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ABSTRACT

The linear and nonlinear evolution of the interchange instability
of a resistive plasma (the resistive g-mode) in a sheared magnetic
field is studied using electrostatic particle simulation methods. Both
the fast and slow interchange mode regimes are considered. In both
cases the linear growth rates of the modes scale well with the
theoretical values. The saturation of the instabilities is due
primarily to convective mixing of pressure over the width of the
eigenmode. The saturation levels predicted by mixing length theory are

in reasonable agreement with the simulation results.



I. INTRODUCTION
The resistive interchange mode can cause significant anomalous
particle and heat transport across the magnetic field in a plasma of

2 and other

such devices as the ‘reversed field pinch1 (RFP), spheromak,
possible situatiodms. Study of resistive g-mode stability and
associated transport is important for the RFP since it is a relatively
high beta device relying on strong magnetic shear rather than average
minimum~B for the stabilization of localized modes. Résistive
interchange modes cannot be stabilized by either shear or conducting
walls alone. When they appear, magnetic islands can form and this may
result in enhanced thermal conduction losses. Thus it is possible that
the limiting plasma beta in the RFP may be determined by the nonlinear
g-mode behavior.

In this paper we investigate the linear and nonlinear evolution of
the resistive g-mode using electrostatic particle simulation methods.
This 1is applicable to a regime of large collisionality and low beta.
This electrostatic model, in the appropriate regime, still allows us to
consider kinetic modifications to the modes, such as diamagnetic and
finite Larmor radius effects, which can alter the scaling of the growth
rate versus resistivity. We also consider the two interchange mode
growth regimes, the fast and slow,3 The fast interchange mode growth
rate corresponds to that of the Rayleigh-Taylor instability, which is
independent of the magnetic field strength and resistivity. The slow
interchange mode growth rate varies as one-third the power of the
resistivity. Since the modes we will consider are localized with

radial extent of approximately a few ion gyroradii, the modes with the

e e



-3
slow growth rate are of more physical relevance to experimental
devices.

There has been extensive theoretical and numerical work on the

resistive interchange mode. A great deal of the theoretical work has

been to determine stability properties of g-modes with the inclusion of

4,5 6

finite Larmor radius effects, parallel ion viscosity,° temperature

gradients,7 and diamagnetic effects.8 Previous simulation work has

centered on determining the gross plasma motion and saturation levels .

for interchange modes in diffuse pinches.g"ll Hender and Robinson!? and
An and Diamond!3 have recently studied the nonlinear evolution of the
resistive g-mode and the associated anomalous energy transport.
Experimentally, the resistive g-mode has been observed in Levitron
experiments at Culham!4 and is thought to be a cause of the magnetic
field fluctuations measured in the HBTX-I reversed field pinch.15

The reasons particle simulation methods are uniquely suited to
investigate the evolution of the resistive g-mode are 1listed as
follows. First, the stability of short wavelength modes (klps > 1) can
be determined. Second, when multi-rational surfaces are introduced and

overlapping magnetic islands are present, the regime L < ve/v where

ei?
L 1is the parallel stochastic magnetic field decorrelation length,
Ve = (Te/me)l/2 is the electron thermal velocity and Vei 1s the
electron-ion collision frequency, can be studied. This allows one to
validate stochastic magnetic field line calculations of heat transport
as well as investigate possible anomalous electron viscosity. However,
before undertaking these problems, the electrostatic model is used to

verify the linear theory of resistive g-modes and determine the

saturation mechanism.
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The organization of this paper is as follows. In Sec. II the
simulation model and initial configuration is presented. 1In Sec. III
the linear theory of the resistive interchange mode is reviewed and
simulation results presented for the fast and slow interchange mode
growth rates as well as a comparison with linear theory. In Sec. IV
the saturation mechanism of the unstable resistive g-mode is given as
well as a comparison of the predicted values with the simulation

'

results. Section V contains the discussion and conclusions.

