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A systematic fluid theory of nonlinear magnetic island dynamics in conventional low-�, large
aspect-ratio, circular cross-section tokamak plasmas is developed using an extended
magnetohydrodynamics model that incorporates diamagnetic flows, ion gyroviscosity, fast parallel
electron heat transport, the ion sound wave, the drift wave, and average magnetic field-line
curvature. The model excludes the compressible Alfvén wave, geodesic field-line curvature,
neoclassical effects, and ion Landau damping. A collisional closure is used for plasma dynamics
parallel to the magnetic field. Two distinct branches of island solutions are found, namely the
“sonic” and “hypersonic” branches. Both branches are investigated analytically, using suitable
ordering schemes, and in each case the problem is reduced to a relatively simple set of nonlinear
differential equations that can be solved numerically via iteration. The solution determines the island
phase velocity, relative to the plasma, and the effect of local currents on the island stability. Sonic
islands are relatively wide, flatten both the temperature and density profiles, and tend to propagate
close to the local ion fluid velocity. Hypersonic islands, on the other hand, are relatively narrow,
only flatten the temperature profile, radiate drift-acoustic waves, and tend to propagate close to the
local electron fluid velocity. The hypersonic solution branch ceases to exist above a critical island
width. Under normal circumstances, both types of island are stabilized by local ion polarization
currents. © 2008 American Institute of Physics. �DOI: 10.1063/1.2829757�

I. INTRODUCTION

A magnetic confinement device is designed to trap a
thermonuclear plasma on a set of toroidally nested magnetic
flux-surfaces.1 Heat and particles flow around flux-surfaces
relatively rapidly due to the free streaming of charged par-
ticles along magnetic field-lines. On the other hand, heat and
particles are only able to diffuse across flux-surfaces rela-
tively slowly, assuming that the magnetic field-strength is
sufficiently large to render the particle gyroradii much
smaller than the minor radius of the device. This article will
concentrate on tokamaks, which are a type of toroidally axi-
symmetric magnetic confinement device in which the mag-
netic field is dominated by an approximately uniform toroi-
dal component whose energy density is much larger than that
of the plasma.2

Tokamak plasmas are subject to a number of macro-
scopic instabilities that limit their effectiveness.2 Such insta-
bilities can be divided into two broad classes. So-called ideal
instabilities are nonreconnecting modes that destroy the
plasma in a matter of microseconds. However, such instabili-
ties can easily be avoided by limiting the plasma pressure
and/or by tailoring the magnetic equilibrium.3 Tearing
modes, on the other hand, are relatively slowly growing in-
stabilities that are far more difficult to avoid.3,4 These insta-
bilities tend to saturate at relatively low levels,5–7 in the pro-
cess reconnecting magnetic flux-surfaces to form helical
structures known as magnetic islands. Magnetic islands are
radially localized structures centered on so-called rational
flux-surfaces, which satisfy k ·B=0, where k is the wave
number of the instability, and B is the equilibrium magnetic
field. Magnetic islands degrade plasma confinement because

they enable heat and particles to flow very rapidly along
field-lines from their inner to their outer radii, implying an
almost complete loss of confinement in the region lying be-
tween these radii.8

The aim of this paper is to develop a systematic fluid
theory of tearing mode dynamics in conventional low-�,
large aspect-ratio, circular cross-section tokamak plasmas.
For the sake of simplicity, we shall use a slab approximation
to model the magnetic geometry, and employ a collisional
closure for the plasma dynamics parallel to the magnetic
field. Magnetic islands that are sufficiently wide to signifi-
cantly degrade overall energy confinement are, in effect, he-
lical magnetic equilibria. Moreover, the equations governing
such equilibria are nonlinear in nature.2 Hence, our investi-
gation will concentrate on nonlinear tearing mode dynamics.

Given that tearing modes are macroscopic instabilities, it
is natural to investigate them using some form of fluid
model. Unfortunately, while the well-known, and relatively
simple, magnetohydrodynamic �MHD� model is appropriate
for describing violently unstable plasma instabilities, it fails
to capture many important aspects of slowly evolving insta-
bilities such as tearing modes.9 Consequently, it is necessary
to use some form of extended-MHD model in our investiga-
tion. The particular model employed in this paper is the so-
called five-field model,10–12 which is a generalization of the
well-known four-field model of Hazeltine et al.13 The five-
field model is derived using a low-�, drift-MHD ordering of
plasma parameters.9 It incorporates diamagnetic flows, ion
gyroviscosity, fast parallel electron heat transport, the shear-
Alfvén wave, the ion sound wave, the drift wave, and aver-
age magnetic field-line curvature. However, the compres-
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sional Alfvén wave, which propagates much faster than the
aforementioned waves in a low-� plasma, effectively decou-
pling from them, is excluded from the model. �Incidentally, a
tearing mode is a modified shear-Alfvén wave.� Electron in-
ertia is also neglected in the model, since it has a negligible
effect on slowly evolving instabilities. The main failings of
the five-field model are that it uses a collisional closure for
plasma dynamics parallel to the magnetic field, and that it
neglects ion Landau damping.

For those interested, Ref. 14 includes a comprehensive
history and discussion of previously published fluid theories
of magnetic islands in tokamaks.

II. PRELIMINARY ANALYSIS

A. Coordinates

For the sake of simplicity, let us work in slab geometry,
using the associated right-handed Cartesian coordinates
�x ,y ,z�. Suppose that there is no variation of quantities in the
z direction, i.e., � /�z�0. The system is assumed to be peri-
odic in the y direction, with periodicity length 2� /k.
Roughly speaking, the x direction represents the radial direc-
tion, the y direction the poloidal direction, and the z direction
the direction along the resonant field-line.

B. Asymptotic matching

Consider a quasineutral plasma consisting of electrons
and singly charged ions. The plasma is conveniently divided
into an “inner region,” which comprises the plasma in the
immediate vicinity of the island, and an “outer region,”
which comprises the remainder of the plasma. As is well
known, the five-field equations reduce to the much simpler
ideal-MHD equations in the outer region.4 Let us assume that
a conventional ideal-MHD solution has been found in this
region. The solution is characterized by a single parameter,
��, defined as the jump in the logarithmic derivative of the x
component of the perturbed magnetic field across the inner
region.4 This parameter measures the free energy available in
the outer region to drive the tearing mode. The mode is de-
stabilized if ���0. It, therefore, remains to solve the five-
field equations in the inner region, and then to asymptotically
match this solution to the previously obtained ideal-MHD
solution at the boundary between the inner and outer regions.

