third, the quasistatic permittivity is calculated by substituting
φ(Er) from Eq. (16) into any of the equivalent definitions of
εqs. For example, the dipole moment definition (6) leads to the
following analytical expression for εqs:

ε
i j
qs(ω) = εd

(
δi j −

f i j
0

s(ω)
−

∑
n>0

f i j
n

s(ω)− sn

)
, (17)

where f i j
n = A−1(φn, xi )(φn, x j )/(φn, φn) are the electric

dipole strengths of the nth resonance,
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f i j
0 = (Ap/A)δi j −

∑
n>0

f i j
n (18)

is the measure of the electric response of the continuous plasma
phase, and Ap =

∫
dxdyθ(Er) is the area of the plasmonic phase

contained within the area A = ax ay of a unit cell. From the

expression for f i j
n we note that only dipole-active resonances

having a non-vanishing dipole moment (φn, x j ) contribute
to the dielectric permittivity. Examples of such resonances
are shown in Fig. 2((a),(b)) for the SRR and SR. But the
electrostatic resonance of the SPOF structure shown in Fig. 2(c)
is not dipole-active. It does not contribute to εqs but, as will be
shown in Section 3.1, contributes to the magnetic permeability.

Application of the equivalent capacitance definition given by
Eq. (8) leads to the same Eq. (17) with the same f i j

n . However
f i j
0 is obtained in a different (and more instructive) form:

f i j
0 = q i j

−
1
A

∑
n

(φn, x j )

(φn, φn)

∮
dsθxi

∂φn

∂n
, (19)

where ∂/∂n is the normal derivative, q i j
=

1
A

∮
dsθxi

∂x j
∂n ,

and contour integration is carried out over the boundary of a
unit cell. Note that, if there is no continuous plasmonic phase
inside the unit cell of a nanostructure, its boundaries can be
chosen such that they are not intersected by the plasmonic
inclusion and, therefore, f i j

0 ≡ 0. Combining Eqs. (18) and
(19) results in a generalized sum rule for plasmonic oscillators
in nanostructures that contain a continuous plasmonic phase.

To illustrate this method, we chose the two-dimensional
SPOF [27] shown in Fig. 2(c). The real and imaginary parts
of the yy-component of εqs corresponding to electric field
along the film are plotted as dashed and dash-dotted lines
on Fig. 3, respectively. The green and black dashed lines
show Re ε yy

qs with and without the retardation correction to
the frequency of the plasmon resonances. It is generally
known [33] that frequencies of the optical resonances of finite-
sized nanoparticles (with the typical spatial dimension w)
are red-shifted from their electrostatic values because of the
retardation effects proportional to η2

≡ ω2w2/c2. As shown
in Section 3.2, these shifts can be expressed as corrections to
the frequency labels sn : sn = s(0)n + s(2)n , where s(0)n are the
electrostatic resonances and s(2)n are the retardation corrections
computed in Section 3.2. To obtain any meaningful comparison
between the electromagnetically-extracted values of εeff and the
electrostatic εqs, these corrections must be included even for the
structures as small as λ/10.

In the chosen range of frequencies, there are only two dipolar
resonances that contribute to ε yy ; quasistatic curves in Fig. 3
are computed from the Eq. (17) with the following numerical
coefficients: conduction pole residue f yy

0 = 0.043, electric
resonance strengths f yy

1 = 0.0045, f yy
2 = 0.0005, and pole

positions sn = s(0)n + s(2)n with s(0)1 = 0.0426, s(0)2 = 0.1630

and s(2)1 = −0.007, s(2)2 = −0.004. The other component
of εqs has no resonances between λ = 500 − 800 nm and
remains approximately constant, εxx

qs ≈ 1.2 in the frequency
range covered by Fig. 3. Quasistatic calculations of ε yy

qs are
Fig. 3. (Color online) Effective dielectric permittivity ε
yy
eff of the SPOF

structure (with the film in yz plane) calculated using two methods:
electromagnetic scattering through a single layer (solid and dotted curves), and
quasi-static formula (17) (dashed and dash-dotted). Red-shifted green dashed
curve differs from the black dashed one by the frequency shift (32) discussed
in Section 3.2. Structure parameters: periods ax = 100 nm, ay = 75 nm, strip
width w = 50 nm, strip thickness ts = 15 nm, film thickness d f = 5 nm, strip
separation in a pair h = 15 nm; plasmonic component: silver (Drude model);
immersion medium: εd = 1.