IT. SIMULATION MODEL AND CONFIGURATION

We consider the plane slab model of Furth, Xilleen, and
Rosenbluth® of an incompressible fluid in which the destabilizing
effect of magnetic field curvature is represented by an effective
gravitational field. In the plane slab model the equilibrium magnetic
field lies in the (y,z) plane and is given by E = (0, BOX/LS, BO) as
shbwn in Fig. 1._ To relate to a cylindrical plasma column, the x-axis
may be regarded as the radiai coordinate with x = r-r , where r  is the
position of the mode rational surface. Therefore, the wavenumber along
the magnetic field, k", is given by kﬂ = ~.§/|§| ~ ky(r_ro)/Ls with
k= Zum/Ly, m=0, *l, ..., iLy/Z. The density is assumed to vary

y
radially and the profile used initially is

n(x) = nykl, [e” %/ (1 - e_KLX)] , (1)

which gives a constant density gradient scale length, L, (= -1/« where
k = -n’(x)/n(x)), where L, is the system length in the x-direction. No

gradients in temperature are imposed.



_5._.
In order to simulate magnetic field curvature, we introduce a
gravitational field in a direction opposite to the density gradient.

The gravitational acceleration is defined as

m(v% + vi/Z) .
%= L ex b (2)
c

where L, is the curvature scale length and this produces the curvature
drift of charged particles. We consider the case of a constant
centrifugal force only.

The model used for the particle simulation is a two-and-one-half

velocity dimension)

dimensional (x~y spatial dimension with Vx—vy"vz

guiding center electrostatic particle code.10 The plasma is confined
between two boundaries located at x=0 and x=L . The system is periodic
in the y-direction with length Ly’ The boundary condition imposed on
the electrostatic potential at the endpoints x=0 and x=LX is such that
the normal component of the electric field vanishes, which requires
%g (x=0) =0 =-§§ (X=LX). The parity of the eigenmodes in the
simulation is determined by the position of the rational surface
relative to the endpoints. For the present situation, with the
rational surface at x=0, the parity of the eigenmode will be even with
respect to the rational surface using the above boundary conditions.
The particle motion of the electrons in the plane perpendicular to
the magnetic field is determined by guiding center equations and ion
orbits are followed using the Lorentz force equation. Particles are
elastically reflected from the boundaries in the x-direction. In order

to include a finite electron-ion collision frequency, a Monte-Carlo



collision operator is wused which correctly simulates small-angle
collisions and models the Lorentz collision operator.17 This particular
operator gives a Spitzer value for the resisti?ity.

Since we must consider modes which satisfy kX > ky where k, ~ 1/A,
and A 1is the approximate radial width of the eigenfunction, it is
necessary to make the system extent in the y-direction as long as
possible. One method wused to achieve this is to expand the

electrostatic potential in the y-direction as a sum of normal modes:18

N o
o(x,y) = ] ¢p(x) ey 0 (3)
m=-N

where Y5 is the particle position in the y-direction. This allows the
use of very large system lengths and avoids problems associated with
grid interpolations in the y-dimension. Generally, only the first few
long wavelength modes need to be retained in order to give an accurate

representation of the electrostatic potential.

IIT. LINEAR THEORY AND SIMULATION RESULTS

In this section we briefly review the linear theory of the
~resistive g-mode and discuss the particle simulation results for fast
and slow interchange mode growth rates., The resistive g-mode 1is
localized around the resonant surface, B-g = 0, which is the position
where motion of the fluid and field can most easily decouple. This can

be seen from Ohm’s law:

E+=2==nJ, (4)
c
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where n is the resistivity. 1In the extreme collisional case where the
fluid moves freely across the field lines, the induced electric field
E~0 near the resonant surface and the z~-component of the current in

slab geometry is

BV
Tp=t < = (5)

s ¢ N
where Lg 1s the shear length of the magnetic field. Therefore, the

restraining force exerted on the plasma is given by

J xB Bx <2 Vx -
= X)—n—ex, (6)

and for x > 0 and n small the force is very large, which means the
plasma cannot slip across the field 1lines. Howevef, for =x=0,
corresponding to E-g = 0, the restraining force is small -and the plasma
can slip through the £ield, thereby localizing the mode. It is
important to mnote that the resistive g-mode 1is dominantly
electrostatic.