C. Plasma equilibrium

The plasma equilibrium is assumed not to vary in the y
direction. The inner region is confined to a relatively thin
layer, centered on the rational surface. In this region, the
equilibrium magnetic field takes the form

B = Bz� x

Ls
ey + ez� , �1�

where Bz is a uniform constant, and Ls is the magnetic shear
length. Likewise, the equilibrium electron number density is
written

ne = ne0�1 +
x

Ln
� , �2�

where ne0 is a uniform constant and Ln is the density gradient
scale-length. The equilibrium electron temperature takes the
form

Te = Te0�1 +
x

LT
� , �3�

where Te0 is a uniform constant and LT is the electron tem-
perature gradient scale-length. For the sake of simplicity, the
ion temperature is assumed to take the constant value Ti.
Furthermore, the equilibrium E�B velocity is assumed to be
uniform. Finally, the plasma is subject to a uniform gravita-
tional acceleration g in the −x direction. This acceleration is
intended to mimic the effect of average magnetic field-line
curvature.15 In fact, the effective radius of curvature of the
field-lines is given by Lc= �Te0+Ti� /mig, where mi is the ion
mass.

D. Tearing perturbation

Suppose that the plasma equilibrium is perturbed by a
tearing instability that is periodic in the y direction with
wave number k. Note that k ·B=0 at x=0. Hence, the ratio-
nal surface lies at x=0. The instability is assumed to saturate
at a relatively low amplitude to produce a thin �relative to the
width of the plasma in the x direction� magnetic island. The
magnetic island is wholly contained within the inner region.
Let the width of the island in the x direction satisfy

w � Ls,Ln,LT,Lc,k
−1. �4�

Finally, suppose that the island propagates in the y direction
at some steady phase-velocity Vp.

E. Important plasma parameters

At this stage, it is helpful to define the following impor-
tant plasma parameters. First, the electron beta,

� =
�0ne0Te0

Bz
2 , �5�

which is assumed to be much less than unity. Second, the ion
sound radius,

�s =
�Te0/mi

�eBz/mi�
, �6�

which is assumed to be less than, or of order, the width of the
inner region, and, therefore, much smaller than Ls, Ln, LT, Lc,
or k−1. Here, e is the magnitude of the electron charge. Third,
the electron diamagnetic velocity,

V* =
Te0

eBzLn
. �7�

The island phase-velocity is assumed to be of order V*.
Fourth, the shear parameter,

	n =
Ln

Ls
, �8�

which is assumed to be much less than unity. Fifth, the ion to
electron temperature ratio,
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 =
Ti

Te0
, �9�

which is assumed to be less than or of order unity. Finally,
the curvature parameter,

�c =
2Ls

2

LcLn
, �10�

which is also assumed to be less than or of order unity. Note
that �c�0 corresponds to unfavorable average magnetic
field-line curvature.15

It is also helpful to define the normalized beta,

�̂ =
�

	n
2 , �11�

the normalized ion sound radius,

� =
�s

w
, �12�

and the ion sound parameter,

� = �1 + 

	n

�
. �13�

This last parameter measures how effective ion sound waves
are at flattening the plasma density across the island �they are
effective if �1, and ineffective if ��1�.

F. Five-field model

According to the five-field model,10–12 a steady-state in-
ner region solution in the island rest frame is governed by
the following set of equations:

0 = �� − n − �T,�� + �4CJ , �14�

0 = ��,n� + �V + �2J,�� − �2�2�1 + 
�−1�c�x,� − n�

+ �2Dnxx, �15�

0 = ��,�xx� + �J,�� + �2�c�x,n�

−



2
	��xx,n� + �nxx,�� + ��,n�xx
 + �2��� + 
n�xxxx,

�16�

0 = ��,V� + �2�n + T/�1 + 
�,�� + �2�Vxx, �17�

0 = �−2����T,��,�� + �3/2���,T� + �V + ��2J,��

+ �2��Txx, �18�

with all lengths normalized to w and all velocities to V*.
Here, w is one-quarter of the constant-� magnetic island
width in the x direction. The first equation is the generalized
Ohm’s law, the second ensures fluid continuity, the third is
the parallel ion vorticity equation, the fourth determines par-
allel ion flow, and the fifth governs electron heat flow. Also,
�=1.71,

�xx = − 1 + �̂�2J , �19�

and

�A,B� � AxB� − A�Bx, �20�

where �=ky. In the above equations, �=AzLs / �Bzw
2�, J= �1

−�0jzLs /Bz� / ��̂�2�, �=−� / �BzwV*�, n=−�Ln /w��ne

−ne0� /ne0, T=−�Ln /w��Te−Te0� /Te0, V= �Ln /Ls�Vzi /V*, �

= ��� /�0� / �kV*�s
2�, C= �̂�, �� = �k�s�2���e /ne0� / �kV*Ls

2�, �
= ���i /ne0mi� / �kV*�s

2�, ��= ���e /ne0� / �kV*�s
2�, D=��

+��,16 and �=4�.11 Moreover, Az is the z component of the
magnetic vector potential, jz is the z component of the elec-
tric current density, � is the electric scalar potential, Vzi is
the z component of the ion fluid velocity, �� is the parallel �to
the magnetic field� plasma resistivity, ��i is the perpendicu-
lar ion viscosity, ��e is the parallel electron heat conductivity,
and ��e is the perpendicular electron heat conductivity. The
various transport parameters are all assumed to be uniform
constants. Note that ��x ,�� is a magnetic flux-function,
��x ,��+
n�x ,�� is an ion fluid stream-function, and
��x ,��−n�x ,�� is an electron fluid stream-function.

Our system is periodic in the � direction with period 2�.
For the case of a tearing mode, we expect �, J, V to be even
in x, and �, n, T to be odd.4 The boundary conditions at the
edge of the inner region are

� → − x2/2 + cos � , �21�

nx → − 1, �22�

Tx → − �e, �23�

�x → �Vp − VEB

V*
� , �24�

�xxx,J,V → 0, �25�

as �x�→0. Here, Vp is the island phase-velocity, VEB is the
equilibrium E�B velocity �both in the y direction�, and �e

=Ln /LT.
Finally, asymptotic matching between the solutions in

the inner and outer regions yields the well-known relation5

3.29�−1d�w/�s�
dt

= ���s − 4�̂�3
0

� � J cos �
d�

2�
dx , �26�

where �� is the tearing stability index.4 The first and second
terms on the right-hand side of the above equation param-
etrize the contributions to the free energy available to drive
the tearing mode which originate from the outer and the
inner regions, respectively. Note that the magnetic island
grows and decays on the very slow resistive time scale, �−1.

G. Constant-� approximation

Suppose that

�̂�2 � 1. �27�

It follows from Eqs. �19� and �21� and the easily verified fact
that �J��O�1� that
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��x,�� � − x2/2 + cos � . �28�

The above magnetic flux-function maps out a magnetic is-
land, centered on x=0. The O-point lies at x=0 and �=0,
whereas the X-point lies at x=0 and �=�. The magnetic
separatrix corresponds to �=−1. Finally, the full width of the
separatrix in the x direction is 4. Hence, the unnormalized
full island width is 4w.