compared with the εem ≡ εeff extracted from the first-principles
electromagnetic scattering simulations [24–26] of a single layer
of SPOF. Electromagnetic simulations are performed using
FEFD method implemented in the software package COMSOL
Multiphysics [34]. Overall, agreement between εem and εqs is
very good everywhere except near the strong absorption line
associated with electric resonance at ≈ 700 nm. Inside that
band (680–720 nm) the shape of εem strongly deviates from
Lorentzian. We speculate that this irregularity of εem is related

to the large phase shift per cell θ ≡ kx ax = Re [

√
ε

yy
eff ]ωax/c

neglected in the quasi-static approximation based on periodic
electrostatic potentials. More accurate description of εeff should
include spatial dispersion [43]. Development of an adequate
theory of this phenomenon in plasmonic crystals is under
way.

3. Perturbation theory of optical response of plasmonic
nanostructures

In Section 2 we have described several theoretical
approaches to calculating εeff ≈ εqs for sub-wavelength
nanostructures. A much more challenging problem is attacked
in this Section: computing the magnetic permeability µeff(ω).
One of the intriguing results is that µeff(ω) can be strongly
dependent on the propagation direction for low-symmetry
structures such as the recently described metal strip pairs and
SPOFs [20,27,44].

3.1. From electrostatics to optical magnetism

In this section, we present a sketch of a perturbation
theory that uses electrostatic plasmon eigenfunctions, which
are known to provide a complete orthogonal basis in
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the appropriate linear space [29,41], as the starting point.
Unlike earlier two-dimensional treatments [45], this theory is
applicable to both two- and three-dimensional structures. In
this section, calculations are presented for three-dimensional
plasmonic crystals; expressions for two-dimensional crystals
are derived by replacing the measure of integration dV →

azdxdy, where az is an arbitrary “period” in the z-direction,
which can be set to a unit length. The expansion parameter
of this theory is the dimensionless retardation parameter
η = ωa/c. The goal of this Section is to obtain a self-
consistent analytic expression for µeff of a periodic plasmonic
nanostructure in the form of an eigenmode expansion.

In conventional atomic crystals, low-frequency magnetism
stems mostly from internal and orbital magnetic moments
of electrons. In dielectric structures, including plasmonic
metamaterials, magnetism originates from polarization and
conduction currents; total local current equals Ej = −iω(ε −

1) EE/4π where the local complex permittivity ε also contains
conductivity. These currents determine both εeff and µeff;
their contributions to these parameters can be determined
unambiguously by splitting the total local current into “electric”
and “magnetic” parts: Ej = EjE + EjM . The electric dipole
moment of a unit cell is defined as Ep =

∫
dV EPE , where

EPE = i/ω EjE ; effective permittivity is defined by expression

pi = V
(
ε

i j
eff − δi j

)
E0 j/4π , where V is the volume of

a unit cell. Splitting of the local current into EjE and EjM
becomes unambiguous, if we require that EjM do not contribute
to the electric dipole moment Ep, i.e. 〈 EjM 〉 ≡

∫
dV EjM =

0. The effective magnetic permeability µeff is defined by a

similar expression, mi = V
(
µ

i j
eff − δi j

)
H0 j/4π , in which

the magnetic dipole moment is calculated as Em =
∫

dV EM ,
where EM =

1
2c [Er × EjM ] is the magnetic polarization density.

Optical magnetism appears in the ω2 order of this perturbation
theory [20,32]. Since EjM already has one factor of ω, to
determine µeff in the lowest order it suffices to calculate EE with
the first-order electromagnetic corrections.

To isolate the role of electrostatic resonances, it is convenient
to decompose electric and magnetic fields into “incident” and
“scattered”, i.e. EE = EEin + EEsc and EH = EHin + EHsc,
such that EEsc and EHsc vanish in a homogeneous structure.
To achieve this, we use the plane wave ansatz: EEin =

EE0eiEk·Er and EHin = EH0eiEk·Er . After the effective medium
parameters εeff and µeff are expressed through Ek, we use
the dispersion relation of transverse waves in a homogenized
medium: k =

√
εeff

√
µeffω/c to determine εeff(ω) and µeff(ω).

