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ABSTRACT

We present the first application of'localization theory to plasma .

physics: .demnsity fluctuations induce exponential localization of
longitudinal and transverse electron plasma waves, i.e. the eigénmodeé
have an amplitude exponentially decreasing for large distances without
any dissipative mechanism in the plasma. This. introduces a Anew
mechanism for converting a convective instability into an absolute one.

Localization should be observable in clear—cut experiments.
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In this letter we show the relevance of the concept of
localization by disorder to the propagation of waves in plasmas with a
fluctuating density. In contrast to the usual WKB picture, a
fluctuéting denSity.can prevent the energy of a wave from propagating
to infinity, and instead imply an exponentiél spatial decay of this
energy without any dissipative mechanism. The mnormal modes are
localized and the plasma becomes a resonant cavity without .sharp
boundaries. That can allow the plasma to switch from an amplifying to
an oscillating state: a convective instability can become absolute. A
simple plésma experiment is proposed to evidence our predictions. It
also should allow the study of localization as a function of disorder
in a m§re continuous way than in solid state physics.

'Localizatién was fir;t diséo?ered in ~§6ﬁﬁécfi§ﬁ fWi£h.j£hé
metal—insulator transition in a crystal with raﬁdomljuléééitéfed
impurities: when the eigenfunctiohs for energy mnear the Fermi levei
become localized, the metal turns into an insulator (for a general
review on localization, see Ref. 1). TFor one and probably also two
spatial dimension, localization is a property of all the eigenfunctions
of the Schrodinger operator — A ; ##(%) for almost all spatially
homogeneous random potentials ‘%K%), whatever be the amplitude W of the
randomness. The eigenfunctions are decreasing exponentially at
infinity, and the inverse of the rate of its exponential decay is
called the localization length, ¢, and depends both on the disorder W
and on the eigenvalue & (the energy of the‘ state). In a
three—dimensional situation, for a given disorder of aﬁplitude W, there
exists a critical value Egz(w) of the energy & below which

eigenfunctions are exponentially iocalized, and beyond which they are
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not. We emphasize that localization exists for almost all realizations
of the medium and is not the consequence of a phase cancellation due to
averaging over the various configurations of disorder. Localization is
a stronger property than total reflection ‘by a semi—infinite medium
considered fof instance in Ref. 2 for Schrodinger or Helmoltz
equations. This appears in the fact that the Schrodinger opera‘por with
a random potential has a pure point spectrum, i.e. an eigenvalue

3 whereas the absence of transmission is a priori compatible

spectrum,
with a continuous spectrum. Localization contradicts the usual image
of wave propagation in a random medium as a series of independent
'scatterings. It can be physically interpreted in thé fwo following
ways: (i) A wave wifh a given frequency interferes destructively with
wavelets randomly scattéred by the médium; the amount of >scatvt'ered
wavelets with random phases' increases with the distance so that the
global amplitude eventually vanishes; (ii) with probability ome -the
wave meets large regions where the potential has a periodicity that
implies gaps in the Floquet or Bloch analysis for the given energy.
Longitudinal or transverse electron plasma waves in an

unmagnetized plasma (hereafter referred to as 24— and t-waves) are

described by an equation of the type

=GR = [0+ RO, (1)

where ¢ is the electric field, (%, t) =w§(5’t,t)/v2 with v = ¢ for

4

t—waves and v = V3 Vo for f-waves (in that second case X must be one

dimensional for Eq. (1) to be correct4’5).. First consider the case
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where the density is time—independent. Then the time Fourier transform

of Eq. (1) yields the time—independent Schrodinger equation
[-a + %) 1P = €V (2)

where the energy &= wz/vz; w is the pulsation of the mode. If the
plasma density is random, localization appears as stated above.
Localization is not the exclusive property of the Schrédinger equation.
Therefore, we can expect that other waves whose dispersion relation
depends on the density can localize in a fluctuating plasma, provided
that the dependence on thé density be local (in particular, the density
should not be involved in convolutions). This is likely to be the case
for the equations Vo [—A + V(?I) - &% =0 and ¥ A 7 = o that rule
2—waves in dimension 3 Thg relevance of localization for lower hybrid
waves could strongiy :»modify tvhe image ‘of propagation with scattering
predicted by a WKB trea‘l:ment.6