H. Flux-surface average operator

The flux-surface average operator is defined as the an-
nihilator of �A ,�� for any A�x ,��, i.e.,

��A,��� � 0. �29�

It is easily show, from Eq. �28�, that

�f��,��� = � f��,��
�x�

d�

2�
�30�

outside the magnetic separatrix, and

�f�s,�,��� = 
−�0

�0 f�s,�,�� + f�− s,�,��
2�x�

d�

2�
�31�

inside the separatrix, where s=sgn�x� and x�s ,� ,�0�=0.
Here, the � integrals are carried out at constant �. Inciden-
tally, Eq. �26� can be written

dw

dt
� ���s + 4�̂�3

1

−�

�J cos ��d� . �32�

I. Primary ordering scheme

Our primary ordering scheme depends on the fact that
the hot plasmas found in modern-day tokamaks are charac-
terized by very fast �compared to �kV*�−1� transport of heat
along magnetic field-lines, and very slow diffusion of mag-
netic flux, particles, momentum, and heat across magnetic
flux-surfaces, i.e.,

�� ≫ 1 ≫ C,D,�,�,��. �33�

All other quantities in our model are assumed to be O�1� by
comparison with ��, C, D, �, �, and ��. Let O�1� quantities
be denoted zeroth-order, while quantities that are O�C� are
first-order, etc. �This ordering is sometimes referred to as the
transport ordering.9,19� The five fields in our model ��, J, n,
V, and T� are all expanded in the form

� = ��0� + ��1� + ��2�, �34�

etc., where ��n� is nth order.

J. Secondary ordering scheme

Our secondary ordering scheme depends on the inequal-
ity

	n � 1, �35�

which holds in conventional tokamak discharges �since Ln is
generally of order the minor radius of the device, whereas Ls

is of order the major radius, and the major radius is much
larger than the minor radius in a conventional tokamak�. This

inequality allows us to distinguish between two different is-
land regimes. In the sonic regime,

w �
�s

	n
, �36�

which implies that ��1 and ��	n�1. On the other hand,
in the hypersonic regime,

w � �s, �37�

which implies that ��1 and ��	n�1. The main physical
distinction between the sonic and hypersonic regimes is that
ion sound waves are able to propagate around island flux-
surfaces sufficiently rapidly to flatten the density profile
within the magnetic separatrix in the former regime, but not
in the latter.17 It is convenient to subdivide the sonic regime
into the subsonic regime, characterized by �1; the true
sonic regime, characterized by ��1; and the supersonic re-
gime, characterized by 	n���1. In the following, it is as-
sumed that 
, �e, and �c are all O�1�.

III. SONIC ISLANDS

A. Introduction

As we have just mentioned, sonic islands are character-
ized by the secondary ordering ��1 and ��O�1�.

B. Zeroth-order terms

Retaining only zeroth-order terms in our primary order-
ing scheme, the five-field equations reduce to

0 = ���0� − n�0� − �T�0�,�� , �38�

0 = ���0�,n�0�� + �V�0� + �2J�0�,��

− �2�2�1 + 
�−1�c�x,��0� − n�0�� , �39�

0 = ���0�,�xx
�0�� + �J�0�,�� + �2�c�x,n�0��

−



2
	��xx

�0�,n�0�� + �nxx
�0�,��0�� + ���0�,n�0��xx
 , �40�

0 = ���0�,V�0�� + �2�n�0� + T�0�/�1 + 
�,�� , �41�

0 = ��T�0�,��,�� . �42�

It immediately follows from Eq. �42� that

T�0� = T��� . �43�

In other words, the lowest-order electron temperature profile
is a flux-surface function. Since T is odd in x, whereas � is
even, it follows that T=0 inside the magnetic separatrix.
Hence, the electron temperature profile is flattened within the
magnetic separatrix, implying a complete loss of energy con-
finement in this region.

It follows from Eq. �38� that

n�0� = ��0� + H��� . �44�

Since �−n is the electron stream-function, the above expres-
sion shows that the electron fluid is constrained to flow
around magnetic flux-surfaces.
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Equations �39� and �41� yield

V�0� = �2	F���0�� − �
 �45�

and

J�0� = − �H���0� + �2�F − ��
�2 � − �2�1 + 
�−1�cH�x

+ J��� . �46�

Finally, Eqs. �39� and �40� give

0 = ���0�,�2�xx
�0� − H + �2F��F − �� − �2�2�cx�

+ �2�2
�1 + 
�−1�c�x,H�

− �2 


2
	��xx

�0�,n�0�� + �nxx
�0�,��0�� + ���0�,n�0��xx
 . �47�

Incidentally, in the above analysis, T���, H���, F���0��,
and J��� are, as yet, unknown functions. As we shall see,
these functions are determined by perpendicular transport.

C. Expansion in �2

Let us now expand ��0� in powers of the small parameter
�2. Thus,

��0� = �0 + �2�1 + O��4� . �48�

We shall also assume that F−��O��2�. To lowest order in
�2, Eq. �47� yields

0 = ��0,H���� . �49�

It follows, therefore, that

�0 = �0��� . �50�

Hence, the lowest-order ion stream-function, �1+
��0+
H,
is a flux-surface function. In other words, the ion fluid is also
constrained to flow around magnetic flux-surfaces. Inciden-
tally, we can assume that ��1�=0, without loss of generality.

Let M���=d�0 /d� and L���=H����+M���. The
y-directed ion and electron fluid velocities �in the island rest
frame� are directly related to these functions, i.e., Vyi /V*
=x�M +
L� and Vye /V*=x�M −L�. Since M and L are odd
functions of x, whereas � is an even function, it follows that
M and L are both constrained to be zero within the magnetic
separatrix. In other words, the ion and electron fluids are
both trapped within the magnetic separatrix, and, thereby,
forced to flow at the phase-velocity of the island in this
region—see Fig. 8. Note also that, since nx

�0�=−xL, the den-
sity profile is flattened within the magnetic separatrix. This
implies a complete loss of particle confinement in this re-
gion.

Expanding Eq. �47� to next order in �2, making use of
the easily demonstrated results F=�+�2�1 /M and F�
=1 /M +O��2�, we obtain

�1 =
− �M�M + 
L�/2��x2̃ + �2�1 + 
�−1�c�M + 
L�x̃

L − M + �2/M
,

�51�

where Ã�A− �A� / �1�. Finally, expansion of Eq. �46� in �2

yields

J�0� = − �L − M + �2/M��1 − �2�1 + 
�−1�c�L − M�x̃ + J���

= �M�M + 
L�/2��x2̃ − �2�cLx̃ + J��� �52�

to lowest order.

