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A sharp boundary model for the vertical and kink stability
of large aspect-ratio vertically elongated tokamak plasmas
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A relatively straightforward version of the well-known sharp boundary model is developed in order
to investigate the ideal n=0 and n=1 stability of large aspect-ratio, high-(, tokamak plasmas with
vertically elongated poloidal cross sections which are surrounded by either ideal, resistive, or partial
conducting walls. All calculations made using the model reduce to comparatively simple matrix
eigenvalue problems. Various example calculations are described. © 2008 American Institute of

Physics. [DOL: 10.1063/1.2975359]

I. INTRODUCTION

The promising “advanced tokamak” concept is only eco-
nomically viable provided that the S-limit associated with
the n=1 ideal “kink” instability is raised substantially in the
presence of a close-fitting ideal wall.'™ (Here, B is the ratio
of the mean energy density of the plasma to that of the mag-
netic field, and n the toroidal mode number of the instabil-
ity.) Furthermore, advanced tokamaks invariably employ
plasma equilibria whose poloidal cross sections are highly
elongated (in the vertical direction). Such elongation has a
beneficial effect on both plasma confinement and stability,
but is limited by the n=0 ideal “vertical” instability.4 Fortu-
nately, this mode can also be stabilized by a close-fitting
ideal wall.”

The “sharp-boundary” model of a tokamak plasma, in
which all of the equilibrium plasma current is concentrated at
the plasma boundary, was first proposed by Freidberg and
Haas,® and was subsequently elaborated by many researchers
(see Ref. 7 and references therein). Within the context of this
model, an analytic treatment of ideal n=0 and n=1 stability
yields comparatively simple matrix eigenvalue equations,
even when a realistic plasma equilibria (i.e., high-B, strongly
elongated, equilibria) are employed. The model is far simpler
(but, obviously, less accurate) than a direct numerical
simulation.®'> On the other hand, it is much more realistic
than conventional analytic models which treat the plasma as
a low-B periodic cylinder.13 The advantages of the sharp
boundary model, in this respect, were recently pointed out in
Ref. 14, where the model was used to analyze the feedback
stabilization of the resistive wall mode in large aspect-ratio,
high-B, tokamak plasmas with circular poloidal cross sec-
tions.

The main limitations of the sharp boundary model are
that it cannot deal with high-/; plasmas (where [; is the
plasma self-inductance), and neglects toroidal coupling (i.e.,
coupling of different poloidal harmonics due solely to the
finite aspect ratio of the plasma). Hence, we would not ex-
pect the model to give accurate results for plasmas with
strongly peaked current profiles, or with low aspect ratios.
On the other hand, the sharp boundary model calculates the
plasma eigenfunction in a completely self-consistent manner
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(i.e., the shape of the plasma eigenfunction at the boundary is
not prescribed prior to the calculation), unlike the well-
known VALEN code which (in its standard single-mode incar-
nation) employs an eigenfunction with a prescribed shape at
the plasma boundary.12 The sharp boundary model is supe-
rior to the low-B cylindrical model because it deals with
pressure gradient driven, rather than current gradient driven,
instabilities, and also yields realistic mode eigenfunctions
which “balloon” on the outboard side the plasma. (Of course,
the cylindrical mode is incapable of distinguishing between
the outboard and inboard sides of the plasma.)

In this paper, we employ a version of the sharp boundary
model developed by Freidberg and Haas' for plasmas with
elliptical poloidal cross sections. This model is used to ana-
lyze the ideal n=0 and n=1 stability of large aspect ratio
(i.e., €<1, where € is the inverse aspect ratio), high-3 (i.e.,
B~ €), vertically elongated, tokamak plasmas which are sur-
rounded either by ideal walls or by thin resistive walls with
poloidally varying electrical resistivity. Our treatment is
more general than that of Freidberg and Haas, first because
we investigate the stability of the n=0 vertical mode, as well
as n>0 kink modes, and second because we also incorporate
resistive walls into the analysis.

