
Fluid model for relativistic, magnetized plasmas
J. M. TenBarge, R. D. Hazeltine, and S. M. Mahajan
Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712, USA

�Received 24 March 2008; accepted 7 May 2008; published online 27 June 2008�

Many astrophysical plasmas and some laboratory plasmas are relativistic: Either the thermal speed
or the local bulk flow in some frame approaches the speed of light. Often, such plasmas are
magnetized in the sense that the Larmor radius is smaller than any gradient scale length of interest.
Conventionally, relativistic magnetohydrodynamics �MHD� is employed to treat relativistic,
magnetized plasmas. However, MHD requires the collision time to be shorter than any other time
scale in the system. Thus, MHD employs the thermodynamic equilibrium form of the stress tensor,
neglecting pressure anisotropy and heat flow parallel to the magnetic field. Recent work has
attempted to remedy these shortcomings. This paper re-examines the closure question and finds a
more complete theory, which yields a more physical and self-consistent closure. Beginning with
exact moments of the kinetic equation, we derive a closed set of Lorentz-covariant fluid equations
for a magnetized plasma allowing for pressure and heat flow anisotropy. Basic predictions of the
model, especially of the dispersion relation’s dependence upon relativistic temperature, are
examined. © 2008 American Institute of Physics. �DOI: 10.1063/1.2937123�

I. INTRODUCTION

A plasma is relativistic if either the thermal speed—the
rms speed of the individual particles—measured in the fluid
rest-frame, or the local bulk flow measured in some relevant
frame approach the speed of light. Such plasmas are ubiqui-
tous in astrophysical phenomena �e.g., galactic and extraga-
lactic jets,1 accretion disks of active galactic nuclei,2 and
electron-positron-ion plasmas in the early universe;3,4 and in
some laboratory fusion experiments�.

Often �e.g., Refs. 5–7�, relativistic plasmas of interest
are magnetized, meaning the dynamics are dominated by the
magnetic field. The dynamics of such plasmas are typically
described with magnetohydrodynamics �MHD�, which cap-
tures the large-scale electromagnetic features of a magne-
tized plasma �e.g., E�B drifts�. A relativistic MHD closure
has been presented by Anile.8 Despite the success with MHD
at capturing some of the large scale physics, MHD plasmas
are based on the use of a stress tensor whose origin is based
on thermodynamic considerations �thermal equilibrium�
rather than electrodynamics, in which electromagnetic forces
dominate.

Chew, Goldberger, and Low9 �CGL� present an early de-
parture from the conventional MHD treatment of the stress
tensor by allowing gyrotropic pressure; the CGL tensor dif-
ferentiates between pressures parallel and perpendicular to
the magnetic field. However, CGL neglects to include heat
flow parallel to the magnetic field, which can be rapid in low
collisionality plasmas. Partly for this reason, the double adia-
batic assumption used by CGL to achieve closure is not valid
in many physical situations.

Hazeltine and Mahajan10 �hereafter referred to as I� at-
tempted a more physical relativistic closure with gyrotropic
pressure and parallel heat flow. However, close scrutiny of
the Hazeltine–Mahajan model revealed fundamental defi-
ciencies. The details of the deficiencies are covered in Sec.
II. The closure method employed in I uses the stress tensor

as the constitutive relation for the fluid closure. The form of
the stress tensor is derived from exact fluid equations to-
gether with orderings characterizing a magnetized plasma.
Predictably, such an approach does not provide a closed sys-
tem. Closure is achieved through a representative distribu-
tion function, consistent with relativity, magnetization, pres-
sure anisotropy, and heat flow.

To achieve our closure, we take an approach parallel to
I; we use I as a guide in the search for a more physical and
self-consistent relativistic, magnetized fluid closure.

II. CRITIQUE OF HAZELTINE AND MAHAJAN
„REFS. 10–12…

We begin by discussing the covariant fluid closure of I.
We refer the reader to I and other related papers to observe
the full treatment of the system rather than reiterating both
the relativistic closure and the nonrelativistic limit here.

Study of the closure presented yielded several major
shortcomings of the original model.

1. The first and most pertinent deficiency is apparent
from the linearized, nonrelativistic equations of motion. It is
manifested by examining the electrostatic response of the
electron pressure anisotropy, �pe= p�

e− p�
e . Parallel �perpen-

dicular� here refers to being parallel �perpendicular� to the
magnetic field. One finds that �pe�mi /me, leading to
grossly exaggerated estimates of the electron anisotropy un-
der the typical MHD assumption of vanishing electron iner-
tia. Such anomalous scaling of the pressure anisotropy is not
observed in conventional MHD or kinetic MHD.

The source of the anomalous scaling of the pressure an-
isotropy is the use of a single parallel heat flow, Q�, rather
than separating the parallel heat flow into the parallel flow of
parallel heat, q�, and the parallel flow of perpendicular heat,
q�. When a single heat flow is used, the evolution of parallel
and perpendicular pressure are both coupled to parallel gra-
dients of the heat flow, and the evolution of the single heat
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flow is driven by parallel pressure gradients. Using separate
heat flows results in the expected evolution of the pressures
and heat flows, namely, dp� /dt���q�, dp� /dt���q�,
dq� /dt���p�, and dq� /dt���p�.

Though separating the two forms of parallel heat is rela-
tively common in the literature �see, e.g., Refs. 9, 13, and
14�, the distinction between the heat flows does not appear in
the stress tensor, which forms the constitutive relation for a
fluid plasma closure. Therefore, I attempts a closure involv-
ing the single heat flow, which corresponds to the sum, Q�

=q� +q�.
Including separate heat flows involves modifying the

distribution used in I and using higher-order moment equa-
tions to obtain evolution equations for the two heat flows.
However, the stress tensor is not changed.