D. First-order terms

Collecting terms that are first-order in our primary order-
ing scheme, the five-field equations give

0 = ���1� − n�1� − �T�1�,�� + �4CJ�0�, �53�

0 = ���1�,n�0�� + ���0�,n�1�� + �V�1� + �2J�1�,��

− �2�2�1 + 
�−1�c�x,��1� − n�1�� + �2Dnxx
�0�, �54�

0 = ���1�,�xx
�0�� + ���0�,�xx

�1�� + �J�1�,�� + �2�c�x,n�1��

−



2
	��xx

�1�,n�0�� + ��xx
�0�,n�1�� + �nxx

�1�,��0�� + �nxx
�0�,��1��

+ ���1�,n�0��xx + ���0�,n�1��xx
 + �2����0� + 
n�0��xxxx,

�55�

0 = ���1�,V�0�� + ���0�,V�1�� + �2�n�1� + T�1�/�1 + 
�,��

+ �2�Vxx
�0�, �56�

0 = �−2����T�1�,��,�� + �3/2����0�,T�0��

+ �V�0� + ��2J�0�,�� . �57�

It immediately follows from Eq. �53� that

�J�0�� = 0. �58�

Hence, Eq. �52� reduces to

J�0� = �M�M + 
L�/2��x2̃ − �2�cLx̃ . �59�

Now, Eqs. �57� and �53� imply that

�T�1�,�� � O��4C� , �60�

���1� − n�1�,�� � O��4C� . �61�

So, according to Eq. �56�,

M�V�1�,�� = �2���1�,�� + O��4�2C� . �62�

Furthermore, it follows from Eq. �55� that �J�1� ,��
�O��2C�. Hence, Eq. �54� gives

���1�,�� = �n�1�,�� = − �2D� ML�x2̃

M�L − M� + �2� + O��4C� ,

�63�

as well as the solubility condition
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�x2�L� − L�1� �
d

d�
��x2�

dL

d�
� = O��2� . �64�

Integrating the above equation, neglecting O��2�, and mak-
ing use of the boundary condition �22�, we obtain

L��� =
1

�x2�
�65�

outside the magnetic separatrix.
Finally, the flux-surface average of Eq. �55� yields

0 = ����1�,M�x2̃�� + �2�c��x,��1���

+



2
	��n�1�,M�x2̃�� + ����1�,L�x2̃��


−



2

d

d�
	�x2�L���1�,�� − M�n�1�,�����


+ �2�
d2

d�2 	�x4��M� + 
L��
 . �66�

However,

��A,B�� � −
d

d�
�Ã�B,��� , �67�

�x2�A,C��� �
d

d�
�x2̃�A,C�� , �68�

��A,x�� �
d

d�
�x̃�A,��� , �69�

where A, B are general fields, but C=C���. Thus, Eq. �66�
can be integrated to give18

0 =
d

d�
��x4�

d�M + 
L�
d�

+



2
�D�−1�� M�L − M�L�

M�L − M� + �2��x2̃x2̃��
− �D�−1��ML��M� + 
�L� + M��/2�

M�L − M� + �2 ��x2̃x2̃�

+ �c�D�−1�� �2ML��x̃x2̃�
M�L − M� + �2��x̃x2̃� , �70�

where use has been made of the boundary condition �24�.
The corrections to the above equation are O��2�.

Note that L��� and M��� are both discontinuous on the
island separatrix, being zero inside the separatrix, and taking
the finite values Lsep and Msep, respectively, just outside the
separatrix. In reality, we expect both singularities to be re-
solved in a separatrix boundary layer of thickness O��s�
�w.19 According to Eq. �65�, Lsep takes the value � /4. Equa-
tion �70� can be solved in a two-stage process. First, assum-
ing that

L��� =
�

4
�1 − exp�� + 1

�
�� �71�

within the separatrix layer, where ��1, we integrate Eq.
�70� across the layer, and look for a solution that satisfies
M�−1�=0 and M���→Msep as �−�−1� /�→�. Next, we
solve Eq. �70� outside the layer, with L��� given by Eq. �65�,

subject to the boundary conditions M�−1�=Msep and
�−2�M→−v� as �→−�. The constant v� determines the
island phase-velocity, relative to the equilibrium E�B ve-
locity, VEB, via the boundary condition �24�, i.e.,

Vp = VEB + v�V*. �72�

This procedure uniquely determines the island phase-
velocity �since a general solution for �−2�M��� varies like
�−� at large ���, which does not satisfy the large-�x� bound-
ary condition on ��. �Note that the ion diamagnetic direction
is positive, and the electron diamagnetic direction negative,
in this paper.� The final result is independent of the details of
the boundary layer, provided that ��1, i.e., provided that the
boundary layer is much thinner than the island.

Once the function M��� has been determined, Eqs. �32�
and �59� yield the island width evolution equation

dw

dt
� ���s + �̂�3Jc, �73�

where

Jc = � 32

3�
�Msep�Msep + 
Lsep�

+ 2
−1

−�

	�M�M + 
L�/2���x2̃x2̃� − �2�cL�x̃x2̃�
d� .

�74�

Here, the two terms on the right-hand side of the above equa-
tion parametrize the contributions to the free energy avail-
able to drive the tearing mode which originate from the
boundary layer on the separatrix20 and the remainder of the
inner region,21 respectively.

E. Caveat

The above analysis implicitly assumes that the variation
length scale in the x direction is much larger than �s. Unfor-
tunately, this assumption breaks down in the boundary layer
on the separatrix �whose thickness is of order �s�. The most
likely consequence of this breakdown is that the boundary
layer will emit drift-acoustic waves that propagate to large x,
where they are absorbed by the plasma.22 If sufficient mo-
mentum is carried off by these waves, then the island phase-
velocity may be modified from that predicted by the above
analysis.

IV. HYPERSONIC ISLANDS

A. Introduction

Hypersonic islands are characterized by the secondary
ordering ��1 and ��O�1�.

B. Zeroth-order terms

Retaining only zeroth-order terms in our primary order-
ing scheme, the five-field equations yield Eqs. �38�–�42�,
which reduce to �see Sec. III B�

T�0� = T��� , �75�
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n�0� = ��0� + H��� , �76�

V�0� = �2	F���0�� − �
 , �77�

J�0� = − �−2	H���0� + �2F
 − �2�1 + 
�−1�cH�x + J��� ,

�78�

0 = ���0�,�2�xx
�0� − H − �2F�� − �2�2�cx�

+ �2�2
�1 + 
�−1�c�x,H�

− �2 


2
	��xx

�0�,n�0�� + �nxx
�0�,��0�� + ���0�,n�0��xx
 . �79�

C. Expansion in �2

We can expand zeroth-order quantities in the small pa-
rameter �2 by writing

T��� = �2T1��� , �80�

H��� = �2H1��� , �81�

��0� = − x + �2�1, �82�

n�0� = − x + �2��1 + H1� , �83�

F���0�� = F0�x� + O��2� . �84�

Equation �78� yields

J�0� = �2�−2�H1�x̃ − F0
˜ � + J��� + O��4� , �85�

whereas Eq. �79� reduces to

0 = �x,�2�1 + 
��1xx − H1 + F0� cos �� + O��2� , �86�

which can be integrated to give

�2�1 + 
��1xx = H1 + K�x� − F0� cos � . �87�

D. First-order terms

Retaining only first-order terms in our primary ordering
scheme, the five-field equations yield Eqs. �53�–�57�.