Il. COORDINATES

Consider a large aspect-ratio, axisymmetric, toroidal
plasma equilibrium of major radius R. Let x and z be hori-
zontal and vertical Cartesian coordinates, respectively, in the
poloidal plane, which are defined such that the geometric
center of the plasma lies at x=z=0. Furthermore, let w(x,z)
be a label for a set of nested axisymmetric toroidal surfaces,
and v(x,z) an anglelike poloidal coordinate. Suppose that'?

x=aVk* -1 sinh u cos v, (1)
z=aVk>—1 cosh u sin v, (2)

where a is the plasma minor radius, and = 1. It follows that
the pw=const surfaces are concentric vertically elongated el-
lipses. The innermost (zero volume) surface corresponds to
u=0, whereas the outermost (infinite volume) surface corre-
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sponds to w=02. Note that Vu-Vv=0 everywhere in the po-
loidal plane. It is easily demonstrated that |Vu|=|Vv|
=(ah)™', where

h(u,v) = VK — 1(sinh? w + cos® v)"/2. (3)

Moreover, if ¢ is the toroidal angle, then [V¢|=R"!, assum-
ing that e=a/R<<1. A general vector can be written A
=A e, +Ae,+A e, where eM=V,u,/|V,u, , etc. In the follow-
ing, we employ u, v, ¢ as a set of orthogonal curvilinear
coordinates.

lll. PLASMA EQUILIBRIUM

Let the plasma boundary coincide with the toroidal sur-
face w=u,, where u,=tanh™'(x~'). This implies that, in the
poloidal plane, the plasma is bounded by the vertically elon-
gated ellipse x=a cos v, z=«a sin v. It follows that the pa-
rameter k represents the plasma vertical elongation.

The central assumption of the sharp boundary model is
that the plasma equilibrium is current-free with a constant
internal pressure P. It immediately follows that there is zero
equilibrium poloidal magnetic field inside the plasma. How-
ever, an equilibrium poloidal field is generated outside the
plasma by a toroidal sheet current flowing on the boundary.

Let B and B be the equilibrium magnetic fields inside
and outside the plasma, respectively. We can write B,

=B;/(1+x/R) and l§¢=Bo/(1+x/R), where B;, B, are con-
stants. On the plasma boundary, B#zé#:BV:O and é,,
=1§V(v). Pressure balance across the boundary yields6

I Fee R
2uoP + : = . + B3, 4
#o 1 +ecosv 1 +ecosv v “

It is convenient to adopt the high-8 [i.e., B~ O(e), rather
than B~ O(€?)] ordering scheme S~ €, (B,~B,)/B,~ €, and
B+B7/B2~1~ €. Here, B=2uyP/B>. Expansion of Eq. (4)
to lowest order in € yieldsé‘15

L\2
( B, ) =A+2(Ble)cos v+ Ole), (5)
€B,

where A is an O(1) constant.
The safety factor at the plasma boundary takes the
form®'>

% h,(v) dv
qu=P ————

- +O(e), (6)
B,(v)/eB,2™

whereas the toroidal plasma current is written

pol = jghaw)éxv)du. (7)
Here,
h,(v) = h(u,, v) =[1 + (k* = 1)cos? v]'/2. (8)

IV. PERTURBED PLASMA EQUILIBRIUM

Consider a marginally stable, ideal plasma instability.
(We can assume that the mode is marginally stable because
we are trying to find its stability boundary, rather than its
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growth rate.) In accordance with the central assumption of
the sharp boundary model, the perturbed current and pressure
are both zero inside the plasma. Hence, we can write the
perturbed magnetic field inside and outside the plasma in the

form 6B=iVV and SE:iVV, respectively, where Vv
=V2V=0.

According to Ref. 16, the appropriate matching condi-
tions at the plasma boundary (u=pu,) are

e, oB=B-Vé-te,-(e,-V)B, 9)
e, oB=B-Vié-¢ée, (e, V)B, (10)

B-6B-B-B=-[t, V(BY2)-é, V(B2)], (11)

where &(v, ¢) is the normal plasma displacement. The first
two conditions ensure that the perturbed plasma boundary
remains a magnetic flux surface, whereas the final condition
ensures that it remains in pressure balance.