On a related note, I does a very poor job of predicting
the onset of the mirror instability. The source of this error is
the unusual coupling of the pressures and heat flows noted
above. The use of a relativistic bi-Maxwellian accurate to
first order in the pressure anisotropy provides a better esti-
mate of the mirror instability but still does not agree fully
with kinetic MHD. However, a relativistic bi-Maxwellian re-
taining second-order pressure anisotropy terms captures the
correct mirror instability. Note that, keeping accuracy to this
order is reasonable since the fourth-rank moment �energy-
weighted stress� will naturally have terms second-order in
the anisotropy.

2. Examining the thermodynamics of I leads to a ther-
modynamic temperature of the following form:

T =
�p + 2

3�p�2

n�p + 4
3�p� ,

where p is the scalar pressure and �p is the pressure aniso-
tropy. This form makes thermodynamic calculations awk-
ward and can lead to confusion with the more typical defi-
nition of the thermodynamic temperature, T= p /n.

Also in I, the enthalpy density, h, is defined to be

h = u + p� ,

where u is the internal energy density. Typically, enthalpy is
defined to be h=u+ p. Again, there is nothing inherently in-
correct with this definition, but it can also lead to confusion.

These shortcomings are addressed here by modifying the
distribution in I to approximate a nonrelativistic bi-
Maxwellian expanded for small pressure anisotropy with
only first-order terms retained, and by making a small modi-
fication to the �0,0� component of the stress tensor.

3. Approximate parallel and perpendicular projection op-
erators were used in I as annihilators of the gyroscale por-
tions of the exact moment equations to derive evolution
equations for the parameters of the fluid system. Use of these
operators leads to nearly redundant evolution equations
which only agree in the nonrelativistic limit. Thus, the redun-
dancy leads to spurious instabilities in the moderate to ul-
trarelativistic temperature regimes of linear theory. This issue
is solved by replacing the projection operators with more
fundamental annihilators and discussed further in Sec. IV B.

4. The form of the relativistic heat flux evolution equa-
tion provided in I omits relevant terms from the gyrophase
dependent portion due to an ordering error. Also, the nonrel-
ativistic form of the closure presented in Hazeltine and
Mahajan11,12 contains algebraic errors which, when com-
bined with the omission noted above, lead to an incorrect
evolution equation for the parallel heat flux.

III. RELATIVISTIC PLASMA CONCEPTS

Here, we review some basic properties of relativistic
electromagnetic theory, define what it means for a plasma to
be magnetized, discuss some of the consequences of magne-
tization, and present the moments used in our theory. Be-
cause the majority of this material was covered in I, the
present treatment is brief.

We use the Einstein summation convention throughout,
with Greek indices running from 0 to 3 and Roman indices
from 1 to 3. Boldface type typically represents the three-
vector portion of a four-vector, for instance an arbitrary four-
vector C� may be written as C�= �C0 ,C�. All speeds are
normalized to the speed of light, so that c=1. We use
���=diag�−1,1 ,1 ,1� as the signature for our Minkowski
tensor.

A. Magnetized plasma

We make use of the following Lorentz scalars formed
from the Faraday tensor, F, and its dual, F,

1
2F��F�� = B2 − E2 	 W , �1�

1
2F��F�� = E · B 	 �W . �2�

The latter relation is of significant importance because �, or
equivalently E�, will be a small parameter of our theory.

Two conditions must be satisfied for our plasma to be
considered magnetized:

1. The two electromagnetic field invariants must satisfy

W � 0, �3�

� � 1. �4�

2. The thermal gyroradius must be small compared to any
gradient scale length,

� � 1, �5�

where � is the ratio of the thermal gyroradius of any
plasma species to any gradient scale length.

We assume the ordering ��� for convenience. We will
implicitly use this definition of a magnetized plasma
throughout the following analysis.

B. Quasiprojectors

As is typical in a magnetized plasma, notions of parallel
and perpendicular to the field play important roles. Thus, we
need a covariant meaning for parallel and perpendicular.
Such a meaning is provided by
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e�
� 	 − F�	

F	�

W
, �6�

b�
� 	 ��

� − e�
� . �7�

e and b become approximate perpendicular and parallel pro-
jection operators in the magnetized limit. In a frame in which
the transverse electric field vanishes �a subset of the instan-
taneous rest-frame �R��, the action of e and b on an arbitrary
four-vector C�= �C0 ,C� is given by

b�	C	
R = �C0,C�� , �8�

e�	C	
R = �0,C�� . �9�

� and � have the typical three-dimensional meaning: C�

=BB ·C /B2=bb ·C, C�=C−C�, where b is the standard ab-
breviation b	B /B.

Gradients of the projection operators will be used im-
plicitly later in our analysis. Thus, we present their forms. To
do so, we begin by recalling the Maxwell stress tensor


�� = F	
�F	� − 1

4���F	�F	�

and observe

e�� =
���

2
+


��

W
,

b�� =
���

2
−


��

W
.

Maxwell’s Eqs. �13� and �14� presented in the following sec-
tion imply

��
�� = − F�	J	,

where ��= � / �x� . Thus, it is straightforward to show

��b�
� =

F��

W
J� + �1

2
��

� − b�
���� log W , �10�

��e�
� = −

F��

W
J� + �1

2
��

� − e�
���� log W . �11�

C. Closing Maxwell’s equations

Since plasmas are strongly coupled to the electromag-
netic field, we must consider a closure involving Maxwell’s
equations. The coupling of the electromagnetic field to a
plasma enters a fluid description through the second-moment
equation, which constitutes the conservation of
energy-momentum.15 In relativistic form, the second-
moment equation takes the form

��T�� − F��J� = 0, �12�

where T represents the total �summed over all species�
energy-momentum tensor for the plasma and J� is the current
density four-vector. Thus, the second-moment equation is
used as a constitutive relation for magnetized plasmas, pro-
viding closure to Maxwell’s equations,

��F�� = J�, �13�

�
F�� + ��F�
 + ��F
� = 0. �14�

It remains to compute the current density in a magnetized
plasma.