It immediately follows from Eq. �53� that

�J�0�� = 0. �88�

Hence, Eq. �85� reduces to

J�0� = �2�−2�H1�x̃ − F0
˜ � , �89�

Equation �57� can be integrated to give

�T�1�,�� = �2�2��
−1	− ��H1� − �3/2�T1��x̃ + �� − 1�F0

˜ 
 , �90�

whereas Eq. �53� yields

���1� − n�1�,�� = �2�2�− 	�C + �2��
−1�H1� − �3/2����

−1T1�
x̃

+ 	C + ��� − 1���
−1
F̃0� . �91�

According to Eq. �56�,

0 = �V�1�,x� + �2�2��F0 − ��xx + O��4C� . �92�

It follows that

F0xx = �̄xx = − 1, �93�

where ¯̄ denotes a � average at constant x. Since V �and,
hence, F0� is an even function of x, the above equation can
be integrated to give

F0 = − 1
2x2. �94�

Hence, we conclude that V0=−�2 cos � and V1�O��4C�.
Equation �54� yields

0 = �x,��1� − n�1�� + �2�J�1�,�� + �2�2D�H1 + �1�xx

+ O��4D� , �95�

which implies that

0 = ��x,��1� − n�1��� + �2�2D��H1 + �1�xx� . �96�

The above equation can be integrated, with the aid of Eq.
�67�, to give

�2�x2�H1� + �xv� = �−2D−1�x̃���1� − n�1�,��� − v0, �97�

where v=−�2�1x, and v0 is a constant.
Finally, Eqs. �54� and �55� yield

0 = ��1 + 
��2�xx
�1� + ��1� − n�1�,x�

+ �2�2	��H1 + K + 
�2H1xx�xx − D��1 + H1�xx


+ O��4C� , �98�

which reduces to

0 = − �D�−1���1xx + H1xx� + H1xx + Kxx + 
�2H1xxxx. �99�

This equation can be integrated, subject to the boundary con-
ditions �22� and �25�, and then combined with Eq. �87�, to
give23

�2	�1 + 
�v + 
Ḡ
xx = �D�−1��v̄ + Ḡ� + �G − Ḡ�

− �2 cos � , �100�

where G=�2xH1�.

E. Second-order terms

Retaining only second-order terms in our primary order-
ing scheme, Eq. �18� yields

0 = �−2����T�2�,��,�� + �3/2����1�,T�0�� + �3/2����0�,T�1��

+ �V�1� + ��2J�1�,�� + �2��Txx
�0�, �101�

which can be flux-surface averaged to give

�3/2���x,T�1��� − �2�2���T1xx� . �102�

Integrating the above equation, making use of Eq. �67�, and
the boundary condition �23�, we obtain

�x2�T� = − �3/2��−2��
−1�x̃�T�1�,��� + �e. �103�

Combining the above equation with Eq. �90�, we get14
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T� =
�e + �3/2��2������−1	��H1� + �� − 1��


�
�104�

outside the separatrix, where

� = �x̃x̃� , �105�

� = 1
2 �x̃x2̃� , �106�

� = �x2� + �3/2�2������−1� . �107�

Finally, Eqs. �91�, �97�, and �104� give

�2H1� = − � ��xv� + v0�� + �2��2 − �3/2���e���D�−1�

�x2�� + ��1
�

�108�

outside the separatrix, where

�1 = �2���D�−1�x2� + �CD−1�� , �109�

�2 = ��� − 1����D�−1�x2� + �CD−1�� . �110�

Incidentally, it is easily demonstrated, from self-consistency
arguments, that v0=−�1+
�−1�2�−2 /2.23

F. Solution in the inner region

A hypersonic island is characterized by a flattened elec-
tron temperature profile inside the magnetic separatrix �see
Eq. �75��, but a nonflattened density profile �see Eq. �83��.
The y-directed electron and ion fluid velocities �in the island
rest frame� are written

Vye/V* = − G , �111�

Vyi/V* = �1 + 
��1 + v� + 
G , �112�

respectively. Here,

G = − �x�� ��xv� − �1 + 
�−1�2�−2/2�� + �2��2 − �3/2���e���D�−1�

�x2�� + ��1
� �113�

outside the separatrix, with G=0 inside the separatrix. Note
that v ,G�O��2��1. It follows that the electron fluid is
trapped within the magnetic separatrix, while the ion fluid is
largely unaffected by the island—see Fig. 17. Moreover, the
island phase-velocity lies close to the equilibrium electron
fluid velocity �since Vye /V* is relatively small in the island
rest frame�. The function v�x ,�� satisfies

�2	�1 + 
�v + 
Ḡ
xx = �D�−1��v̄ + Ḡ� + �G − Ḡ�

− �2 cos � . �114�

Here, �, �, �, �1, and �2 are defined in Eqs. �105�–�107�,
�109�, and �110�, respectively. The boundary conditions on v
are

vx = 0 �115�

at x=0, and

v → vi + vi��x� − �1/2��1 + 
�−1�2�−2x2 cos � �116�

as �x�→�. Equations �113�–�116� can be solved via iteration.
Incidentally, it follows from Eq. �113� that

G → − vi − vi��x� , �117�

nx = − 1 − v − G → − 1 + �1/2��1 + 
�−1�2�−2x2 cos �

�118�

as �x�→�.
The perturbed temperature profile T��� is zero inside the

separatrix, and is specified by Eq. �104� outside the separa-
trix.

Finally, the perturbed current in the inner region is given
by

J�0� = �−2	G̃ + �1/2��2x2̃
 . �119�

Note that

J�0� → �2�−2 cos � �120�

as �x�→�. Unfortunately, this implies that the integral
�1

−��J cos ��d�, in the island evolution equation �32�, is di-
vergent. This unphysical behavior can only be prevented if
there exists a layer—termed the intermediate layer—
sandwiched between the inner and outer regions, in which
J�0� decays to zero.23

G. Intermediate layer

The intermediate layer is much wider than the island. It
follows that we can linearize the five-field equations in this
region �since the island is the source of all the nonlinearities
in our problem5�. Let

��x,�� = − x + �̄�x� + �̃�x�ei�, �121�

n�x,�� = − x + ñ�x�ei�, �122�

V�x,�� = Ṽ�x�ei�, �123�

J�x,�� = J̃�x�ei�, �124�

012502-8 R. Fitzpatrick and F. L. Waelbroeck Phys. Plasmas 15, 012502 �2008�

Downloaded 22 Apr 2009 to 128.83.61.67. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



��x,�� = − 1
2x2 + ei�, �125�

where all ¯ and ˜ terms are first order. It is assumed that T

=T��� in the intermediate layer. The absence of n̄�x�, V̄�x�,
and J̄�x� terms in the above equations is consistent with the
behavior of n, V, and J at the edge of the inner region �see
Sec. IV F�.