It is easily demonstrated that, to lowest order in €,

%
-8B =i(ah,)'—, 12
e, i(ah,) P (12)
. av
-8B =i(ah,)™'—, 13
e, i(ah,) o (13)
B, 0¢
B-Vi= 2= 14
3 R 96 (14)
B V§~<5i+ﬂi>§ (15)
ah,dv R dp)”’
e, -(e,-V)B=0, (16)
w\Cu
. 1 4B,
e, (e, V)B__E P (17)
B,V
B-oB=~i2"—, (18)
R d¢
. . [B,a B,d\
B~5B:1< —+——) , (19)
ah,dv R d¢
B?
e, V(BY2) = - hﬁ; cos v, (20)
. B B
e#.V(BZ/Z)z—h£<ahV2+Eocos V). (21)

Thus, the matching conditions at the plasma boundary reduce
to

i— = eB,h,—, (22)
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v [

i—= B—+eBh & (23)
I d)

(a0 WV é2
i\B,—+e€B,h,— |V—-ieB,h,— 2+eBBcosv é.
v d> a6~ "\n2

(24)

V. NORMALIZATION

It is convenient to normalize V, V to aeB,, & to a, éy to
€B,, and I to aeB,/ . Using this normalization scheme,
the plasma equilibrium is described by the following set of
equations: 13

aQ(a) = mq,B'"7, (25)
B h,(v)dv
Ola) = f [1-a?sin*(v/2)]"?° (26)
A=2/§(%—1>, (27)
a
=(A+2Bcos v)'"2, (28)

h(V)B,(V)dv, (29)

I¢=2f
0

where ,[AS’ B/e. Note that, at fixed B, q,—* as a—1,
whereas [, remains finite. This is a consequence of a slight
peculiarity of sharp boundary equ111brla Namely, at fixed S,
there is a minimum plasma current required to maintain the
equilibrium, irrespective of the value of the edge-q.

The normalized matching conditions at the plasma
boundary are

V9
=h, 9% (30)
f9M i’
v (.9 9 B
i——(BV—+ha—>§+ “¢, (31)
u v 0] v

(a0 a\. . v (B
i\B,—+h,— |V—-ih,— = —2+[5'c0s1/ & (32)
dv h

2 ‘o ;
Finally, the potentials V and 1% satisfy
32_‘/ + 072_\/ =0 (33)
Put A
VAV (34)
Pu Ay
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VIi. BOUNDARY CONDITIONS

Suppose that all perturbed quantities vary toroidally as
exp(—ing), where n is the toroidal mode number.

Now, in order to ensure that the perturbed magnetic field
is finite and continuous at the center of the plasma (i.e., u
—0), the potential V(w, v, ¢) must satisfy the boundary con-
ditions

V(0,v,¢) =V(0,7m—v,¢), (35)

ﬂ/(o’ V,(,b) == ﬂ/(o’ﬂ-_ V’d))' (36)
o au

This follows because the u=0 surface corresponds to the
zero minor radius ellipse x=0, y=sin v. The most general
solution of Eq. (33) which is consistent with the above con-
straints is'’

V(w,v, ) = > {a,, cosh(mu)cos[m(v— m/2)]

+ b, sinh(mu)sin[m(v— 7/2)}e ™%, (37)

where the a,, and b,, are constants.
Assuming the existence of an ideal wall which coincides
with the toroidal surface u=pu,, (where w, > u,), the poten-

tial V satisfies the boundary condition

v
<£) =0 (38)

H=H,

The most general solution of Eq. (34) which is consistent
with this constraint is

V(. v,$) = >, @, cosh[m(p — p,)]e! "9, (39)

m

where the d,, are constants.

It should be noted that the wall does not, in general, lie
on an equilibrium magnetic flux surface. However, this is not
a problem because real walls are resistive in nature, and only
act as ideal conductors on time scales significantly shorter
than their characteristic L/R times. In modern-day tokamaks,
the lifetime of the discharge is always much longer than the
L/R time of the wall, while the inverse growth rate of an
ideal plasma instability is always very much shorter than this
time. Hence, the wall generally has no influence on the
plasma equilibrium, but acts as a perfect conductor as far as
ideal instabilities are concerned. In particular, the equilib-
rium magnetic field has sufficient time to fully penetrate the
wall, and so there is no requirement that the wall should lie
on an equilibrium magnetic flux surface.

VIl. IDEAL STABILITY
Let

{v.d) = 2 &, (40)

m#0

where the &, are constants.
The first matching condition [Eq.(30)] yields
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> {a,,m sinh(mu,)cos[m(v — 7/2)]

+ b,,m cosh(mu,)sin[m(v— 7/2) ]}

= 2 eivamm’gm” (41)
where
g dv
G =— | nhy(v)cos[(m' —m)v]—. (42)
0 e

It follows that

e1m7'r/2

E Gmm’§m’? (43)

ap=—""""=
" m sinh(mpu,) o

ielmﬂ'/2

E Gmm’gm’ . (44)

" m cosh(mu,) -
Note that ay and b, are singular unless'