When the wave with pulsation w is excited at X = &, a source term
a6(X) must be added in the r.h.s. of Eq. (2). As usual, the way to
solve this new equation is to add to it a smeall imaginary term ic
corresponding to an artificial dissipation term and then find the
solution 17/ of the equation, which is of course the Green’'s function G,
before letting ¢ » o in the physical quantities computed with G. We
note that G(%) = [(-A + (%) - & — ie)"16](%), which, in the case of
localized modes ﬁj with eigenvalue ..ébj’ can be rewritten
G(%) = )]: a@}(i’c)@j (3)/( é"J —(g‘"— ig). For a given localized mode @j,

let its meximum value be at ?cj. If fcj does not coincide with X = 3,

the coefficient {[}j (3) which appears in the response of ‘the system to a
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source term, shows that the mode, if excited, is the more weakly
excited, the larger is H%j”/g(;*i&j)’ where é(é“J) is the localization

length at eigenvalue é" (this is reminiscent of the excitation of

71
modes in a resonant cavity). Physically, there always is a finite
frequency bandwidth for a source of waves, and hence, there is an
infinite number of excited modes: this is aiso true in the case of
localized modes, since it follows from localization théory that the>
eigenvalues are then dense. The most strongly driven modes are those
with a corresponding I[fcj || of order less or equal to £( é"j). Hence we
predict an exponential spatial decay of & and t-waves excited by an
antenna in ba fluctuating plasma, provided that the values of &
correspoﬁding to the frequency Bandwidth lie in the domain of lloca‘lvize‘d
‘energ‘ié_s..‘ : , v : -

As yet no analytic forx.nuliaz 1s ‘:’év"ai-lable that gives explicitly the
localization length ¢ for 'phjsically relé’;rant random potentials and for
all regime of disorder;.' For one—dimensional systems, the localization
length can be computed7 for a small disorder W and scales like W—z.
For larger disordér, we must resort to numerical computationé, made
easy by the fact that, for one—-dimensional systems, the localization
length is the inverse of the Lyapunov exponent of Eq. (2). when
rewritten as d(¥,dy/dx)/dx = .#(x)(¥,d¥/dx). This equation yields a
matricial equation in the case of the simple random dénsity
n(x) = n, + 6n(x) where n, is the average demnsity, and where 6n(x) is
constant on mutually -decorrelated‘steps of length 2, and takes values
between -An and An with a 'u_niform probabiiity density. Let
p = ,Qc,daz/dx, 05 = (i), 'wj =.1'/7(j£,c), 5§ = noeg/_sdm, v = o for t-waves

and v = V3 vy for f-waves, E = (wz—ag)ls/vg, W= (Egkg/vz)An/n._ One
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gets (wj+1’¢j+1) = Mj(wj’wi)’ where Mj is a 2x2 matrix that depends on
6n(j2,). The Lyapunov exponent y = lc/é depehds on the parameters E
and W, and is numericallf computed. Figure 1 displays 7y versus W/E for
various values of E. Localization theory shows that ¢ ié ‘not very
sensitive to the model for 6n(x), and other random fluctuations with
the same r.m.s. An and correlation length %, shéuld give similar §¢’s.
For instance consider an f-wave with a wave—number k when An = 0, such
that kAp = 0.1 which corresponds to a negligible Landau damping. For a
density fluctuation with 2C/AD = 10 and An/n = 3.10—2, one gets
y = 3.10_2, i.e. § = BA with A = 2n/k. This corresponds to W=E = 1,
that is to a non—trivial localization‘(W < E). The condition fdr the
WKB description of an & or t—wave .in the fluctuating >p1asma is
'-Ak/nc << k? where Ak is the varsi'a‘tivon of k related to n/n. This
‘condition is easily rewritten as W << 2E3/2.‘ It is weakly verified for
the previous example though locélizéiion is fairly strong. Notice,
- however, that taking into account the complex turning points of Eq. (2)
makes it possible to derive a WKB formula consistent with
localization.8

For higher dimensional systems, the computation of the
localization length is much harder. One possibility would be to make a
continuous analogue of the scaling method used for discrete equations
and based on the study of the sensitivity of eigemnvalues of Eq. (2) in.
a box when changing boundary conditions.9

Till now, we only considered a static potemntial, ¥, but, in a
‘plasma, a random density is also evolving with time. We are interested

in two different situatiohs. In the first one, the random density is

- moving in the plasma with a constant velocity u much smaller than
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v: this is the case if, for instance, randomness is produced by a

one—dimensional spectrum of ion—acoustic waves. The wave equations can

then be rewritten in a frame moving with the density profile and this,

together with an appropriate change of phase on ¥, leads directly to an
Eq. (1) with appropriate % and ¢&: previous conclusions about
localization are hence applicable. Therefore, localization'should be
experimentally observable, for instance, for 2-waves in a magnetized
plasma with ion—acoustic fluctuations.