Equation �12�, when composed with F	
�, provides two

components of the current density

e��J� = −
F	

�

W
��T	�. �15�

There are two independent components because the perpen-
dicular quasiprojector has a two-dimensional null space.
Charge conservation

��J� = 0 �16�

and quasineutrality

J�U� = 0 �17�

provide the two remaining components of the current den-
sity, where U�= �
 ,
V� is the local 4-velocity of the fluid,
with 
2= �1−V2�−1 the relativistic dilation factor. That Eq.
�17� provides a good representation of quasineutrality will be
presented in Sec. III D.

We conclude that knowing the plasma stress tensor, and
thus the current density, is sufficient to close Maxwell’s
equations.

D. Moments

Our analysis involves moments up to and including the
fourth rank. We express each moment in terms of the distri-
bution function f�x , p�, where p represents the four-
momentum p�,

�� =
 d3p

p0 fp�, �18�

T�� =
 d3p

p0 fp�p�, �19�

M��
 =
 d3p

p0 fp�p�p
, �20�

R��
� =
 d3p

p0 fp�p�p
p�. �21�

Here, d3p / p0 represents the invariant momentum-space vol-
ume, where

p0 = �m2 + p2. �22�

�� is the four-vector fluid particle-flux density, T�� is the
stress-energy tensor, M��
 is typically referred to as the
stress flow tensor, and R��
� will be referred to as the
energy-weighted stress tensor.

The exact moments of the collisionless kinetic equation
associated with the four requisite moments for our analysis
represent particle conservation, momentum evolution, stress-
flow evolution, and energy-weighted stress evolution,

���� = 0, �23�
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��T�� = eF����, �24�

��M��
 = e�F��T�

 + F
�T�

�� , �25�

��R��
� = e�F��M�

� + F
�M�

�� + F��M�
�
� . �26�

Note in the second and higher moment equations, the
left-hand side involves the macroscopic scale, while the
right-hand side deals with the short gyroscale. Thus, the
small-gyroradius limit is obtained formally by allowing the
charge to become arbitrarily large, e→�.

No restrictions on the size of higher order moments is
assumed. Our analysis does not require higher moments be-
cause we only need those corresponding to the scalar coeffi-
cients appearing in the energy-momentum tensor. This tensor
provides the framework for the closure of the plasma-
Maxwell system.

At this point, we restrict our analysis to a plasma with a
single ion species in the interest of simplicity. We define the
Lorentz scalar �R

0 =�d3pfR to be the rest-frame density, nR,
and define the fluid velocity of a species to be

U� = ��/nR. �27�

In order to satisfy quasineutrality, we require, to leading or-
der, the electrons and ions have the same rest-frame densi-
ties, and reside in the same approximate rest-frame to avoid
arbitrarily large current densities; we do not restrict plasma
flow, however. Equation �17� then follows as the leading or-
der expression of quasineutrality.

E. Gyro-ordering

We must now determine evolution equations for the four
components of the flux density. First, we note that all mo-
ments can be expanded in the form

�� = ��0�
� + ��1�

� ,

where the parenthetical subscript refers to the order of the
term with respect to the gyroradius ���. Thus, Eq. �24� pro-
vides

F�0�
����0�� = 0, �28�

where we distinguish the lowest order Faraday tensor, F�0�
��

	F���E� =0�, from its first-order counterpart

F�1�
�� 	 F�� − F�0�

�� � E� .

Recalling the action of the Faraday tensor on a four-vector,
Eq. �28� implies

��0�
0 E + ��0� � B = 0, �29�

which reproduces the familiar MHD Ohm’s law, E+V�B
=0. As such, Eq. �28� fixes the two perpendicular compo-
nents of the flow. The particle conservation law, Eq. �23�,
fixes another of the components.

At this point, we drop the ordering subscripts and use ��

and U� to refer to the zeroth-order fields from this point on.
Similarly, we drop the ordering subscript from the Faraday
tensor where it is nonessential. We can now write the flow in
the form

�� = 
nR�1,V� + VE� , �30�

where VE=E�b /B, V� =bb ·V, and 
 is evaluated at the low-
est order flow velocity.

Before moving on, we note that Eq. �24� has become

��T�0�
�� = eF�0�

����1�� + eF�1�
����0�� �31�

taking gyro-ordering of the moments and the Faraday tensor
into account.

The remainder of this paper is devoted to computing the
stress tensor. Conventional MHD avoids this issue by assum-
ing the stress tensor has the thermodynamic equilibrium
form

T�� = p��� + hU�U�, �32�

where p is the pressure and h is the enthalpy density. This
form only pertains to the highly collisional regime in which
thermal relaxation occurs more rapidly than any other pro-
cess of interest. Thus, our analysis can be viewed as taking
place in a regime of much lower collisionality. We ignore
collisions altogether and compute the stress tensor subject to
electromagnetic forces alone.

IV. COVARIANT EVOLUTION EQUATIONS

A. Magnetized stress

We use the magnetized limit of Eq. �25� to find

F��T�
� + F��T�

� = 0. �33�

We use indicial symmetry of the stress tensor, antisymmetry
of the Faraday tensor, along with properties of the projection
operators to conclude the stress tensor must have the follow-
ing form:

T�� = p��� + hU�U� + 1
3�p�2k�k� − e���

+ Q��k�U� + U�k�� , �34�

where p= �p� +2p�� /3, �p= p� − p�, Q�, and h are Lorentz
scalars corresponding to pressure, pressure anisotropy, total
parallel heat flow, and enthalpy density, respectively. We dif-
ferentiate between the parallel flow of parallel heat, q�, and
the parallel flow of perpendicular heat, q�, with Q� =q� +q�

and �Q� = 2 / 5q� − 3 / 5q�. It is important to note that this
distinction does not enter at this order in the moment equa-
tions. The total parallel heat flow is the only distinct compo-
nent that appears in the stress tensor. This stress tensor dif-
fers from that in I primarily in notation. Here, the enthalpy
presented corresponds to the standard thermodynamic defi-
nition, h=u+ p, where u=TR