To describe the linear properties of the resistive g-mode we begin
by assuming that the electrons obey a drift-kinetic equation with a
number conserving Krook operator wused to model the electron-~ion
collisions. This form of the collision operator ‘gives reasonably
accurate results if electron temperature gradients and energy-dependent
curvature drifté are neglected.7 If the linear Vlasov response is used
for the ions, the quasineutrality condition leads to the following

eigenmode equation:7



T.
w*wD(:r—el—ﬂ“ 1)

9 w( o= wy) kjvax®
29 k2)p + [- + = _Je=0, (D

where pg = /Te/Ti Pis Vo = (Te/me)l/z, Wy = kycTe/LneB, Wey = 'm*Ti/Te’
and wy = kycTe/LceB. The fast and slow interchange mode growth rates
can now be derived from this differential equation. To obtain the

growth rate of the fast interchange mode, we let ky > kgy w2 LY D> wy

and the growth rate 1g12
1, vex 1, vext 2 Tgrry /2
Y=g =) |7 =) * G5) ’ (8)
PsVeils PsVeils tnre

which is independent of the magnetic field strength. When the
resistive terms are small the usual Rayleigh~Taylor instability growth
rate is found. For the slow interchange mode, k.X > ky, and assuming an

eigenfunction of the form

- 2
¢ = e X /2 , Re(a) > O

in Eq. (7), we obtain the dispersion relation

olo - i) (o= wy) = =iyd , (9)

where
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Three limiting cases are considered. TFor w << wxi = —U,

_i(u:_ot\).; (ll)

&

in the limit wgs < w< Wwg, it is found that

~iw = EZ——) ® Vei™ 3 (12)

and finally, for w >> wyj = —u,

“iw =y, « vé£3 . (13)
Therefore, kinetic effects can substantially alter the growth rate
scaling with resistivity.

In this paper we only consider the limit of w > w,, which gives a
growth rate of the resistive g-mode proportional to one-third the power
of the resistivity. This is the current operating regime of most
experimental devices which exhibit resistive interchange mode activity,
and diamagnetic drift corrections do not substantially alter our main
conclusions. In the next two subsections the particle simulation
results of the evolution of resistive interchange modes localized about

a single rational surface are presented.
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A, Fast interchange mode |
In this section the simulation results of the fast interchange
mode in a strongly sheared magnetic field are discussed. In order to
obtain the fast interchange mode growth we require ky > ke and the
interchange term in Eq. (7) be much larger than the resistive term.

Therefore, the parameters used are listed as follows:

L, x LY = 648 x 648; T,/Ty = 1; mg/m; = 0.01; wce/wpe = 10; Lg/L, = 14;

Ln/Lc = 0.1 v, = 1.4wpe6; a_=a_ = 1.56; wpeAt =2; n_ = 16/62; and

e b:4 vy o

kyps = 0.13m, m=0, 1, ..., iLy/Z. The collision frequency 1is
vei/w* = 20 and the rational surface position is located at x=0. Only
eigenmodes of even parity with respect to the rational surface are
allowed in the system.

In this case several long wavelength modes were observed to grow
exponentially at the fast interchange growth rate given by Eq. (8), and
then saturated at a later time. Figure 2 illustrates the measured
growth rates as a function of wavenumber and the theoretical wvalues
obtained from Eq. (8) are also given on the same figure. The electron
and ion density profiles are observed to flatten near the mode rational
surface and this reduces the gradient in density, which drives the
instability. fhe strong shear localizes the influence of the unstable
modes and in Fig. 3 contours of the electrostatic potential at
“bet = 1600 are shown. The mode localization is clearly visible as
well as the unstable wavelength, kyps = 0.39. The fluctuation levels
of wvarious modes at saturation is illuétrated in Fig. 4 and

le¢/Te] = 0.15, decreasing slightly for the shorter wavelengths.