E GOm’gm’ =0. (45)

The above constraint ensures that the plasma perturbation is
incompressible, and therefore maximally unstable, and al-
lows us to set ag=by=0 without loss of generality. Hence,
from Eq. (37) and Egs. (43)—(45),

V(Ma, v, ¢) — E ei(’”"_"‘ﬁ)|m|"'

m#0
1+ 2=
X _ 2m| mm' _ 2|m| G—mm’ gm’» (46)
1-¢ 1-¢
v .
a(ﬂa, v, d)) = 2 el(my_n¢)Gm'1z’§m” (47)
m#0

where {=(k—-1)/(k+1).
The second matching condition [Eq. (31)] gives

E aAmm Sil’lh[l’l’l(,u,a - /*Lw)]eimv = 2 eimvémm’gm’ 3 (48)

’
m m,m

where
G,y = f W[mé,,(v) — nh,(v)]cos[(m’ —m)v]d;v . (49)
0

It follows that

- ! (50)
= o sinhlm (g — )]

Again, the constraint (45) allows us to set d,,=0 (note that
Gom=Gon)- Hence, from Egs. (39) and (50), we obtain

- ) 147220
V(/'La’ V’ ¢) =- 2 el('nV_n¢)|m|_1<—W)Gmm’gml’ (51)

—2|\m
m#0 1—I‘W‘|
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oV ‘ .
Zy%u@=2eM”W%W%, (52)
m#0

where r,,=exp(u,,— u,) is approximately the ratio of the mi-
nor radius of the wall to that of the plasma.

The final matching condition [Eq. (32)] can be combined
with Egs. (46) and (51) to give

Eme’gm’=O7 (53)
where!
TSP CFel
me’ = E ka|k|_l|: ka’ + —G—km’
o 1 - 2K 1 - 2K

+ 2 Gl k'L + 725001 = 721G = Hop
k#0

(54)

and

T B‘Z R
H,, = Kf (h_; + B cos v)cos[(m’ —m)v]dv. (55)

0 a

Observe that the so-called force matrix F,,,,, is real and sym-
metric.

The stability problem reduces to the solution of the
eigenmode equation

E me’gm’ = )\gm» (56)

m

subject to the constraint =,/ G, &, =0. (Of course, only the
A =0 solution, which corresponds to the marginal stable case,
is physical.) This is equivalent to solving the unconstrained
eigenmode equation]5

Zimm’zm’ =)\Zm’ (57)

!
m

where ﬁmm’ZEk,lekalle“ and

GOmGOm !

P 2
ZkGOk

S,

mm'

) (58)

mm' =

with §,=2,,/P,,,1Z,. Note that the fmmr matrix is real and
symmetric, which guarantees that all of its eigenvalues are
real. According to the ideal energy principle, the plasma is
ideally unstable if any of the eigenvalues of Eq. (57) are
negative, and stable otherwise.'®

The n=0 mode is a special case, since the constraint (45)
is automatically satisfied due to the fact that the G, are all
zero. In this situation, the plasma perturbation can be made
incompressible by simply setting &,=0. Hence, the eigen-
mode equation for the n=0 mode is

E me’gm’ = Agm (59)

m' #0

for m#0.
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VIil. RESISTIVE WALL MODE STABILITY

Suppose that, instead of being ideal, the wall surround-
ing the plasma is thin and resistive. Let the inner and outer
boundaries of the wall lie on the toroidal surfaces u=pu,, and
m=pm,+ 0w, respectively, where 0<du,, <pu,. Further-
more, let the wall electrical conductivity be o, (v). In the
following, we shall examine the stability of the so-called
resistive wall mode,17 which grows on the L/R time of the
wall.

The Ampere—-Maxwell equation gives VX é‘ﬁ:,u,oj,
where j is the current density in the wall. Taking the ¢ com-
ponent of this equation, and integrating (in ) across the
wall, we obtain

Jﬂﬁﬂ a‘lh"{ AhoB,) Hh3B,)
L i v

}d# =poply  (60)

W

where,

Mg+ Oply,
To(n.) = f ol (61)
%

w

In the limit in which the wall thickness is negligible, the
above equation reduces to

pod o= (ah,)" (8B, Yoot v, (62)

where h,(v)=h(u,,,v).

