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A new model describing the Weibel instability of a relativistic electron beam propagating through a
resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound
waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even
for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D
geometry the Weibel instability persists even for collisionless background plasma. The anomalous plasma
resistivity in 3D is caused by the two-stream instability.

DOI: 10.1103/PhysRevLett.101.255001

The fast ignition (FI) fusion is a promising route towards
laser-driven fusion. In the FI scheme [1], a laser-generated
relativistic electron beam with a few MeV per electron
energy must propagate and heat a hot spot in the core of a
precompressed fusion fuel target. The current carried by
these MeV electrons inside the plasma is much higher than
the Alfvén current limit / = 17y kA, where 7y is the
Lorentz factor of the beam. Transportation of this electron
beam is not possible unless it is compensated by a return
plasma current. However, in this configuration, the current
beam is subject to the Weibel and the two-stream instabil-
ities. The Weibel instability [2] is one of the leading
instabilities under relativistic conditions and has been
studied for a long time [3—12]. Honrubia et al. [11] have
performed three-dimensional simulations of resistive beam
filamentation corresponding to the full scale FI configura-
tion. Three-dimensional magnetic structures generated due
to the Weibel instability in a collisionless plasma have also
been reported [12]. Recently, the evidence of Weibel-like
dynamics and the resultant filamentation of electron beams
have been reported experimentally [6]. It was proposed in
Ref. [7] that this instability could be suppressed by the
transverse beam temperature alone in a collisionless
plasma. However, the instability persists in the presence
of collisions in return plasma current no matter how high
the transverse beam temperature is. This regime of insta-
bility was termed the resistive beam instability [13].

In this Letter, we develop a theoretical model of the
collisional Weibel instability in the framework of the qua-
sineutrality assumption. It treats beam electrons as kinetic
particles, and ambient plasma as a nonrelativistic fluid. For
a finite-temperature beam, a new class of negative-energy
magnetosound waves is identified. We derive conservation
laws for the beam-plasma system and show that the energy
of this system is not positively definite. Rather, it contains a
negative term that allows for negative-energy waves.
Collisions in the background plasma current excite un-
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stable magnetosound waves in the system, which carry
negative-energy densities. Because of these waves the
Weibel instability is not suppressed even when the trans-
verse beam temperature would be high enough to stabilize
collisionless plasmas. We present results of detailed 2D
and 3D particle-in-cell (PIC) simulations on the relativistic
electron beam transport in plasmas. The 2D geometry
corresponds to a plane transverse to the beam propagation
direction. In this geometry the Weibel instability is de-
coupled from the two-stream instability. The simulation
results show that the Weibel instability cannot be sup-
pressed by thermal effects alone if collisions are present
in the system. In 3D geometry, the simulation results show
that the Weibel instability cannot be suppressed even in
plasmas free from binary collisions. We conjecture that the
effective collisions, leading to an anomalous resistivity in
the return current, are provided by the turbulence emerging
from the electrostatic beam instability.

We assume a very long electron beam propagating in the
Z direction and there is no dependence on the coordinate z.
The beam and plasma densities are n;, and n,,, respectively,
and the beam-plasma system is quasineutral, i.e., n, +
n, = ny, where n, is the background ion density. The
strongest magnetic field is generated in the transverse
plane (x-y plane). This magnetic field generates an axial
component of the electric field E,. The transverse compo-
nents of the electric field are obtained from the force
equilibration E + v,, X B, /c =0, where v,. = v,.e,
is the return plasma current velocity. To summarize, these
are the dominant electric and magnetic fields of the beam-
plasma system:

_194,

B_L = —ez XVJ_AZ, ¢ o1 , (1)

E, =

EJ_ = _(UPZ/C)VJ.AZ’

where A, is the z component of the vector potential. The B,
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component is small, but can be approximated using 9,B, =
—(Vyv,, XV, A)-e. The A, component is determined
from the Ampere law

4qr
ViA, = — T(Jbz +J,.), )

where J,,, and J ,, are the current densities of the beam and
plasma, respectively. We discard the displacement current
to ensure the quasineutrality. The axial equation of motion
for the plasma flow and the transverse equations of motion
for the beam electrons are