Neglecting transport and curvature terms, linearization
of the five-field equations yields

�1 + 
��2��̃xx − v̄xx�̃� = �v̄ − �2x2���̃ −
1

x
� �126�

and

J̃ = �1 + 
�
��̃xx − v̄xx�̃�

x
, �127�

where v̄�x�=−�̄x�x�. Equation �126� is solved subject to the
boundary conditions

�̃ → 0 �128�

as x→0, and

�̃ →
1

x
�129�

as �x�→�. It follows from Eq. �127� that

J̃ → 0 �130�

as �x�→�. Equations �129� and �130� demonstrate that the
solution in the intermediate layer can be matched to the con-

ventional ideal-MHD solution �which is �̃=1 /x and J̃=0� at
very large �x�.4,5

H. Damping of drift-acoustic waves

Equation �126� is a driven wave equation that describes
how electrostatic drift-acoustic waves9 are excited by the is-
land in the inner region, and then propagate into the interme-
diate layer.23 In order to uniquely determine the solution in
the layer, we need either to adopt an “outgoing wave” bound-
ary condition at large �x�,24 or to add some form of wave
damping to our model. It is more convenient to do the latter.
Linearizing Eq. �16�, and retaining the perpendicular viscos-
ity, we find that

�1 + 
��̃xx → �1 + 
��̃xx + i�1 + 
��2��̃xxxx. �131�

However, it is clear from Eq. �126� that �1+
��2�2 /�x2

→−�2x2 at large �x�. This suggests that we should modify
Eq. �126� by writing

�2��̃xx − v̄xx�̃� � � v̄
1 + 


−
�2x2

1 + 
 − i�2�x2���̃ −
1

x
� ,

�132�

in order to mimic the damping effect of perpendicular vis-
cosity on drift-acoustic waves at large �x�.

I. Force balance

The mean E�B velocity profile in the intermediate
layer, v̄�x�, is determined from quasilinear force balance,
i.e.,

0 = 1
2 �1 + 
�Im��̃xx�̃

*� − 1
2 Im�J̃� + �2�v̄xx. �133�

The first term on the right-hand side of the above equation
represents the mean Reynolds stress force in the y direction,
the second term the mean j�B force, and the third term the
mean viscous force. Equations �126�, �132�, and �133� can be
combined to give

v̄xx =
�−4

2

�1 + 
��4x2

�1 + 
�2 + �4�2x4 �1 − x�̃�2. �134�

This equation is subject to the boundary conditions

v̄ → vi + vi��x� �135�

as x→0, and

v̄ → − 1 − v� �136�

as �x�→�. Equation �134� describes how momentum carried
by drift-acoustic waves radiated by the island is absorbed in
the intermediate layer, and modifies the mean velocity profile
there.

J. Solution in the intermediate layer

Our final system of equations in the intermediate layer is

�2��̃xx − v̄xx�̃� = � v̄
1 + 


−
�2x2

1 + 
 − i�2�x2���̃ −
1

x
�

�137�

and

v̄xx =
�−4

2

�1 + 
��4x2

�1 + 
�2 + �4�2x4 �1 − x�̃�2. �138�

The boundary conditions are

�̃ → 0, �139�

v̄ → vi + vi��x� �140�

as x→0, and

�̃ →
1

x
, �141�

v̄ → − 1 − v� �142�

as �x�→0. The perturbed current is given by

J̃ = �1 + 
�
��̃xx − v̄xx�̃�

x
. �143�

K. Overall solution

The overall solution to our problem is obtained by gen-
erating a solution in the inner region, as described in Sec.
IV F, and then finding a matching solution in the intermedi-
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ate layer, as described in Sec. IV J. Note that the boundary
conditions uniquely specify the overall solution �since a gen-
eral solution for v̄ increases like �x� at large �x�, which does
not satisfy the boundary condition �136��.

The island phase-velocity is determined by the constant
v� �see Eq. �142��, i.e.,

Vp = VEB + V*v�. �144�

Finally, the island width evolution equation takes the form

dw

dt
� ���s + �̂�3Jc, �145�

where

Jc = 
0

�

Kc�x�dx , �146�

with

Kc = �− �2/�� � �−2�G̃ + �1/2��2x2̃�cos �d� , x � xc,

− 2 Re�J̃� , x � xc.
�

�147�

Here, 1�xc��� /� is the boundary between the inner re-
gion and the intermediate layer.

V. NUMERICAL RESULTS

A. Sonic islands

The scheme outlined in Sec. III has been implemented
numerically. The aim of the calculation is to determine the
island velocity parameter, v�, and the island stability param-
eter, Jc, as functions of the sound-wave parameter, � �see Eq.
�13��, the ion to electron temperature ratio, 
 �see Eq. �9��,
the ratio of transport coefficients, D�−1, and the curvature
parameter, �c �see Eq. �10��. The island velocity parameter,
v�, determines the island phase-velocity according to Eq.
�72�. Thus, v�=
 corresponds to an island that propagates
with the equilibrium ion fluid, v�=0, to an island that propa-
gates with the equilibrium E�B velocity, and v�=−1 to an
island that propagates with the equilibrium electron fluid.
The island stability parameter, Jc, determines the influence of
ion polarization currents21 flowing in the inner region on
island stability according to Eq. �73�. Thus, if Jc�0, then
this influence is destabilizing, whereas if Jc�0, then it is
stabilizing.

Let us, first of all, consider the zero curvature case, �c

=0. Figures 1 and 2 show the island velocity parameter, v�,
as a function of the sound-wave parameter, � �which is pro-
portional to the island width�, for various values of 
 and
D�−1. It can be seen that v�→
 in the subsonic limit �1.
In other words, wide islands whose widths satisfy w
�s /	n propagate with the equilibrium ion fluid.16 More-
over, v� becomes less positive as � is reduced. In other
words, narrower islands whose widths satisfy w��s /	n slip
somewhat with respect to the unperturbed ion fluid in the
electron diamagnetic direction.18 It can also be seen that v�

�0 in the supersonic limit ��1. In other words, narrow

islands whose widths satisfy �s�w��s /	n propagate close
to the unperturbed E�B velocity. Note, finally, that the tran-
sition from the subsonic to the supersonic limits becomes
more abrupt as D�−1 is reduced.