max

e e — e,
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B. Slow interchange mode
The simulation results using the slow interchange mode ordering
are presented in this section. 1In order to satisfy ke > k,, the

parameters used for this case are: L, x L, = 328 x 12806; Te/Ti = 1;

y
me/mi = 0.01; mce/wpe = 10; LS/Ln = 28; Ln/Lc = 0.016; a, = 1.56;
ay = 35¢; Ve = 2.5wpe6; wpeAt = 23 L, = 14.28¢; and kyps = 0.012m, m=0,

*1, 2, +3. Only six modes were retained in order to satisfy the slow
interchange mode condition, ke > ky. To verify that shear has a strong
stabilizing effect on the slow interchange modes over the time scale of
the particle simulation runs (several drift periods) we first
considered the collisionless limit as a check of the model. Thé
results, using the above parameters, indicated no observable growth
rétes and the density and temperature profiles remained the same as
their initial values over the entire length of the run.

Next, the effects of finite resistivity are included and, using
“ei/w* = 50 with the above parameters, the time evolution of the
electron and ion density profiles are shown in Fig. 5. A flattening of
the density profiles occurs in a localized region about the mode
rational surface. The Widfh of the most wunstable eigenmode,
kypS = 0.036, is also included in this figure (A) and was determined by
a solution to the eigenmmode Eq. (7) wusing a standard shooﬁing code
technique. The wave function is illustrated in Fig. 6 along with the
mode half width, A, for ”ei/w* = 50. Therefore, it is clear that the
density relaxation occurs approximately over the width of the

eigenmode.
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In order to verify the growth rate scaling with resistivity for

the slow interchange mode ordering, several simulations were performed
keeping the above parameters fixed and varying the resiétivity. The
results are shown in Fig. 7, which represents the growth rate of the
most unstable mode versus resistivity to the one-third power. The

simulation results obey the scaling law predicted by linear theory.

IV. SATURATION OF INTERCHANGE MODES

In this section we discuss the saturation mechanism of the
resistive g-modes and compare the theoretically predicted wvalues with
the simulation results. There are basically two mechanisms which can
saturate the resistive interchange mode. The first mechanism is
compressional stabilization, which has been discussed by Manheimer .20
The idea is that the energy released by the unstable plasma ceases to
drive unstable modes and begins to compress the plasma. The resulting
saturation level 1is obtained by balancing the gravitational and
compressional energy of a displaced fluid element. This mechanism
would predict higher saturation levels because it ignores the damping
due to resistive field line bending.

The second mechanism 1s by convective mixing of pressure or
density. This saturation process has been proposed by Carreras et
al.2l o determine the saturation level of resistive ballooning modes.
A  similar method has been applied to rippling modes?2 where
resistivity, rather than pressure, is convected. The latter mechanism
of convective mixing of pressure is more plausible since relaxation of
the density profile occurs on a much shorter time scale than

compressional effects. Furthermore, with narrow layer widths about the
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mode rational surface one expects the convection process to be quite
rapid.
An estimate of the saturation level can be made by considering the
equation for convection of pressure:
op

s .
et Y P

0 . (14)

By writing p = <p> + 5, v =<+ ﬁ, we obtain an equation for 5:

(15)

<>
[ ]
1<
]
o
-

Bp
5 + v Wp> +

under the assumption <X> = 0. Fourier transforming in the y-direction,

we obtain an equation for the k=0 component of the perturbed pressure

apo

Tl T+ Yo - Y+ Vo - (16)

Letting § = Yg, where g is the fluid displacement, and k, > ky =k, we

obtain

Bo = o 152 2 (17)

which can be substituted into the equation

3P

S+ Vi * V(<p> + pg) = 0 (18)
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to give

P = =g (1 - 7 ) x> . (19)

Therefore, convection of pressure would cease when

[El? = A2, (20)

where A is the approximate layer width of the mode. The saturation
occurs when the pressure fluctuation is displaced by a distance
comparable to the width of the eigenmode.