00 is the energy density. In I, h
=u+ p�.

k� must satisfy e��k�=0 to satisfy force balance and
U�k�=0 to preserve the significance of p� and p�. These
constraints on k� leave free only one component, which cor-
responds to the Lorentz boosted unit vector b. Thus,

k� =
F��U�

�W
= 
�W

B2�B2

W
V�,b +

B2

W
V�VE +

E�

W
E� . �35�
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Two evolution equations are provided by Eq. �31�, once
we identify an annihilator of the ��1�� term. Appropriate
choices in the magnetized limit are k and U, since
k��U��F	���. We find

k	��T	� = enR
B

�W
E� �36�

and

U	��T	� = 0. �37�

These equations advance the parallel momentum and total
scalar pressure/energy, respectively.

B. Subtleties of annihilator choice

The evolution equations in I make use of the projection
operators as annihilators of the gyroscale dependent portions
of the moment Eqs. �18�–�21�. This annihilator choice leads
to subtle inconsistencies in the derived evolution equations,
resulting from implicit, redundant use of evolution equations.
Further, the inconsistencies cause spurious instabilities to de-
velop in the linear theory for moderate to ultrarelativistic
temperatures.

Consider first the parallel projection operator. We can
write the operator in terms of U� and k� as b��=k�k�

−U�U�+O��2�. Similarly, we can write e��=���+U�U�

−k�k�+O��2�. If we operate on the third rank moment Eq.
�20�, with U�U�, the resulting equation would be an evolu-
tion equation for the total energy which agrees with that
found at the second rank, Eq. �37�, only in the nonrelativistic
limit. Therefore, operating with b�� would result in the im-
plicit usage of a redundant energy equation that disagrees
with the lower rank derived equation in all but the nonrela-
tivistic limit. The redundancy continues to higher order and
with usage of the perpendicular operator. Thus, we avoid
using the projection operators as annihilators in favor of
more fundamental tensors in our system, U� and k�.

C. Magnetized stress flow

The expression for M��
 given in I does not allow for
separate parallel and perpendicular heat flows. The three
auxiliary parameters appearing in the stress flow tensor em-
ployed in I only permit dependence of the stress flow on p�,
p�, and Q�. We modify the model for the stress flow t include
an additional auxiliary parameter �m4 in what follows� to
permit the freedom of having two parallel heat flows.

In the magnetized limit, the fourth-rank conservation law
determines the form of the stress-flow tensor

F��	M	
��
� = 0, �38�

where the super �sub�script parentheses indicate indicial
symmetrization over noncontracted indices,

����U�
� 	 ���U
 + ��
U� + ��
U�.

We are also constrained by the definition of the stress-flow
�Eq. �20�� and particle flux �Eq. �18��. From the definitions, it
can be seen that contracting two indices of the stress-flow
reduces to the momentum flux

M�
�
 = − m2nRU
. �39�

Given the above two constraints and assuming the only four-
vectors appearing in the stress-flow are U� and k�, the stress-
flow must have the form

M��
 = m2nRU�U�U
 + �
k

mkMk
��
, �40�

where

M1
��
 = ����U�
� + 6U�U�U
, �41�

M2
��
 = b���U�
� + 4U�U�U
, �42�

M3
��
 = ����k�
� + 6U��U�k�
�, �43�

M4
��
 = b���k�
� − 2

3����k�
�, �44�

and the mk are scalars to be determined later. The Mk also
satisfy Mk�

�
=0, so that the second constraint above is satis-
fied.

We construct an evolution equations for the magnetized
stress-flow by finding annihilators for the right-hand side of
Eq. �25�. Two such equations are:

k�k��	M	�� = 2e
B

�W
Q�E� , �45�

�U�k� + U�k���	M	�� = − 2e
B

�W
E��h +

2

3
�p� . �46�

These equations can be considered to advance the parallel
pressure and total parallel heat flow, respectively.

We note that we cannot evolve the two parallel heat
flows individually at this order. This is because evolving the
separate heat flows requires a timelike �0-component� deriva-
tive of the elements of the stress flow containing each paral-
lel heat flow. It will become clear after evaluating the mk that
such separation is not possible in this order.

The mk appearing in the stress flow can be taken to be
auxiliary parameters of our system. Thus, we will need to
express them in terms of the dynamical variables appearing
in our system. As such, it is convenient to examine the in-
stantaneous rest frame components of the stress flow in terms
of the mk, which are listed in Appendix A.

D. Magnetized energy-weighted stress

We construct the energy-weighted stress tensor in much
the same way as the three previous tensors. We begin with
the constraint provided by the fifth-rank conservation law in
the magnetized limit

F��	R	
��
�� = 0. �47�

Our second constraint follows from the definitions of the
energy-weighted stress �Eq. �21�� and the stress �Eq. �19��
when contracting two indices of the energy-weighted stress

R�
�
� = − m2T
�. �48�

Our third constraint follows from contracting all four indices
of the energy-weighted stress,
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R��
�� = m2� , �49�

where −�=T�
�=−u+3p.

Unlike the third rank tensor whose indicial symmetriza-
tion is straightforward, the fourth rank tensor will have
unique symmetrizations based on each tensor’s construction,
which are given in Appendix B.