Figures 3 and 4 show the island stability parameter, Jc,
as a function of the sound-wave parameter, �, for various
values of 
 and D�−1. It can be seen that Jc→0 both in the
subsonic limit, �1, and the supersonic limit, ��1. It fol-
lows that ion polarization currents have a negligible effect on
the stability of wide islands whose widths satisfy w�s /	n,

FIG. 1. The island velocity parameter, v�, as a function of � for a sonic
island with D�−1=1.0 and �c=0. The solid, short-dashed, long-dashed, and
dot–short-dashed curves correspond to 
=0.25, 0.5, 0.75, and 1.0,
respectively.

FIG. 2. The island velocity parameter, v�, as a function of � for a sonic
island with 
=0.5 and �c=0. The solid, short-dashed, long-dashed, dot–
short-dashed, and dot–long-dashed curves correspond to D�−1=0.25, 0.5,
1.0, 2.0, and 4.0, respectively.
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or narrow islands whose widths satisfy �s�w��s /	n.25 On
the other hand, Jc peaks at a negative value when ��1. In
other words, ion polarization currents have a stabilizing ef-
fect on sonic islands whose widths satisfy w��s /	n.25 Note
that the peak becomes higher as 
 increases, and narrower �in
�� as D�−1 decreases.

Figure 5 shows the typical ion and electron fluid velocity
profiles �in the island rest frame� across the O-point of a
sonic island. It can be seen that the island propagates be-
tween the equilibrium ion and electron fluid velocities �i.e.,
the velocities as �x�→��, but is closer to the former. More-
over, the velocity of each fluid increases in magnitude as the

separatrix is approached from the outside, but is zero inside
the separatrix. The velocity discontinuities in both fluids
across the separatrix are resolved in a boundary layer �not
shown� whose width is of order �s.

Let us now examine the influence of the average mag-
netic field-line curvature on sonic islands. It turns out that
field-line curvature has a negligible effect on the island
phase-velocity. On the other hand, the effect of field-line
curvature on island stability is illustrated in Fig. 6. It can be
seen that the island is destabilized if �c�0 �i.e., if the field-
line curvature is unfavorable�, and stabilized if �c�0. The
influence of field-line curvature on island stability increases

FIG. 3. The island stability parameter, Jc, as a function of � for a sonic
island with D�−1=1.0 and �c=0. The solid, short-dashed, long-dashed, and
dot–short-dashed curves correspond to 
=0.25, 0.5, 0.75, and 1.0,
respectively.

FIG. 4. The island stability parameter, Jc, as a function of � for a sonic
island with 
=0.5 and �c=0. The solid, short-dashed, long-dashed, dot–
short-dashed, and dot–long-dashed curves correspond to D�−1=0.25, 0.5,
1.0, 2.0, and 4.0, respectively.

FIG. 5. The y components of the electron �solid� and ion �dashed� fluid
velocities �in the island rest-frame� across the O-point of a sonic island with
�=0.5, 
=0.5, D�−1=1.0, and �c=0. The separatrix lies at x=2.

FIG. 6. The island stability parameter, Jc, as a function of � for a sonic
island with 
=0.5 and D�−1=1.0. The solid, short-dashed, long-dashed,
dot–short-dashed, and dot–long-dashed curves correspond to �c=0.1, 0.05,
0.0, −0.05, and −0.1, respectively.
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rapidly with increasing island width, being negligible in the
supersonic regime, ��1, and dominant in the subsonic re-
gime, �1.

B. Hypersonic islands

The scheme outlined in Sec. IV has been implemented
numerically. The aim of the calculation is to determine the
island velocity parameter, v� �see Eq. �144��, and the island
stability parameter, Jc �see Eq. �145��, as functions of the
remaining free parameters in the model. We can reduce the
number of these parameters by observing that D��� when
��1, and that �� =1.63C−1 according to classical parallel
transport theory. Hence, ���D�−1= ������−1=0.61�CD−1�. It
follows that there are only seven free parameters. These are
the normalized island width, ŵ��−1=w /�s, the shear param-
eter, 	n=Ln /Ls, the ion perpendicular viscosity, �, the par-
ticle diffusivity, D, the collisionality, CD−1, the electron tem-
perature gradient parameter, �e=Ln /LT, and the ion to
electron temperature ratio, 
=Ti /Te0.

Reference 23 examines hypersonic island solutions in
the limit of low collisionality—i.e., CD−1=0—and cold
ions—i.e., 
=0. Note, incidentally, that low collisionality hy-
personic island solutions have no dependence on �e �since �e

only appears in our final equations in combination with
���D�−1�CD−1�. The numerically determined dependence of
v� and Jc on the four remaining free parameters—ŵ, 	n, �,
and D—is

v� � − 1 + 0.27ŵ3	n
3/2D−1 + 0.25ŵ4	n

2/3�−4/3 �148�

and

Jc = − 1.5ŵ3	n
3/2�1 + 0.25ŵ2D−1� . �149�

Moreover, the hypersonic branch of island solutions is found
to cease to exist above the critical island width

ŵmax = 0.9	n
−1/6D1/3. �150�

Recall, incidentally, that v�=−1 corresponds to an island
propagating with the equilibrium electron fluid, whereas v�

=
 corresponds to an island propagating with the equilibrium
ion fluid.

According to Eq. �148�, a hypersonic island has a phase-
velocity that lies between the velocities of the equilibrium
ion and electron fluids, but is much closer to the latter. As the
island width increases, the deviation of the phase-velocity
from the equilibrium electron fluid velocity in the ion dia-
magnetic direction increases rapidly. Furthermore, according
to Eq. �149�, a hypersonic island is stabilized by ion polar-
ization currents �curvature currents have a negligible effect
on hypersonic islands�. As the island width increases, this
effect also increases rapidly. Finally, it is hypothesized that
when the critical island width is exceeded, and the hyper-
sonic solution branch consequently disappears, the island so-
lution bifurcates to the supersonic solution branch.26 It re-
mains to determine how the above picture is modified in the
presence of finite collisionality, CD−1, finite electron tem-
perature gradient, �e, and finite ion temperature, 
.

Figures 7 and 8 illustrate the influence of finite collision-
ality, but zero �e and 
, on hypersonic island solutions. In

these plots, the island width is increased from zero until the
critical island width at which the solution disappears is
reached. It can be seen that finite collisionality alone has
very little effect on either the phase-velocity or the stability
of a hypersonic island.

Figures 9–12 illustrate the effect of finite collisionality
and �e, but zero 
, on hypersonic island solutions. It can be
seen that the island phase-velocity is shifted, relative to that
of the standard solution discussed above, in the presence of
nonzero �e. The shift is in the ion diamagnetic direction
when �e�0, and in the electron diamagnetic direction when
�e�0, in agreement with Ref. 14. Moreover, the magnitude

FIG. 7. The island velocity parameter, v�, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, �e=0, and 
=0. The solid,
short-dashed, long-dashed, and dot–short-dashed curves correspond to
CD−1=0.0, 1.0, 2.0, and 4.0, respectively.