Inside the wall, the u component of the curl of Ohm’s
law gives —y&I}#:e#-V X (07'j), where y is the mode
growth rate. This equation yields

Aoy X))

—y8B,=a'| I,
YOPu Y v ¢

(63)

Now, it is easily demonstrated that j,~ €j4. Hence, the sec-
ond term on the right-hand side of the above equation can be
neglected. Integrating (in w) across the wall, and making use
of the well-known “thin-shell approximation” (which basi-

cally involves neglecting the u variation of 5B  across the
wall'®), we obtain

~ J ~
~ to YO, 0B ), = (ah,)™ 5{(Uwahw)"[5BV]Z3j+5"”‘}, (64)

where use has been made of Eq. (62). Finally, since B
=iV V, the boundary condition at the wall becomes

A | st Omy
J A%
, v v u,

where \(v)=yuoa® S, 0, (V)H,(v).
In the vacuum region inside the wall, we can write

av
o

\A/('u’ V)= 2 [&me—\ml(,u—,uw) + l;melm\(u—uw)]eimv, (66)
m#0

where d,, and l;m are constants, and we have neglected the
common exp(—in¢) dependence of perturbed quantities, for
the sake of simplicity. The solution outside the wall which is
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well-behaved as u— %, and satisfies the boundary condition
that 6B P be continuous across the wall, is

V(p,v) = 2 [d,e"e) = b erlmlemmleinv - (67)
m#0

It follows from Eq. (65) that

2> mb,e" ==\, sgn(m)(-a, +b,)e"™.  (68)
m#0 m#0

Hence, we obtain

2mb,,=— > J,sgn(m’)(=a, +b,,), (69)
m'#0
where
d
T = 35 N(w)cos[(m' — m)v]—. (70)
21

Note that, for the sake of simplicity, we have assumed that
AN=v)=\(p).

According to the above analysis, in the presence of a
thin resistive wall, Eq. (51) generalizes to give

‘A/(:u“a’ v, d)) == 2 ei(mv_m/))Kmkékm'gm/ ’ (71)
m#0,k#0
where the vacuum matrix K, is specified by

Ek#OLkakm’=Mmm’ (fOI' m,m’ 7&0), with

Ly = 2mrlv’f‘5mm, + T’ sgn(m’)(r‘m,‘ - r:v"",‘), (72)

w

M, =2 sgn(m)r‘"“'&mm, + Jmmrm’_l(rlv’f'l + rv—vlm'|). (73)

w

Thus, the expression (54) for the force matrix generalizes to

1+ M 2(= ¥
me’ = 2 (;,’cm|k|_l km’ T G—km'
0 1= 1=
+ E ékml<klélm’ - Hmm’ . (74)

k#0,1#0

The n>0 resistive wall mode stability problem is writ-
ten

Eﬁmm’(’)/)zm’=0’ (75)

!
m

where F,,, =2 PuF 0P imrs En=2Pym 2y, and the P,
matrix is defined in Eq. (58). The above equation is solved
by searching for the largest value of y which sets the deter-

minant of the fmm, matrix to zero. Now, it is easily demon-
strated that the vacuum matrix K, is real and symmetric. It

follows that the F e Matrix is also real and symmetric. This
ensures that the growth rate y of the resistive wall mode is
real; i.e., the mode always grows or decays without oscilla-
tion. Hence, solving Eq. (75) only involves a one-
dimensional search along the real axis in y-space. The n=0
resistive wall mode stability problem takes the form
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FIG. 1. B-limit for ideal n=1 stability vs « for plasma equilibria with r,,
=10.0. The solid, short-dashed, long-dashed, dot-short-dashed, and dot-
long-dashed curves correspond to ¢,=1.25, 1.5, 2.0, 4.0, and 8.0, respec-
tively. The stable region lies below the curves.

2 me/('}’)fm/ =0

m'#0

(76)

for m # 0. The solution to the problem proceeds in an analo-
gous manner to the n>0 case.

Suppose, finally, that the wall is partial. In other words,
let the wall have the uniform conductivity o,, but only be
present in the angular range v,>|v| >v,, where m=v,>v
>p,=0 (i.e., let g,,=0 outside this range). This implies that
the wall matrix J,,,,, takes the form

Tt = yrwfvz 2 (v)cos[ (m — m')v]d—v, (77)

Y1

where 7,,=uya’du,,0,, is the wall’s characteristic L/R time.