The following expression gives the simplest fourth-rank
tensor that satisfies the above constraints, without introduc-
ing new independent variables:

R��
� = m2�U��U�T�
�� + 8pU�U�U
U�

− Q�k��U�U
U���� + �
k

rkRk
��
�, �50�

where

R1
��
� = ������
�� + 6����U
U��� + 48U�U�U
U�, �51�

R2
��
� = ����b�
�� + 8b���U
U��� + 2����U
U���

+ 64U�U�U
U�, �52�

R3
��
� = ����U
k��� − 8U��k�k
k���, �53�

R4
��
� = b���U
k��� − 6U��k�k
k���, �54�

R5
��
� = e���b�
�� + 2e���U
U��� + 2b���U
U���

+ 16U�U�U
U�. �55�

It can be seen that the Rk�
�
�=0 so that R�

�
�=−m2T
� and
R��

��=m2�. The extra terms multiplying m2 in Eq. �50� ac-
count for over counting certain elements of T�� due to sym-
metry conditions on R.

Again, we construct evolution equations for the energy-
weighted stress by identifying annihilators of the right-hand
side of Eq. �26�,

k�k�k��
R��
� = 3e
B

�W
E��m1 + m2� . �56�

This can be viewed as evolving the parallel component of the
parallel heat flow.

As in the stress flow tensor, the rk can be viewed as
auxiliary parameters. Thus, we need to express them in terms
of the rest-frame components of the energy-weighted stress.
Such expressions are provided in Appendix A.

We now have evolution equations for nR, p, p�, Q�, q�,
and the three vector components of ��. We will take these to
be our set of dynamical variables. We consider the enthalpy,
h, to be an auxiliary parameter in much the same way we
treat the mk and rk as auxiliary parameters. Thus, our fluid
system is nearly closed; however, we still need to evaluate
the auxiliary parameters in terms of the dynamical variables.
For this, we need a distribution function.

V. DISTRIBUTION FUNCTION

A. Choosing a distribution

Since we have auxiliary parameters not yet related to our
dynamical variables, we require a distribution function to
close our fluid system. Any lowest order distribution chosen
must be gyrotropic, solve the drift-kinetic equation, and re-
produce the stress tensor, Eq. �34�. Satisfying the first re-
quirement is straightforward. The second is difficult to
implement in a fluid treatment and typically abandons the
fluid point of view in favor of kinetic MHD, making the
drift-kinetic equation part of the closure.16,17 The third re-
quirement restricts us to any of a class of distributions that
reproduce the stress tensor.

Therefore, we choose a representative distribution from
the equivalence class of distributions reproducing the stress
tensor, capable of also representing the fluid equations of
motion. The parameters in the distribution are proportional to
the dynamical variables of the fluid system and evolve ac-
cording to the fluid equations. We use such a parameterized
distribution in place of the drift-kinetic equation to close our
system.

B. Explicit form

After examining previous literature,13,14 it became clear
in nonrelativistic theory, a bi-Maxwellian �or two-
temperature Maxwellian� is a good choice for capturing fea-
tures of kinetic theory in a fluid approach. As such, our dis-
tribution can be considered the relativistic analog of the
nonrelativistic bi-Maxwellian. Our distribution has the form

f�x,p� = fM�1 + �̂ + �� + �*�p�e��p�

+ ��̄ + �̄*�p�b��p� + p�p�p
p���̃k�k�k
k�

+ �̃*e��e
� + �̃**k�k�e
��

+ Q�b��p��1 + Q̂p��e�� + Qk�k��p��� , �57�

where fM is a relativistic Maxwellian. The � scalars describe
pressure anisotropy, while the Q scalars measure heat flow.
Thus, our distribution can be parametrized by our dynamical
variables, nR, p�, p�, q�, and q�. The form of our distribution
mirrors that found in I only in the first three terms and the
last term multiplying the square brackets. Note that we do
not simply write the distribution in the standard nonrelativ-
istic form with the directional temperature dependence in the
exponent. If we were to make such an attempt, evaluating
moments of the distribution would become intractable.

Recall that a relativistic Maxwellian has the following
form:

fM�x,p� = NMeU�P�/T,

where P�= p�+eA� is the canonical momentum, U�P� de-
fines the invariant energy, T�x� the scalar temperature, and
NM�x� the scalar normalization factor. In the rest frame, we
have

fMR = NMe−P0/T.

Moments of the rest frame Maxwellian have the form
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0

� ds
�1 + s2

s2ne−��1+s2
=

1 · 3 ¯ �2n − 1�Kn���
�n ,

where Kn is the nth MacDonald function, s= 
p 
 /m, and �
=m /T. We can now compute the normalization factor

NM =
nRe�/T

4�m2TK2���
,

where �=A0 is the electrostatic potential. Thus, the rest
frame Maxwellian is

fMR =
nRe−p0/T

4�m2TK2���
. �58�

Returning to evaluating the parameters of our distribu-
tion, we compare our distribution to the nonrelativistic bi-
Maxwellian expanded for small pressure anisotropy to deter-

mine �* /�, �* / �̄, �̃* / �̃, and �̃** / �̃. Doing so yields

f�x,p� = fM�1 + �̂ + ��p�e��p� − 2p�b��p��

+ �̄�p�e��p� + 4p�b��p��

+ �̃p�p�p
p��4k�k�k
k� + e��e
� − 4k�k�e
��

+ Q�b��p��1 + Q̂ + p��e�� + Qk�k��p��� .

For reference, expanding a bi-Maxwellian for small pressure
anisotropy yields

f�x,v� =
N

p�p�
1/2 exp�−

mn

2
�v�

2

p�

+
v�

2

p�

��
=

N

p3/2e− mnv2

p �1 −
mn�p

6p2 �v�
2 − 2v�

2� +
�p2

6p2

−
mn�p2

18p3 �v�
2 + 4v�

2� +
1

72
�mn�p

p2 �2

��4v�
4 + v�

4 − 4v�
2v�

2 �� ,

where N is the normalization factor, v is the particle velocity,
p� and p� refer the parallel and perpendicular pressure, and p
and �p refer to the scalar pressure and pressure anisotropy.