This calculation is reminiscent of the Maxwell Garnett (MG)
effective medium theory, where individual particles to be
homogenized are assumed to be immersed inside an effective
medium with some unknown (and self-consistently determined)
εeff and µeff. To simplify the calculation, we assume that Ek ‖ x̂ ,
EE0 ‖ ŷ and EH0 ‖ ẑ. Therefore, µeff ≡ µzz

eff. Additionally,
because the incident fields satisfy Maxwell’s equations in the
homogenized medium, we have EH0 = Z−1

e [Enk × EE0], where
Ze =

√
µeff/

√
εeff is effective impedance and Enk = Ek/|Ek| is the

direction of the phase velocity.
Before proceeding to calculating the magnetic moment, note
that the requirement 〈 EjM 〉 = 0 is satisfied with the following
decomposition of currents: EjE = −iω(εeff − 1) EE/(4π),
EjM = −iω(ε − εeff) EE/(4π), as long as εeff satisfies equality
εeff

∫
dV EE =

∫
dV ε EE . One can verify that this definition of

εeff is the same as the one given by the total electric dipole
moment of a unit cell, because 〈 Ej〉 = 〈 EjE 〉. Moreover, εeff =

εqs + O(η2), where εqs is given by Eq. (17).
The scattered electric field EEsc is decomposed into the

potential and solenoidal parts, EEsc = EEpot + EEsol = −E∇Φsc +

ik0 EAsc, where E∇· EAsc = 0 and k0 ≡ ω/c. Note that EAsc is related
to the scattered magnetic field: EHsc = (µeff − 1) EHin + E∇ × EAsc.
It can be demonstrated EAsc is first order in η, making the
contribution of EAsc to EEsc second order in η. Therefore, the
lowest-order (η2) expression for µeff − 1 can be found without
directly computing EAsc or magnetic fields.

The potential part of EEsc is determined from E∇ · ED = 0,
resulting in

E∇ε EEpot = −E∇ε EEin − E∇ε EEsol ≡ −

(
EEin + ik0 EAsc

)
· E∇ε, (20)

where k0 EAsc can be neglected to order η2. For completeness,
we note that EAsc is computed, to the lowest order in η, as

−∇
2 EAsc − ik0ε E∇Φ(0)

sc = ik0(εqs − ε) EEin . (21)

Using the approach similar to the one taken in Ref. [45],
Φsc is expanded as Φsc(X, x) =

∑
n cn(X)φn(x), where φn

are electrostatic eigenfunctions of the GEDE with periodic
boundary conditions. Function Φsc(X, x) is periodic in the
“local” coordinate x and depends upon the “macroscopic”
coordinate X as the macroscopic fields, i.e. ∝ eik X under
assumptions of our ansatz. This eigenmode expansion is
justified because the full set of φn(x) functions is a complete
basis in the space of periodic solutions to Laplace equation [46].
The coupling coefficient cn between EEin(X, x) = EE0eik X eikx

and the nth plasmon eigenmode are found by applying the EE
approach described in Section 2.3 to Eq. (20):

cn = −
sn

s(ω)− sn

∫
( E∇φn) EEinθdV∫
(∇φn)2θdV

+ O(η2). (22)

Coefficients cn(X) = cn(0)eik X absorb the phase shift per
cell; it is sufficient to calculate them in the very first cell, i.e. at
X = 0. Expanding the plane wave EEin = EE0eikx in the powers
of k up to the first order, we obtain cn = c(0)n + c(1)n , where

c(m)n = −
1

m!
(i
√
εeff

√
µeffk0)

m sn

s(ω)− sn

EE0

×

∫
( E∇φn)xmθdV∫
(∇φn)2θdV

, m = 0, 1. (23)

The scattered field EEsc is now used to calculate mz and,
consequently, µeff. For simplicity, we assume that the structure
has a center of inversion that coincides with the center of
mass of a unit cell. Choosing it as the origin of coordinate
system, we have 〈Erθ〉 = 0 and 〈Er〉 = 0. This eliminates
the term

∫
(ε − 1)Er × EE0dV , and also guarantees that the
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dipole eigenmodes φn in Φsc excited by uniform field EE0 do
not carry magnetic moment, as explained below. Under these
assumptions, µeff − 1 ∝ k2

0 . The currents excited directly by
EEin produce a diamagnetic contribution to µeff:

∆µdiam =
k2

0µeff

2V

[
(εd − εeff)

∫
x2dV −

εd

s

∫
x2θdV

]
, (24)

where V is the volume of a unit cell. Quasistatic currents due to
EEsc ≈ −E∇Φsc give the plasmon resonance part of the magnetic
permeability:

∆µplasm = −k2
0εdµeff

∑
n

F zz
n

s(ω)− sn
+ k2

0εdµeff
1
s

∑
n

K zz
n ,

(25)

where

F zz
n = K zz

n + (εeff/εd − 1)Gzz
n (26)

is the magnetic strength of nth resonance,

K zz
n =

1
2

∫ (
x ∂φn
∂y θ

)
dV

∫
(Eez · [Er × ∇φn]θ) dV

V
∫
(∇φn)2θdV

and Gzz
n =

1
2

∫ (
x ∂φn
∂y θ

)
dV

∫
(Eez · [Er × ∇φn]) dV

V
∫
(∇φn)2θdV

.

Finally, permeability is determined from µeff − 1 =

∆µdiam + ∆µplasm:

1 −
1
µzz

eff
= µzz

d − k2
0εd

F zz
0

s(ω)
− k2

0εd

∑
n

F zz
n

s(ω)− sn
, (27)

where µzz
d = k2

0(εd − εeff)〈
x2

2 〉 and F zz
0 =

(
〈

x2

2 θ〉 −
∑

n K zz
n

)
.

Here the sum over electrostatic resonances possessing a finite
magnetic moment

∫
(Eez · [Er × (ε − εeff)∇φn]) dV represents

the resonant contribution to magnetic permeability, while the
term proportional to F zz

0 represents the expulsion of the
magnetic field from the plasmonic inclusion. Eq. (27) can be
generalized for an arbitrary propagation direction Ek.

Eq. (27) should be used with caution at very large negative
dielectric contrasts, i.e. when 0 < s(ω) � 1. In this regime,
plasmonic inclusions behave as good conductors. Expulsion
of magnetic field from plasmonic phase becomes so strong,
that, in fact, scattered magnetic field EHsc is nearly equal in
magnitude (and opposite in sign) to the incident magnetic field
EHin . Present theory treats EHsc as perturbation and is therefore

inaccurate in this regime. This limitation manifests in Eq. (27)
as an unphysical pole at s = 0. Its origin can be seen from Mie
theory of a dielectric sphere.

For a sphere, all plasmon resonances have zero magnetic
strength, F zz

n = 0, and F zz
0 = 〈

x2

2 θ〉 =
1

30 4πR5/V , where
V � R3 is the volume of a very large domain in which a
sphere is contained. Our formula (27) gives 1 − 1/µeff ≈

µeff − 1 ≡ 4πχM/V = −k2
0 F zz

0 /s(ω), where χM is the
magnetic polarizability of a plasmonic sphere. For εd = 1 we
obtain χM/R3

=
1

30 (ε−1)(k0 R)2. The exact Mie result for the
magnetic polarizability of a sphere is

χM

R3 =
3ie−iη

2η3

×
cos η sin mη −

1
m cos mη sin η − (1 −

1
m2 ) sin η sin mη/η

sin mη +
i

m cos mη + i(1 −
1

m2 ) sin mη/η
,

(28)

where η = k0 R and m2
= ε(ω). Eq. (28) can be simplified in

two limiting cases: (a) η � 1 and arbitrary m, and (b) |m2
| � 1

and arbitrary η. The former expansion results in

χ
(a)
M /R3

=
1

30
(m2

− 1)η2
+ O(η4), (29)

in agreement with Eq. (27). The latter expansion results in

χ
(b)
M

R3 =
3ie−iη(η cos η − sin η)

2η3(η + i)
. (30)

For k0 R → 0 we recover the textbook result for magnetization
of a perfectly conducting small sphere: χ (b)M = −1/2R3.

Therefore, χ (a)M overestimates the magnetic polarizability of the
sphere whenever η � 1 but |mη| > 1. The quasi-static theory
developed here suffers from the same limitation. Nevertheless,
the analytic expression for the effective magnetic permeability
µeff(ω) of a plasmonic nanostructure given by Eq. (27) answers
several fundamental questions outlined below.