FIG. 8. The island stability parameter, Jc, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, �e=0, and 
=0. The solid,
short-dashed, long-dashed, and dot–short-dashed curves correspond to
CD−1=0.0, 1.0, 2.0, and 4.0, respectively.
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of the shift is roughly proportional to the product of the
collisionality, CD−1, and ��e�. It can also be seen that hyper-
sonic islands that propagate �in the electron diamagnetic di-
rection� faster than the equilibrium electron fluid are desta-
bilized by ion polarization currents, whereas those that
propagate slower than the equilibrium electron fluid are sta-
bilized. It follows that positive �e is stabilizing �since it tends
to make hypersonic islands propagate slower�, whereas nega-
tive �e is destabilizing.

Figures 13 and 14 illustrate the effect of finite collision-
ality and ion temperature, but zero �e, on hypersonic island

solutions. It can be seen that finite ion temperature has com-
paratively little effect on hypersonic island solutions �apart
from a slight modification to the critical island width� when
�e=0.

Figures 15 and 16 illustrate the effect of finite collision-
ality, ion temperature, and �e, on hypersonic island solutions.
It can be seen that nonzero 
 gives rise to an additional shift
in the island phase-velocity, which decays rapidly as the is-
land width increases. The velocity shift is in the ion diamag-
netic direction when �e�0, and in the electron diamagnetic
direction when �e�0. However, the shift seems to have little
effect on island stability.

Finally, Fig. 17 shows the typical ion and electron fluid
velocity profiles �in the island rest frame� across the O-point

FIG. 9. The island velocity parameter, v�, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.25, and 
=0. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=1.0, 0.5, 0.0, −0.5, and −1.0, respectively.

FIG. 10. The island velocity parameter, v�, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.50, and 
=0. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=1.0, 0.5, 0.0, −0.5, and −1.0, respectively.

FIG. 11. The island stability parameter, Jc, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.25, and 
=0. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=1.0, 0.5, 0.0, −0.5, and −1.0, respectively.

FIG. 12. The island stability parameter, Jc, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.5, and 
=0. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=1.0, 0.5, 0.0, −0.5, and −1.0, respectively.
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of a hypersonic island. It can be seen that the island propa-
gates between the equilibrium ion and electron fluid veloci-
ties �i.e., the velocities as �x�→��, but is closer to the latter.
Note that the ion fluid velocity profile is essentially unaf-
fected by the island, whereas the electron fluid velocity is
constrained to be zero inside the separatrix.

VI. SUMMARY AND DISCUSSION

We have developed a systematic fluid theory of nonlin-
ear magnetic island dynamics in conventional low-�, large
aspect-ratio, circular cross-section tokamak plasmas. Our
analysis makes use of an extended-MHD model that incor-

porates diamagnetic flows, ion gyroviscosity, fast parallel
electron heat transport, the ion sound wave, the drift-wave,
and average magnetic field-line curvature. The model ex-
cludes the compressible Alfvén wave, geodesic field-line cur-
vature, neoclassical effects, and ion Landau damping. Fi-
nally, a collisional closure is used for plasma dynamics
parallel to the magnetic field.

We have found two distinct branches of island
solutions—i.e., the “sonic” and “hypersonic” branches. Both
branches are investigated analytically, using suitable order-
ing schemes, and in each case the problem is reduced to a
relatively simple set of nonlinear differential equations that

FIG. 13. The island velocity parameter, v�, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.5, and �e=0. The
solid, short-dashed, long-dashed, and dot–short-dashed curves correspond to

=0.0, 0.1, 0.2, and 0.5, respectively.

FIG. 14. The island stability parameter, Jc, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.5, and �e=0. The
solid, short-dashed, long-dashed, and dot–short-dashed curves correspond to

=0.0, 0.1, 0.2, and 0.4, respectively.

FIG. 15. The island velocity parameter, v�, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.5, and 
=0.1. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=−0.2, −0.1, 0.0, 0.1, and 0.2, respectively.

FIG. 16. The island stability parameter, Jc, as a function of ŵ for a hyper-
sonic island with 	n=0.1, �=10−3, D=5�10−4, CD−1=0.5, and 
=0.1. The
solid, short-dashed, long-dashed, dot–short-dashed, and dot–long-dashed
curves correspond to �e=−0.2, −0.1, 0.0, 0.1, and 0.2, respectively.
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can be solved numerically via iteration. The solution deter-
mines the island phase-velocity, relative to the plasma, and
the effect of local currents on the island stability. Sonic is-
lands are relatively wide, flatten both the temperature and
density profiles, and tend to propagate close to the local ion
fluid velocity. Hypersonic islands, on the other hand, are
relatively narrow, only flatten the temperature profile, radiate
drift-acoustic waves, and tend to propagate close to the local
electron fluid velocity.23 The hypersonic solution branch
ceases to exist above a critical island width that is of order
�s. Under normal circumstances �i.e., �e�0, Ls�0�, we find
that both types of island are stabilized by local ion polariza-
tion currents.

The fact that there exist two branches of island solutions
with very different characteristics was first established via
numerical simulation by Ottoviani et al.26 These researchers
also found that the hypersonic branch ceases to exist above a
critical island width, whereas the sonic branch ceases to exist
below a somewhat smaller critical island width, and that the
disappearance of a given solution branch triggers a bifurca-
tion to the other branch. Our analysis confirms that the hy-
personic solution branch ceases to exist above a certain criti-
cal island width. Unfortunately, our ordering scheme
precludes us from extending the sonic solution branch to
small island widths �i.e., w��s�, so we cannot confirm that
this branch ceases to exist below some critical width.
Clearly, more work is needed in this area.

The analysis presented in this paper builds on analysis
previously presented in Refs. 12, 14, 15, 18, 23, and 19 and

will, hopefully, form the foundations of a fully comprehen-
sive fluid theory of nonlinear magnetic island dynamics in
low-�, large aspect-ratio, circular cross-section tokamak
plasmas. Ideally, this theory will incorporate neoclassical ef-
fects, such as the bootstrap current27 and ion poloidal flow
damping,28 will not employ a collisional closure for parallel
dynamics,29 and will take geodesic magnetic field-line cur-
vature into account.30 The ultimate goal of such a theory is to
predict the stability of neoclassical tearing modes31 in
ITER.32
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FIG. 17. The y components of the electron �solid� and ion �dashed� fluid
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with ŵ=0.09, 	n=0.1, �=10−4, D=5�10−3, CD−1=0.5, �e=1.0, and 
=0.
The separatrix lies at x=2.
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