The second case of interest is the one where the potential, or the
density, ’%Ti,t) is a random function both with respect to space and
tiﬁe, or is a random function in space varying with time without
conserving a fixed profile by opposition to the situation discussed
jaﬁove. The anaiysis of».Schrédinger equations”-ﬁithlﬁtime~varying
potentials is mﬁch less .developed than the one with ététi¢vonés. The
" localization phenomenon, stfictly-speaking; does not_exist'any longer;
for localization is a subtle intérference phenomenon and phase memory
is lost when the potential changes. However, we can rely on some
adiabatic treatment. Since the eigenvélues are a countable dense set
in the spectrum, one cannot apply the usual adiabatic theory; but one

can use the fact that wave functions for near energy levels are very

separated in space (incidentally, this phenomenon is associated with

the vanishing of the static conductivity in condensed matier physics

)

when the Fermi level lies among the energies of localized states). We
then expect that localization will still manifest its effects when the
characteristic localization time is small with respect to the

correlation time 7 of J%QX,t) or in other words, if the energy can

c

fill a cavity of length ¢ during the correlation time, that is if
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T, >> &/w where w is the velocity of the energy of an incoming wave (it
can be taken as the group velocity of the wave at W= o if W is not too
large. |

In the case of 2-waves, the localization phenbmenqn must b¢
discussed in the face of another phenomenon, namely Landau
damping: for a local excitation of a frequency (e.g. by an antenna in
a plasma) it competes with localizatibﬁ for damping the wave amplifude
of a driven mode with real frequency w. In fact, values of w close to
5p are well localized and little Landau—damped, whereas the opposite
occurs for large values of o (typically Zﬁp). We can therefore expect

a crossover of these two regimes for some intermediate value of w.

Landau damping induces the temporal damping of a norma1 modejwith“a

‘given fféduency. If there is a gentle bump instabilit&jin:ihe7pléshéf

10

results on the WKB regime' '{éhow that the damping can become a gr&wiﬁg
in a given range of freéuenéies. Thus localized modes can grow
exponentially with time, i.e. absolﬁte instability can set in; a better
knqwledge of the wave—number spectrum of localized modes has to be
achieved for a full understanding of these wave-particle interaction
effects. |

It has been known for several year511 that some absolute
parametric instabilities turned‘into convective ones by introducing a
density gradient could be made absolute again if random fluctuations
are added to the gradient. This mechanism for turning corrective
instebilities into absolute ones seems very different from the one we
have proposed above, since a constant density gradient from —~ to +«

destroys the localization created by the random fluctuations.;z Here

are some conclusions and discussions: (i) The previous results show
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that the phenomenon of localization of waves by disorder should be
experimentally observable in a plasma. This letter proves it at least
for Langmuir waves in a magnetized plasma, in the presence of
ion—acoustic noise travelling in one direction. (ii) We suggest to
study the localization—delocalization transition in 3D plasmas. The
disorder can then be easily varied in contrast to wusual condensed
matter samples. But the first experimental check should be on 1-D-
localization; as a matter of fact, the first step could be the
experimental observation 61‘ the effect of a coherent density
fluctuation (for instance an ion—acoustic wave) on an A&— or t—wave,
such that & corresponds to a gap in the Mathieu equation. (ii)
Modificafio_n of thé gentle bump instability into an absolute ~one, due
to locali"zat‘jiionv‘v: 1sone t'giﬁonre phenomenon that:_go‘l‘i‘l-di’ come ;bvoﬁf in thé
type 111 "sc;'lylaﬂr.' bursts problem (ﬁotice t‘.halt“t:‘l;lke. ex1stence of l.ocaiized
modes implies the 'eXistevncle»"o‘fktwo reservoirs of counterstreaming
plasmons that makes efficient the conversion of 2~waves into t—waves at
2wp. (iv) The issue of the destabilization of localized modes
motivates the study of the space Fourier transform of localized

eigenfunctions, a mnew question raised by the application of

localization to plasma physics.
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FIGURE CAPTION
Figure 1 —

Plot of y = 8,/¢ versus W/E for E=1 (a), 0.5 (b), 0.2 (c),
0.1 (d), 0.05 (e); the dashed curve corresponds to y/2 for E = 5.
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