3.1.1. Which plasmon resonances are magnetic?
It has been observed earlier [20,23] that in the structures

with a sufficiently high spatial symmetry only some plasmon
resonances may have a non-vanishing magnetic strength given
by Eq. (26). Such eigenmodes are sometimes referred to as
magnetic plasmon resonances (MPR) [32]. For example, if the
structure has an inversion center, its electrostatic eigenfunctions
φn can be either even or odd with respect to spatial inversion.
It follows from the definitions of f i j

n and F zz
n that even modes

have a vanishing electric strength while the odd modes have a
vanishing magnetic strength. If inversion center is the only non-
trivial element of symmetry, i.e. the structure’s symmetry group
is Ci , all even modes are magnetic resonances (Fn 6= 0) and
odd modes — electric resonances ( fn 6= 0). For example, the
electrostatic resonance of the SPOF structure shown in Fig. 2(c)
has a finite magnetic strength proportional to η2.

In structures with higher symmetries, electric and magnetic
eigenmodes can be identified by their irreducible representa-
tion. It can be shown that electric strength f xx

n may only be
non-zero if the corresponding potential φn transforms under the
same representation as the coordinate x (and similarly for f yy

n
and f zz

n ). For the magnetic strength F zz
n to be non-vanishing,

the potential φn must transform as an operator of rotation
around z-axis (Rz), which is a component of a pseudovector.
Standard character tables of the point groups of symmetry [47]
provide the information necessary for assigning magnetic or
electric dipole activity to various resonances.

In the structures without an inversion center, some
eigenmodes may transform as both x and Rz , meaning that
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they contribute to both εxx
eff and µzz

eff. In addition, they provide
magneto-electric coupling between Ey and Hz . Whenever such
modes exist, the structure is termed bi-anisotropic: it may not
be described with εeff(ω) and µeff(ω) tensors alone [48]. SRR
and SR are examples of such bi-anisotropic structures [49], and
their electrostatic resonances shown in Fig. 2(a), (b) contribute
to both µzz and εxx

qs .

3.1.2. Does the magnetic permeability depend on the
propagation direction?

The magnetic strength F zz
n , given by Eq. (26), may depend

on the orientation of the wave vector Ek (or electric field
EE0) in the plane orthogonal to EH0. Consequently, magnetic
permeabilityµzz

eff near an MPR can be anisotropic. This happens
because the magnetic strength is a product of two factors: (i)
coupling of the incident plane wave to a plasmon mode, and
(ii) magnetic moment contained in the excited mode. While the
latter is independent of the direction of Ek or EE0, the former
coupling is determined by the inhomogeneity of the electric
field EE0eiEk·Er and, therefore, depends upon the orientation of
the orthogonal pair (Ek, EE0). In other words, the components
of the µeff tensor of a plasmonic metamaterial are in general
dependent on the propagation direction Ek/k.

We use a pair of plasmonic strips (SPOF without the film) to
illustrate the anisotropy of scalar µeff in optical metamaterials.
This structure has attracted a great deal of attention as a
magnetic component of NIMs [20,44]. Its two-dimensional
point group of symmetry is C2v; electric plasmon resonances
in this structure correspond to dipole-like eigenpotentials φn ,
and magnetic resonances are electric quadrupoles [20]. Quasi-
static values of the effective permeability from Eq. (27) (labeled
as µqs) are compared with those (labeled as µem) extracted
from the single-layer electromagnetic scattering simulations.
The two illumination geometries and the results are shown in
Fig. 4. Unit cell dimensions are given in the caption to Fig. 4.
Both quasistatic and electromagnetic results plotted in Fig. 4
demonstrate that the strength the magnetic plasmon resonance
excitation depends strongly upon the direction of the wave
vector Ek of the incident wave. Maximum deviation of µeff from
unity is an order of magnitude larger when Ek is perpendicular
to the strips. The high degree of anisotropy of µeff is related to
the relatively low symmetry group (C2v) of the two plasmonic
strips.

For plasmonic nanostructures with the higher degree of
symmetry (C3v , C4v , and C6v) the anisotropy of µzz

eff may
disappear. For such structures it can be shown that the coupling
coefficients in F zz

n for Ek‖x̂ and Ek‖ŷ are equal in magnitude
but differ in sign:

∫
x ∂φn
∂y θdV = −

∫
y ∂φn
∂x θdV . Therefore,∫

x ∂φn
∂y θdV =

1
2

∫ (
x ∂φn
∂y − y ∂φn

∂x

)
θdV , and the magnetic

strength F zz
n as well as other parameters (µzz

d and F zz
0 ) become

isotropic. Thus, for sufficiently symmetric crystals it is possible
to introduce an isotropic µeff, independent of the direction
of applied electric field. A two-dimensional example of a
plasmonic metamaterial with isotropic scalar µeff is a square
array of plasmonic nanorods shown earlier [22,23,50] to exhibit
an isotropic negative refractive index.
Fig. 4. (Color online) Effective magnetic permeability µzz
eff of the strip pair

structure calculated using two methods: electromagnetic scattering through a
single layer (solid and dotted curves), and the quasi-static Eq. (27) (dashed
and dash-dotted). Green dashed curve incorporates the retardation frequency
shift given by Eq. (32). Black dashed curve is not corrected by the retardation
frequency shift. Orientation of the strips and the incident electric field are shown
in the insets. Structure parameters: periods ax = ay = 100 nm, strip width:
w = 50 nm, strip thickness ts = 15 nm, strip separation in the pair: h = 15 nm;
Strips are assumed to be made of silver and embedded in vacuum (εd = 1).

3.2. Electromagnetic red shifts of plasmonic resonances

Eq. (27) predicts that the frequency of magnetic plasmon
resonance ωn , determined from s(ωn) = sn , is the
frequency of magnetic cut-off, µeff = 0. From Fig. 4(a) we
observe that the frequency of the magnetic cut-off determined
from electromagnetic simulations (solid curve) is red-shifted
with respect to the frequency of corresponding electrostatic
resonance (black dashed curve). It can also be seen from Fig. 3
that electric dipole resonances in FEFD simulations are red-
shifted with respect to their electrostatic positions. Both shifts
can be explained as the retardation-induced corrections to the
positions of the purely electrostatic plasmon resonances [33].

These frequency shifts are always red and can be understood
physically as follows. Quasi-static currents associated with
electric fields of electrostatic resonances induce magnetic fields
via Ampere’s law. These magnetic fields generate secondary
electric fields according to the Faraday’s law. The latter
contribute to the Poisson equation E∇ · ε EE = 0, causing shifts
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in electrostatic eigenvalues. While such frequency shifts have
been calculated earlier for isolated plasmonic nanoparticles,
they have never been calculated for periodic plasmonic
metamaterials.

Retardation shifts are computed using the perturbation
theory developed in Section 3. To the lowest order in η and
in the close vicinity of the nth plasmonic resonance (i.e., at
s ≈ s(0)n , where s(0)n is the purely electrostatic eigenvalue of the
Eq. (15)), the vector potential induced by the nth electrostatic
resonance is found from Eq. (21): EA(1)sc (Er) = ik0

∫
dV ′G(Er −

Er ′)ε(Er ′)∇φn(Er ′), where ε ≈ εd

(
1 −

1
s(0)n
θ

)
, and G(Er − Er ′) is

the modified Green’s function of Poisson equation with periodic
boundary conditions originally calculated [51] in the context
of the solid state physics. Thus computed vector potential EA(1)sc
contributes to Poisson equation:

E∇θ E∇Φ + k2
0εd E∇θ ·

∫
dV ′G(r, r ′)

(
1 −

1

s(0)n

θ

)
E∇Φ

= sn∇
2Φ. (31)

This is a generalized linear eigenvalue problem with
integro-differential operator. Treating the integral term as a
perturbation, corrections to electrostatic eigenvalues s(0)n can be
shown to be:

s(2)n = k2
0εds(0)n

∮
dSφn(r)En

×

∫
G(Er − Er ′)

(
1 −

1

s(0)n

θ(Er ′)

)
E∇φn(Er

′)dV ′

×

(∫
|∇φn|

2θdV

)−1

, (32)

where
∮

dS is a surface integral over a closed surface S of the
plasmonic inclusion (which reduces to a contour integral for
2D crystals). The renormalized sn is calculated as sn = s(0)n +

s(2)n . Volume integral in Eq. (32) can be reduced to a surface
integration over the surface S by introducing an auxiliary vector
Ea(Er , Er ′) = −E∇

∫
G(Er − Er ′′)G(Er ′′

− Er ′)dV ′′:

s(2)n = k2
0εd

∮
dSφn(Er)En ·

∮
dS′

Ea(Er , Er ′)× [En′
× ∇φn(Er

′)]

×

(∮
φn
∂φn

∂n
dS

)−1

, (33)

where the normal derivative ∂φn/∂n is evaluated on the
plasmonic side of surface S. A particular case of this formula
has been previously reported for isolated three-dimensional
particles [33].