Jv e 0A
Pz 4 =— " 3
ot YV T e ot 3)
d(')’jvjj_) _ _ e(vjz B vpz) VA, (4)
dt mc '

where v is the collisional frequency of the ambient plasma,
m and ¢ are the electron mass and velocity of light in
vacuum, respectively, and the subscript j represents the
jth beam electron. For a collisionless plasma, Eq. (4) is
written as

2

d(y‘v'J_) _ ev;,
g me Mt aea

- o VA2 (5)

The second term in the right-hand side of Eq. (5) is due to
the extra pinching of the electron beam by the transverse
electric field E,. We note here that E| counters the
magnetic expulsion of the ambient plasma. At the same
time it reinforces the magnetic pinching of the beam. The
generalized momentum conservation in the z direction
gives

e
YiVjz = YjoVj:o T %(Az —Ay) (6)

If there is no dissipation, then we may derive conservation
laws for the system. From Eqgs. (2), (5), and (6), we have

s o meA\? , - IVA?
gyjmc ZE(m—cz) +[d xL, 87:'

J
A_\2
+ [ dzxLZM(e ) =0, (7)
2 \mc

where L, is the system length in the z direction. The first
term in the above expression represents the total beam
electron energy. The third and fourth terms correspond to
the total magnetic energy and the plasma kinetic energy,
respectively. The fourth term slightly overestimates the
energy because the actual plasma density n, = ng — n,
is slightly smaller. The second term corrects this over-
count: the excess energy is subtracted from the electron
beam energy.

The relativistic treatment of the instability could be
somewhat cumbersome. However, the essential physics
can be learned from the nonrelativistic equation of motion.

For a warm electron beam the equation of motion reads as

dva Up; = Upz
=—e— =V A ——, 8
dt T ¢ 15, ®)

where P is the beam pressure related to the beam emit-
tance. Equation (8), on linearizing for small magnetic field
perturbation, together with the continuity equation
d,0n, = —n,(V, - dvp), yields

02 on ~
(W - C?Vi) n = CBViA ©)

where A, = eA./mc?, By = (vy, — v,.)/c = v,./c, 2 =
3v2, is the square of the beam’s sound speed, and it was
assumed that V| 8P = 3v3 V| 8n,,. Equations (2), (3), and
(9) form a set of equations to describe the sound like
perturbation or filamentation of the electron beam density.
The simplest case of collisionless plasma (v = 0) and
long wavelength perturbation ([k; |* < w?3,/c?, @, being
the ambient plasma frequency) gives (92/91> —
¢2V3)ony,/n, =0, where ¢ = c?— c*Bin,/n, is the
modified sound speed. One may note that the cold beam
(c? < c*B§ny/n,) is unstable due to the Weibel instability
whereas the warm beam is stable. For a warm beam the
dispersion for sound waves is given by w? = 2k . These
waves are stable and the Weibel instability does not occur
for sufficiently high transverse beam temperature and low
beam/plasma density ratios. With finite plasma resistivity
taken into account the dispersion relation for the sound
waves reads as

i BikT
(K + K,/ + iv/w)

w® = I3 — (10)

where w);, is the beam-plasma frequency. For large scale
perturbations (ki < k3,, k,; = ¢/w,,) and small colli-
sion frequency, Eq. (10) yields three modes

202
w = *G |k, | — ivSL0 _320"”, (11)
2¢5n,
and
22
o = i SB. (12)
2¢5n,

The energy density associated with the last mode can easily
be checked to be negative. Thus collisions drive negative-
energy waves in the system, leading to the Weibel insta-
bility of a warm electron beam, which would be stable in
collisionless plasmas.