IX. NUMERICAL RESULTS

Figure 1 shows the SB-limit for the ideal n=1 mode as a
function of the plasma elongation . Calculations are per-
formed for free-boundary plasmas (i.e., r,,> 1) with various
different values of the edge-qg. The stable region lies below
the curves. It can be seen that plasma elongation is initially
stabilizing (i.e., as k increases above unity there is an initial
increase in the B-limit), but that there is a critical value of the
elongation beyond which the n=1 mode becomes unstable
for all (positive) values of B. Note that the region of stability
in k-fB space shrinks to zero as g,— 1, indicating that the
n=1 mode is universally unstable for ¢,<1. Finally, the
stable region increases in area, eventually asymyptoting to
some fixed limit, as g,— . Indeed, as g, — %, the maximum
B-limit, B/e~0.37, is obtained when x~2.2. All of these
conclusions are in accordance with the previously published
results of Friedberg and Haas."

Figure 2 shows the SB-limit for the ideal n=1 mode as a
function of the plasma elongation . Calculations are per-

Phys. Plasmas 15, 092502 (2008)

LI L L I Y L L L LY L B B
B ./'/ ~ T

L . 1

i
1 1.5 2 2.9 3

3.5
K

FIG. 2. B-limit for ideal n=1 stability vs « for plasma equilibria with ¢,
=2.0. The solid, short-dashed, long-dashed, and dot-short-dashed, and dot-
long-dashed curves correspond to r,=10.0, 1.6, 1.5, 1.4, and 1.3, respec-
tively. The stable region lies below the curves.

formed for plasma equilibria characterized by ¢,=2 and vari-
ous different values of the wall radius r,,. It can be seen that
the presence of a close-fitting (i.e., r,,<1.5) ideal wall has a
significant stabilizing effect on the n=1 mode. Indeed, the
region of stability becomes infinite in extent in - space as
r,— 1, indicating that the n=1 is universally stable when
there is no vacuum gap between the wall and the plasma
boundary. This result is well known.'®

Figure 3 shows a typical n=1 ideal eigenfunction. It can
be seen that the mode amplitude is much larger on the out-
board side of the plasma (i.e., |v| < 7/2) than on the inboard

FIG. 3. n=1 ideal eigenfunctions &»,0) and &v,/2), calculated for g,
=2.0, B/€=0.3, k=2.0, and r,,=10.0.
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FIG. 4. k-limit for ideal n=0 stability vs /e for plasma equilibria with
q,=2.0. The solid, short-dashed, long-dashed, dot-short-dashed, and dot-
long-dashed curves correspond to r,,=10.0, 5.0, 4.0, 3.0, and 2.0, respec-
tively. In the case in which there are two stability curves, the stable region
lies between the curves. Otherwise, the stable region lies below the curves.

side. This “ballooning” of the mode on the outboard mid-
plane is characteristic of a pressure-driven kink-mode.'®

Figure 4 shows the elongation limit for the ideal n=0
mode versus (/€ for plasmas with various values of r,,.
(Note that, since n=0 stability boundaries are found to ex-
hibit very little variation with the edge-¢, all of our calcula-
tions can be performed using g,=2 with very little loss in
generality.) It is clear that, in the presence of a very remote
wall (i.e., r,,=10.0), the n=0 mode is driven unstable by
fairly small values of the plasma elongation (i.e., k>1.1).
However, as the wall is moved closer to the plasma, the
mode rapidly becomes much more stable. Indeed, by the
time r,=2.0—which still corresponds to a fairly remote
wall—the n=0 mode can only be driven unstable by com-
paratively large values of the plasma elongation (i.e., x
>2.5). We conclude that the n=0 “vertical” instability is
very easily stabilized by the presence of a close-fitting ideal
wall. (Note that the degree of stabilization is much greater
than that exhibited in Fig. 2 for the n=1 mode.)

Figure 5 shows a typical n=0 ideal eigenfunction, veri-
fying that the mode is indeed a vertical instability.