In the instantaneous rest-frame with coordinates oriented
such that B= �0,0 ,B�, our distribution reduces to

fR�x,p� = fMR�1 + �̂ +
�

m2 �p�
2 − 2p�

2� +
�̄

m2 �p�
2 + 4p�

2�

+
�̃

m4 �4p�
4 + p�

4 − 4p�
2 p�

2�

+
Q3p3

m
�1 + Q̂ +

p�
2

m2 + Q
p�

2

m2�� , �59�

where p� and p� here refer to parallel and perpendicular
components of momenta.

C. Scalar moments

We choose �̂ and Q̂ to ensure that the rest-frame density
is Maxwellian and the rest-frame flow velocity vanishes. �

and �̄ are chosen so that p=nT= �TR
33+2TR

11� /3 and �p

=TR
33−TR

11. �̃ is chosen by matching the nonrelativistic limit
��=m /T→ � � of RR

1133 to its bi-Maxwellian counterpart,
m p�p� /n. Q3 is chosen to satisfy TR

03=Q�, and Q is chosen
by matching the nonrelativistic limits of the elements of the
stress flow tensor involving heat flow to their bi-Maxwellian
counterparts, i.e., MR

003=2mQ� =MR
333+2MR

113=2mq� +2mq�.
Thus, in the rest-frame, the distribution function be-

comes

fR�x,p� = fMR�1 −
1

6

�p

p

�K2

K3
� p�

2

m2 −
2p�

2

m2 � +
1

6

�p2

p2

K4

K2

−
1

18

�p2

p2

�K4

K3
� p�

2

m2 + 4
p�

2

m2� +
1

72

�p2

p2 �2

��4
p�

4

m4 +
p�

4

m4 − 4
p�

2p�
2

m4 � +
nRp�

p2

K2

K3K

�� K3

�K2
Q� − �q�

3

p�
2

m2 +
q�

2

p�
2

m2��� , �60�

where p and �p refer to pressure and pressure anisotropy,
while p� and p� refer to parallel and perpendicular momenta.
Explicitly, the scalar components of the distribution are

� = mnR/p , �61�

�̂ =
1

6

K4

K2

�p2

p2 , �62�

� = −
1

6

K2

K3
�2 �p

mnR
, �63�

�̄ = −
1

18

K4

K3
�

�p2

p2 , �64�

�̃ =
�2

72

�p2

p2 , �65�

Q̂ = −
K3

�K2

2Q�

q�

− 1, �66�

Q3 = − q�

�2

2mnR

K2

K3K
, �67�

Q =
2

3

q�

q�

, �68�

where K= K3 / K2 − K4 / K3 .
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VI. CLOSED FLUID EQUATIONS

A. Covariant closure summary

We have chosen nR, V�, p�, p�, q�, and q� as the dynami-
cal variables of our collisionless, small gyroradius fluid sys-
tem. The covariant evolution equations for the chosen dy-
namical variables of our system are

���� = 0, �69�

k	��T	� = enR
B

�W
E� , �70�

U	��T	� = 0, �71�

k�k��	M	�� = 2e
B

�W
Q�E� , �72�

�U�k� + U�k���	M	�� = − 2e
B

�W
E��h +

2

3
�p� , �73�

k�k�k��
R��
� = 3e
B

�W
E��m1 + m2� , �74�

where the flux ��, stress T��, stress flow M��
, and energy-
weighted stress R��
� are given by Eqs. �18�–�21�, respec-
tively, and the mk are given in Appendix A. Therefore, Eqs.
�69�–�74� constitute a closed covariant set of fluid equations.

B. Three-vector form

It is often convenient to express fluid equations in three-
vector form, sacrificing explicit Lorentz covariance. As such,
we present the three-vector form of our closed fluid system
here.

We begin by noting the following identities:

U��� = 

d

dt
=

d

d�
,

k��� =
d

ds
,

where d /dt is the conventional convective derivative and �
represents the proper time.

The explicit forms of Eqs. �70� and �71� can be ex-
pressed as

hk · 

dV

d�
+

dp�

ds
+

dQ�

d�
− Q�

d log nR

d�
+ Q�k ·

dV

ds

−
1

6
�p

d log W

ds
+

2

3
�p��k� = enR

B
�W

E� , �75�

d

d�
�p − h� + h

d log nR

d�
−

dQ�

ds
−

2

3
�pk ·

dV

ds

−
1

6
�p

d log W

d�
− Q�
k ·

dV

d�
− Q���k� = 0, �76�

where

��k� =
1

�W
� 1



B ·

d

dt
�
V� − E��b � �� · �
V��

−
1

2

d log W

ds
. �77�

From the third moment equations, we have from Eqs.
�72� and �73�

d

d�
�m1 + m2� + �m1 + m2��2k ·

dV

ds
−

d log nR

d�
�

+ �m3 +
1

3
m4���k� + 12m3
k ·

dV

d�
− m4

d log W

ds

+ 3
d

ds
�m3 +

1

3
m4� = 2e

B
�W

Q�E� , �78�

d

d�
�5m3 −

1

3
m4� +

d

ds
�m1 + m2� + �5m1 + 3m2�
k ·

dV

d�

−
1

2
m2

d log W

ds
+ �7m3 +

1

3
m4�
k ·

dV

ds

− 6m3
d log nR

d�
+

1

2
m4

d log W

d�
+ m2nR
k ·

dV

d�

= e
B

�W
E��h +

2

3
�p� . �79�

Turning to the energy-weighted stress, we have from Eq.
�74�

−
d

d�
�5r3 + 3r4� +

d

ds
�3r1 + 6r2� + 18r1
k ·

dV

d�

+ r2�30
k ·
dV

d�
−

3

2

d

ds
log W� − �5r3 + 3r4�

��−
d

d�
log nR + 3
k ·

dV

ds
� + r5�6
k ·

dV

d�

+
3

2

d

ds
log W� + 3m2p�
k ·

dV

d�

= 3e
B

�W
E��m1 + m2� , �80�

where the rk are given in Appendix A.