Despite substantial progress in calculations of periodic
Green’s functions [51], closed-form expressions for double- or
triple-periodic G in two or three dimensions are not known.
However, there exists one simple yet exact result for a 2D
Green’s function in the limit ay � ax [51]:

G2(Er − Er ′) =
1

2ax

(
(y − y′)2

ay
− |y − y′

| +
ay

6

)

−
1

4π
ln[1 − 2e−2π |y−y′

|/ax cos(2π |x − x ′
|/ax )

+ e−4π |y−y′
|/ax ]. (34)

The function (34) is periodic only in the x-direction. It is
therefore applicable only for |y−y′

| � ay , i.e. when plasmonic
inclusions are much thinner in the y-direction than the period
(wy � ay). For periodic metamaterials based on “current
loops” (strip pairs, horse shoes, etc.), interaction between
consecutive layers of resonators is usually insignificant, and
the function (34) provides reasonable approximation. When the
condition wx � ax is satisfied, one can use expression (34)
with interchanged variables x ↔ y, ax ↔ ay . When both
dimensions are small, wx,y � ax,y , a symmetrized (in x, y)
version of Eq. (34) is used.

Retardation frequency shifts of selected electric and
magnetic resonances are illustrated on Figs. 3 and 4,
respectively. Frequency shifts are calculated using Eq. (32)
with the Green’s function given by Eq. (34). It is apparent
that the quasi-static Eqs. (17) and (27) with frequency
corrections corresponding to sn = s(0)n + s(2)n (green dashed
curves on Figs. 3 and 4) are in much better agreement
with the electromagnetic εeff and µeff than the unperturbed
electrostatic eigenvalues s(0)n (black dashed curves). In
subsequent publications we will show analytically how these
eigenvalue corrections appear in the resonant denominators
(sn − s) of the driven problem.

4. Summary

In this review we have discussed several physics issues im-
portant for designing sub-wavelength plasmonic metamaterials
in the optical part of the spectrum. Several techniques for cal-
culating the effective dielectric permittivity εeff ≈ εqs in the
quasi-static limit are discussed. We have presented a sketch
of a homogenization theory that encompasses both electric
and magnetic response of plasmonic nanostructures. As sug-
gested by electrostatic nature of plasmon resonances, the theory
starts from the electrostatic description and takes retardation
and magnetic phenomena into account perturbatively. Formu-
las for the frequencies and strengths of all electric and magnetic
resonances are universally applicable to any periodic metallo-
dielectric nanostructures operating in the plasmonic regime.
The theory is supported by first-principle electromagnetic sim-
ulations. Our results demonstrate that in 2D plasmonic crystals
without rotational symmetry, such as strip pair arrays, scalar
magnetic permeability µzz

eff depends on the orientation of elec-
tric field (or the wavenumber).

Acknowledgements

This work is supported by the ARO MURI W911NF-04-
01-0203, AFOSR MURI FA9550-06-01-0279, the DARPA
contract HR0011-05-C-0068, and by the NSF’s NIRT 0709323.

References

[1] V.G. Veselago, The electrodynamics of substances with simultaneously
negative values of ε and µ, Soviet Phys. – Uspekhi 10 (1968) 509.



220 Y.A. Urzhumov, G. Shvets / Solid State Communications 146 (2008) 208–220
[2] J.B. Pendry, Phys. Rev. Lett. 85 (2000) 3966.
[3] Y. Horii, C. Caloz, T. Itoh, IEEE Trans. Microwave Theory Tech. 53

(2005) 1527.
[4] A. Alu, N. Engheta, IEEE Trans. Microwave Theory Tech. 52 (2004) 199.
[5] R.W. Ziolkowski, A. Erentok, Metamaterial-based efficient electrically

small antennas, IEEE Trans. Antennas Propag. 54 (2006) 2113.
[6] J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields,

Science 312 (2006) 1780.
[7] U. Leonhardt, Optical conformal mapping, Science 312 (2006) 1777.
[8] D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry,

A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave
frequencies, Science 314 (2006) 977.

[9] D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys.
Rev. Lett. 84 (2000) 4184.

[10] J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans.
Microwave Theory Tech. 47 (1999) 2075.

[11] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76
(1996) 4773.

[12] E. Yablonovich, Phys. Rev. Lett. 58 (1987) 2059.
[13] S. John, Phys. Rev. Lett. 58 (1987) 2486.
[14] S. Zhang, W. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood,

S.R.J. Brueck, Experimental demonstration of near-infrared negative-
index metamaterials, Phys. Rev. Lett. 95 (2005) 137404.