Figure 6 shows the growth rate of the n=1 resistive wall
mode as a function of B/e, calculated for a realistically
shaped plasma equilibrium surrounded by various partial re-
sistive walls. In these calculations, the walls contain a toroi-
dal gap centered on the inboard midplane (i.e., v;=0, »,
=fm). Cases are shown for various values of the fractional
wall coverage f. Now, we expect the resistive wall mode to
become unstable as soon as the ideal kink mode becomes
unstable in the absence of a wall.'” This stability limit is
known as the no-wall limit. Is clear, from Fig. 5, that the
no-wall B-limit is independent of the degree of wall cover-
age. This is as expected, since a no-wall stability limit obvi-
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FIG. 5. n=0 ideal eigenfunction &(v,/2), calculated for ¢,=2.0, B/e€
=0.2, k=2.0, and r,,=10.0.

ously cannot depend on the properties of an absent wall. We
also expect the growth rate of the resistive wall mode to tend
to infinity as we approach the limit in which the ideal kink
mode becomes unstable in the presence of an ideal wall. This
stability limit is known as the perfect-wall limit. It can be
seen, from Fig. 5, that the perfect-wall B-limit does depend
on the degree of wall coverage, becoming smaller as the
coverage is reduced. This, again, is as expected.

Figure 7 shows the typical variation of the perfect-wall
B-limit for the n=1 kink instability with the degree of wall
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FIG. 6. Growth rate of the n=1 resistive wall mode as a function of S/e€,
calculated for ¢,=4.0, k=2.0, and r,=1.4. The solid, short-dashed, long-
dashed, and dot-dashed curves correspond to f=1.0, 0.75, 0.50, and 0.25,
respectively.
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FIG. 7. Perfect-wall B-limit for the n=1 kink stability as a function of
fractional wall coverage f, calculated for ¢,=4.0, k=2.0, and r,,=1.4. The
solid and dashed curves correspond to the cases where the gap in the wall is
centered on the inboard and outboard midplanes, respectively. The stable
region lies below the curves.

coverage. Two cases are shown: the first where the toroidal
gap in the wall is centered on the inboard midplane (i.e.,
v,=0, v,=7f), and the second where the gap is centered on
the outboard midplane [i.e., v;=(1-f)m, v,=m7]. It can be
seen that, in both cases, it is possible to remove approxi-
mately 20% of the wall without appreciably affecting the
B-limit. On the other hand, removal of more than 20% of the
wall causes a degradation in the B-limit. Observe that the
difference between having the gap on the outboard and the
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FIG. 8. Perfect-wall «-limit for n=0 vertical stability as a function of frac-
tional wall coverage f, calculated for ¢,=2.0, and B/ €=0.5. The solid, short-
dashed, long-dashed, and dot-dashed curves correspond to r,,=2.0, 2.5, 3.0,
and 3.5, respectively. The stable region lies between the upper and lower
curves.
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inboard mid-planes is largest when the degree of wall cover-
age is small. In this situation, a wall segment centered on the
outboard midplane has a significantly greater stabilizing ef-
fect on the n=1 mode than one centered on the inboard mid-
plane. This is, of course, a manifestation of the fact that the
n=1 eigenfunction balloons on the outboard side of the
plasma (see Fig. 3).

Finally, Fig. 8 shows the typical variation of the perfect-
wall elongation limit for the n=0 vertical instability with the
degree of wall coverage. In this calculation, the wall consists
of two segments: one directly above the plasma and one
directly below [i.e., v;=(1-f)7/2, v,=(1+f)7/2]. Cases
are shown for various different wall positions. It can be seen
that a relatively distant wall (i.e., r,,=2.0) is capable of sta-
bilizing the vertical instability, even when up to 60% of the
wall is removed (at the inboard and outboard midplanes).
However, the ability of the wall to stabilize the mode is
significantly degraded if more than 60% of it is removed, or
if it is moved further away from the plasma.

X. SUMMARY

A simple, but useful, version of the well-known sharp
boundary model has been developed in order to study the
n=0 and n=1 stability of large aspect-ratio, high-8 tokamak
plasmas with vertically elongated poloidal cross sections
which are surrounded by either ideal, resistive, or partial
conducting walls. Our model can be regarded as a version of
the classic model of Freidberg and Haas"® which has been
extended to deal with n=0 modes, resistive walls, and partial
walls. Alternatively, it can be thought of as a version of the
recently published model of Jhang14 which has been up-
graded to take n=0 modes and plasma elongation into ac-
count. Within the context of our model, all calculations re-
duce to comparatively simple matrix eigenvalue problems.
Although the model is not as accurate as a direct numerical
simulation, it is far simpler to formulate, and much less time-
consuming to use, and is therefore ideal for scoping studies
of the effect of plasma elongation and different wall configu-
rations on n=0 and n=1 stability. Moreover, the model is far
more realistic than a conventional analytic model which
treats the plasma as a low-8 periodic cylinder, since it is
capable of distinguishing between the inboard and outboard
sides of the plasma.
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