C. Nonrelativistic limit

We now present the fully nonrelativistic �NR�, �
= m / T �1 and V� �V���−1/2, form of our closed system.
Since labelling the rest-frame is somewhat inappropriate in
this limit, we use n	nR. We also use the common notation
�� 	b ·�.

In the NR limit, Eqs. �69�, �75�, �76�, and �78�–�80� be-
come after some manipulation

dn

dt
+ n � · V = 0, �81�
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mnb ·
dV

dt
+ ��p� + �p� − p���� log B = enE� , �82�

p�

d

dt
log� p�B2

n3 � + 2��q� + 2�q� − q���� log B = 0, �83�

p�

d

dt
log� p�

Bn
� + ��q� − 2q��� log B = 0, �84�

q�

d

dt
log�q�B3

n4 � +
3

2

p�

m
��

p�

n
= 0, �85�

q�

d

dt
log�q�

n2 � +
p�

m
��

p�

n
−

p��p

mn
�� log B = 0. �86�

The NR limit of our closure coincides with a bi-
Maxwellian MHD closure in which gyroviscous components
of the stress tensor are retained as presented by Ramos.13 As
such, the system produces dispersion relations whose nu-
merical coefficients coincide with those obtained through ki-
netic theory, and the system correctly predicts the onset of
the mirror and firehose instabilities.

D. Linear predictions

Having completed our closure, we now examine some
basic predictions of the linearized relativistic system. Linear-
izing Eqs. �15� and �69�–�74� about an isotropic equilibrium
with no heat flow, equal electron and ion equilibrium tem-
peratures, and nonrelativistic flow speed yields a lengthy set
of equations presented fully in Appendix A. We present the
following linearized version of Eq. �72� to compare with the
nonrelativistic limit of the same equation as an example:

− v�s� f��s� + 3
K3��s�
K2��s�

��n

n
+ �s� f��s� +

K3��s�
K2��s�

�v
�ps

p

+
2

3
�s

K4��s�
K3��s�

v
��ps

p
− 3�1 −

2

5

K4��s�
K3��s�K��s�

�cos���
�Q�s

p

+ 2
K4��s�

K3��s�K��s�
cos���

��Q�s

p
+ 2�s

K3��s�
K2��s�

k̂� · �v = 0,

�87�

− 3v�s
�n

n
+ �sv

�p�

p
−

6

5
cos���

Q�s

p
− 2 cos���

�Q�s

p

− 2�sk̂� · �v = 0, �88�

where v=� /k, k̂�=k� /k, cos���=k� /k, vA
2 =B2 /�0�mi

+me�n, subscript s denotes species, superscript T denotes a
sum over the species, and

f��s� = ��s +
K3��s�
K2��s�

�1 − �s
K1��s�
K2��s�

�� .

Using the full set of linear equations, we plot the phase
velocity squared versus �i �i.e., the inverse temperature� in
Fig. 1 for vA

2 =10−6, �=30°, and mi /me=1833. Also plotted in
Fig. 1 as the dashed lines are the linearized version of the

nonrelativistic Eqs. �81�–�86�. From lowest to highest phase
speed for large �, we have the slow magnetosonic, two ion
acoustic, shear Alfvén, fast magnetosonic, and two electron
acoustic modes.

For the plotted parameters, the electron modes are the
first to show significant deviation for increasing temperature
at roughly 100 keV. At this temperature, the nonrelativistic
theory begins to predict superluminal phase velocities for the
electron acoustic modes. Also of note, the phase velocity of
the shear and slow magnetosonic Alfvén modes behave quite
differently in the ultrarelativistic regime. In this regime, the
correct dispersion relation is

v2 � � �i + �e

8
�vA

2 ,

where the nonrelativistic theory would simply state v2�vA
2 .

VII. SUMMARY

Maxwell’s equations are closed in a magnetized plasma
when the four-vector current can be expressed in terms of the
stress tensor

T�� = �
species

T��,

where T�� is the stress tensor of the individual plasma spe-
cies. This closure procedure is given by Eq. �15� and later
equations.

Thus, a closed fluid description of plasma dynamics re-
lies on equations that fix the evolution of the stress tensor of
each plasma species. For this reason, the stress tensor is said
to provide the constitutive relation for a plasma fluid closure.
We obtain our description of the stress tensor, Eq. �34�, via
electromagnetic constraints rather than the simpler MHD
thermodynamic arguments

T�� = p��� + hU�U� + 1
3�p�2k�k� − e���

+ Q��k�U� + U�k�� , �89�

where b�� and e�� are approximate projection operators in-

FIG. 1. Phase velocity squared vs �i=mi /T for the general linearized evo-
lution equations �solid� and their nonrelativistic limit �dashed�. vA

2 =10−6, �
=30°, and mi /me=1833.
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troduced in Sec. III. The fluid 4-velocity, U�, and the heat
flow, Q�k�= �q� +q��k�, are constrained by

F�
�U� = 0, �90�

e�
�k� = 0, �91�

U�k� = 0. �92�

Equation �90� provides the first of our evolutionary con-
straints by reproducing the familiar E�B drift. We still need
evolution equations for the two remaining free components
of the flow, ��, which are the rest-frame density, nR, and the
parallel flow, V�. Also, from the stress tensor, we need to
evolve p= �p� +2p�� /3, �p= p� − p�, h, and the two compo-
nents of the rest-frame heat flow, q� and q�.

Quasineutrality, Eq. �17�, requires that nR be the same
for all species, while the other quantities in the stress tensor
are free to vary from species to species. Thus, we choose the
following six parameters nR, V�, p�, p�, q�, and q� as our
dynamical variables. The evolution equations for the six dy-
namical variables of our system in various forms are given in
Sec. VI.