b The satﬁrated level can be approximated by assuming convection
occurs mainly through ExB motion. Approximating the ExB velocity
perturbation by Gx = yYA,, where Yy 1is the linear growth rate, the

fluctuation level of the unstable modes at saturation is given by

eB

— . (21)
kT,

edy
JEE- Sy YAk
Te

Figure 8 is an illustration of the mode fluctuation ampiitude versus

time for the most unstable mode, k pg = 0.036 with Vei/w* = 2000. From

y
this figure ZY/wpe =~ 0.0004 and A/2 =~ 16, which gives a value of
e'J)/Te =~ 0,8 at saturation wusing Eq. (21). The measured value 1is
e&/Te 2 0.22. Therefore, the instability saturates at a lower value
than predicted by theory. However, the estimate given by Eq. (21) is

considered only an upper bound. The simulation values and predictions

of Eq. (21) were found for differing values of the resistivity, with
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better agreement for the longer wavelengths modes and poor agreement
for shorter wavelengths. This is shown in Fig. 9, where we have
plotted e&)/Te versus (Vei/w*)Z/B for the same value of ky at

saturation.

V. CONCLUSIONS

We have wused particle simulation methods to investigate the
dynaﬁical evolution of resistive g-modes in a sheared magnetic field.
Since the slow modes are very localized about the mode rational
surface, on the order of a few ion gyroradii, finite Larmor radius
effects as well as diamagnetic drifts are important becauée they alter
the scaling of the growth rates with resistivity. The fast interchange
mode is first considered and it is found that several long wavelengths
grow at the theoretically predicted values. The modes saturate when
the density profile relaxes, thereby nullifying the free energy source
for instability. |

For the sldw interchange modes, corresponding to a growth rate
dependence on resistivity to the one-third power, the density profile
was observed to quasilinearly flatten over the width of the eigemmode.
Several simulations were performed with varying resistivity and it was
found that the growth rate obeyed the proper scaling law obtained from
linear theory for w > w,. The presence of magnetic shear introduces a
constraint which twists the mode to conform to the field lines and this
causes the lowered value of the growth rate.

The saturation of the interchange modes is primarily caused by ExB
convection of pressure or density. The plasma is convected across the

magnetic field until the perturbed pressure response vanishes, which in
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turn saturates the modes. This convection process occurs over the
width of the eigenmode. Since the width of the mode for the slow
interchange is much smaller than that of the fast, the saturation level
is also much less.,

With the convection occurring over the mode width, it is expected
that in cases of multi~rational surfaces the modes centered about
different rational surfaces would interact and produce a turbulent
state. Therefore, an extension of this work to three dimensions would
be to consider the dinteraction of modes with different helicities
(i.e., different k ‘s) and determine the saturated levels as well as
the energy transfer in the fluctuation spectrum. Furthermore, when
magnetic perturbations are allowed, the overlapping of magnetic islands
can occur and the effects of stochastic field lines omn transport
coefficients in the collisional and collisionless regimes can be

investigated.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Initial configuration for particle simulation model.

Fast interchange mode case. Theory and simulation values of

growth rate versus wavenumber.

Fast interchange mode case. Contours of the electrostatic

potential taken at time uw,.t = 1600. Distances normalized to

P
pg and solid curves are positive potential and dotted curves

represent negative potential.

Fast interchange mode case. Plot of mode amplitude at

saturation versus wavenumber.

Slow interchange mode case. Time evolution of the electron and
ion density profiles. The profiles illustrated are chosen at

Wpet = 0 and w,.t = 3600, near saturation. The theoretically

pe
determined eigenmode width, A, is also shown in this figure.

Numerically obtained wave function using a standard shooting

code method for vg;/wx = 50 and k = 0.036. A refers to the

p
y¥s
half-width of the eigenmode wave function.

Slow interchange mode case. Simulation and theoretical values
(solid line) of growth rate versus resistivity to the one-third

power for modes kyps = 0.012 and 0.036.

Sloy interchange mode cage, Mode amplitude versus time for
Veai/wx = 2000 and kypS = 0.036. Dotted line represents linear

theory growth rate.

Slow interchange mode case. Mode amplitude at saturation
versus resistivity to the two-thirds power. The solid line is

the mixing length theory prediction.
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