[15] G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis,
S. Linden, Opt. Lett. 30 (2005) 3198.

[16] V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev,
V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical
metamaterials, Opt. Lett. 30 (2005) 3356.

[17] G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden,
Simultaneous negative phase and group velocity of light in a metamaterial,
Science 312 (2006) 892.

[18] A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov,
I.Y. Khrushchev, J. Petrovic, Nanofabricated media with negative
permeability at visible frequencies, Nature 438 (2005) 335.

[19] W. Cai, U.K. Chettiar, H.-K. Yuan, V.C. de Silva, A.V. Kildishev,
V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors, Opt.
Exp. 15 (2007) 3333.

[20] G. Shvets, Y.A. Urzhumov, Negative index meta-materials based on two-
dimensional metallic structures, J. Opt. A: Pure Appl. Opt. 8 (2006)
S122.

[21] G. Shvets, Phys. Rev. B. 338 (2003) 035109.
[22] G. Shvets, Y. Urzhumov, Engineering the electromagnetic properties of

periodic nanostructures using electrostatic resonances, Phys. Rev. Lett. 93
(2004) 243902.

[23] G. Shvets, Y. Urzhumov, Electric and magnetic properties of sub-
wavelength plasmonic crystals, J. Opt. A: Pure Appl. Opt. 7 (2005)
S23–S31.

[24] D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65
(2002) 195104.

[25] P. Markos, C.M. Soukoulis, Opt. Exp. 11 (2003) 649.
[26] T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis, Resonant and

antiresonant frequency dependence of the effective parameters of
metamaterials, Phys. Rev. E 68 (2003) 065602.
[27] V. Lomakin, Y. Fainman, Y. Urzhumov, G. Shvets, Doubly negative
metamaterials in the near infrared and visible regimes based on thin
nanocomposites, Opt. Exp. 14 (2006) 11164.

[28] M.I. Stockman, S.V. Faleev, D.J. Bergman, Phys. Rev. Lett. 87 (2001)
167401.

[29] M.I. Stockman, D.J. Bergman, T. Kobayashi, Coherent control of
nanoscale localization of ultrafast optical excitation in nanosystems, Phys.
Rev. B 69 (2004) 054202.

[30] V.A. Podolskiy, A.K. Sarychev, V.M. Shalaev, Plasmon modes and
negative refraction in metal nanowire composites, Opt. Exp. 11 (2003)
735.

[31] A. Alu, A. Salandrino, N. Engheta, Negative effective permeability and
left-handed materials at optical frequencies, Opt. Exp. 14 (2006) 1557.

[32] A.K. Sarychev, G. Shvets, V.M. Shalaev, Magnetic plasmon resonance,
Phys. Rev. E 73 (2006) 036609.

[33] I.D. Mayergoyz, D.R. Fredkin, Z. Zhang, Phys. Rev. B 72 (2005) 155412.
[34] A.B. Comsol, M.A. Burlington, COMSOL Multiphysics User’s Guide,

Version 3.3, August 2006.
[35] E.D. Palik (Ed.), Handbook of Optical Constants of Solids, Vol. 1,

Academic Press, Orlando, FL, 1985.
[36] N. Engheta, A. Salandrino, A. Alu, Circuit elements at optical

frequencies: Nanoinductors, nanocapacitors, and nanoresistors, Phys.
Rev. Lett. 95 (2005) 095504.

[37] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis,
Magnetic response of metamaterials at 100 terahertz, Science 306 (2004)
1351.

[38] D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field
averaging, J. Opt. Soc. Am. B 23 (2006) 391.

[39] G.W. Milton, The Theory of Composites, Cambridge University Press,
2002.

[40] V.V. Zhikov, Homogenization of Differential Operators and Integral
Functionals, Springer-Verlag, New York, Berlin, 1994.

[41] D. Bergman, D. Stroud, Solid State Phys. 46 (1992) 147.
[42] D.R. Fredkin, I.D. Mayergoyz, Phys. Rev. Lett. 91 (2003) 253902.
[43] V.M. Agranovich, Y.N. Gartstein, Phys. – Uspekhi 49 (2006) 1029.
[44] U.K. Chettiar, A.V. Kildishev, T.A. Klar, V.M. Shalaev, Negative index

metamaterial combining magnetic resonators with metal films, Opt. Exp.
14 (2006) 7872.
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