At this point in the closure, we have ten scalar auxiliary
parameters which are not fixed. These are the enthalpy den-
sity, h, the four scalar parameters, mk, of the stress flow, and
the five scalar parameters, rk, of the energy-weighted stress.
We express these auxiliary parameters via a representative
distribution, which is parameterized by our dynamical vari-
ables. Thus, the distribution evolves according to Eqs.
�69�–�74�, and our auxiliary parameters can be expressed in
terms of the dynamical variables, as presented in Appendix
A.

Our closure provides a more accurate physical descrip-
tion of relativistic, magnetized fluid plasmas than previously
presented by Hazeltine and Mahajan.10 The system allows
detailed study of various astrophysical and laboratory plas-
mas at a more realistic level than MHD. Also, in the nonrel-
ativistic limit, our closure reduces to a set of equations pre-
sented by Ramos13 obtained via a bi-Maxwellian closure in
which gyroviscous terms of the stress tensor are retained. In
forthcoming papers, we will explore the thermodynamic
properties of an imperfect relativistic plasma through the in-
clusion of collisions.
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APPENDIX A: AUXILIARY PARAMETERS

Here, we list the nonvanishing rest-frame moments of
the third and fourth rank in terms of the auxiliary parameters
mk and rk and express the auxiliary parameters of our system
in terms of the dynamical variables. We orient our rest-frame
such that B= �0,0 ,B�.

The nonvanishing components of the third rank mo-
ments are

MR
000 = m2nR + 3m1 + m2,

MR
003 = 5m3 − 1

3m4,

MR
011 = MR

022 = m1,

MR
033 = m1 + m2,

MR
113 = MR

223 = m3 − 2
3m4,

MR
333 = 3m3 + m4.

And for the fourth rank, we have

RR
0000 = m2�u + 3p� + 15r1 + 10r2 + 4r5,

RR
0011 = RR

0022 = m2p� + 5r1 + r2 + r5,

RR
0033 = m2p� + 5r1 + 8r2 + 2r5,

RR
0003 = m2Q� − 3r3 − 3r4,

RR
0113 = RR

0223 = r3,

RR
0333 = − 5r3 − 3r4,

RR
1111 = RR

2222 = 3RR
1122 = 3r1,

RR
1133 = RR

2233 = r1 + r2 + r5,

RR
3333 = 3r1 + 6r2.

The auxiliary parameters of our system are determined
by evaluating the rest frame moments above via our distri-
bution function, Eq. �60�,

m1 = m�p
K3

K2
−

1

3
�p

K4

K3
+

�p2

p

��1

6

K4K3

K2
2 −

4

9

K4
2

K3K2
+

5

18

K5

K2
�� ,

m2 = m�p�K4

K3
−

1

3

�p

p
� K4

2

K3K2
−

K5

K2
�� ,

m3 =
mQ�

�
�1 −

2

3

K4

KK3

1 + 2Q

2 + 3Q� ,

m4 =
mQ�

�

K4

KK3

2�1 − Q�
2 + 3Q

.

r1 =
m

nR
�p2K3

K2
−

2

3
p�p

K4

K3
+ �p2

��1

6

K4K3

K2
2 −

5

9

K4
2

K3K2
+

1

2

K5

K2
�� ,
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r2 =
1

2

m

nR
�2p�p

K4

K3
+ �p2�−

2

3

K4
2

K3K2
+

K5

K2
�� ,

r3 =
m2

�

K4

K3K
Q��K2 −

2

2 + 3Q

K5

K4
� ,

r4 = −
2

3

m2

�

K4

K3K
Q��4K2 −

5 + 3Q

2 + 3Q

K5

K4
� ,

r5 = −
1

2

m

nR
�p2K5

K2
,

where

K2��s� =
K3��s�
K2��s�

−
K5��s�
K4��s�

.

We can also now express the enthalpy density in terms
of our dynamical variables by looking at TR

00=h− p,

h = mnR
K3

K2
.

APPENDIX B: FOURTH RANK SYMMETRIZATION

The construction of R��
� will involve tensors of the
three following forms, aside from fully asymmetric and fully
symmetric:

1. Symmetric times asymmetric, i.e., ���U
k�. This form
will have 12 terms in the symmetrization

A1
���
�� = A��
� + A���
 + A��
� + A���
 + A�
��

+ A�
�� + A���
 + A��
� + A�
�� + A�
��

+ A�
�� + A�
��.

2. Symmetric times symmetric, i.e., ���U
U�. This form
will have six terms,

A2
���
�� = A��
� + A�
�� + A���
 + A�
�� + A���
 + A�
��.

For the special case of a fourth rank composed of the
two identical symmetric second rank tensors, i.e.,
����
�, only the first three terms contribute to symme-
trization.

3. Third rank symmetric times a four-vector, i.e.,
k�U�U
U�. This form has four terms,

A3
���
�� = A��
� + A��
� + A
��� + A���
.

APPENDIX C: LINEARIZED EVOLUTION
EQUATIONS

Here, we present the full set of linearized Eqs. �15� and
�69�–�74� about an isotropic equilibrium with no heat flow,
equal electron and ion equilibrium temperatures, and nonrel-
ativistic flow speed,

v
�n

n
− cos����v� − k̂� · �v = 0, �C1�

�s
K3��s�
K2��s�

v�v� − cos���
�ps

p
−

2

3
cos���

��ps

p
+ v

�Q�s

p

=
iqsn

kp
E� , �C2�

�sf��s�v
�n

n
+ �1 − �sf��s��v

�ps

p
+ cos���

�Q�s

p
= 0, �C3�

− v�s� f��s� + 3
K3��s�
K2��s�

��n

n
+ �s� f��s� +

K3��s�
K2��s�

�v
�ps

p

+
2

3
�s

K4��s�
K3��s�

v
��ps

p
− 3�1 −

2

5

K4��s�
K3��s�K��s�

�
�cos���

�Q�s

p
+ 2
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