We carry out detailed 2D PIC simulations to check the
analytical findings. The relativistic electron beam propa-
gates in the negative Z direction with the initial velocity
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v,,. The compensating return current of the ambient
plasma electrons flows with the initial velocity v,.. The
plasma ions are immobile and have the density ny = n;, +
n,. The simulation domain size is X X Y = (20A; X
20A,), where A; = ¢/w,, is the plasma skin depth. All
simulations are performed with 64 particles per cell and
with a grid size of 6x = 8y = 0.125A,. The density ratio
between the plasma and beam electrons is n,/n, =9,
whereas the beam and background plasma electrons have
velocities vy, = 0.9¢ and v,,, = —0.1c¢. The binary colli-
sions are simulated with a newly implemented collision
module in the Virtual Laser Plasma Laboratory (VLPL)
PIC code [14]. We record the evolution of field energy
for every component F; of the fields E and B as
[s(eF;/mcw,,)*dxdy. We take the electron beam with
temperature 7, ~ 70 keV and the ambient plasma colli-
sion frequency »/w,, = 0.15 for these simulations.
Figure 1 shows snapshots of the transverse E and B
fields, and the structure of the beam filaments at a time,
T = 2027/ w,,) for four different cases: (a) cold electron
beam and collisionless background plasma, (b) cold elec-
tron beam and collisional background plasma, (c) hot elec-
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FIG. 1 (color online). Snapshots of the evolution of transverse
electromagnetic fields (E, and B,) and beam filament densities
(np,) during the nonlinear stage at a time 7 = 2027/ w,,) for
four different simulation cases. See text for explanations.

tron beam and collisionless background plasma, and
(d) hot electron beam and collisional background plasma.
The beam density filamentation is shown in the last column
in each panel. In collisionless case (a), the filaments are
small, comparable with the plasma skin depth. In the colli-
sional case (b), the filament size is bigger. This can be
explained as a collisional diffusion of plasma electrons
across the self-generated magnetic fields. In the third panel
of figure, simulation case (c), the electron beam has the
transverse temperature 7;, ~ 70 keV, and the background
plasma electrons are collisionless. Here we see no filament
formation. The temperature of the electron beam stabilizes
the Weibel instability. Physically the thermal pressure of
the electron beam prevails over the magnetic pressure in
this case. Hence, the magnetic field pinching which ac-
tually drives the instability does not occur, resulting in the
suppression of the Weibel instability. The last panel of the
figure depicts the filament formation in the simulation case
(d). Although the beam temperature is the same as in the
stable collisionless case (c), the background plasma colli-
sions revive back the instability. This is due to the colli-
sions induced generation of negative-energy waves as
discussed earlier in the theoretical model.

Figure 2 shows the evolution of electric and magnetic
field energies in the four cases corresponding to the simu-
lations in Fig. 1. The energy axes in Fig. 2 use logarithmic
scales. We see a stage of linear instability, where the field
energies build up exponentially in time. It is followed by
the nonlinear saturation later. The linear instability stage is
present in the simulations (a), (b), and (d). The simulation
case (c¢), where the electron beam had high temperature and
the background plasma was collisionless, shows no linear
stage of instability and no significant build up of the fields
energies. The linear growth rates calculated from the simu-
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FIG. 2 (color online). Time evolution of the perpendicular and
parallel field energies (E7, B}, Ej, Bj) for four different

simulation cases as in Fig. 1.
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FIG. 3 (color online). Beam filaments from 3D PIC simula-
tions corresponding to the case in Fig. 1(c).
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lation results agree well with the theoretical model. After
the linear stage of the instability, magnetic attraction of the
filaments starts and the field energies saturate. Some small
fluctuations around the saturated field energies can be seen.
These fluctuations occur due to the collective merging of
the filaments, also discussed in [9].

We have also done a number of 3D PIC simulations
varying the beam temperature and the plasma collision
frequency. To our surprise, we found no stabilization
even in the collisionless case for high beam temperatures.
The corresponding simulation is shown in Fig. 3. Although
the electron beam in this simulation had the high transverse
temperature, and the plasma had no binary collisions, we
see a lot of filamentation due to the Weibel instability. We
explain this fact in terms of anomalous plasma collision-
ality. Indeed, there is an oblique mode in the 3D geometry
which couples the Weibel and the two-stream instabilities
[8]. The two-stream mode generates electrostatic turbu-
lence in the plasma. Stochastic fields associated with this
turbulence scatter the beam and plasma electrons and lead
to an effective collisionality in the return plasma current,
which revives back the Weibel instability. It may be noted
here that we have always taken the background plasma as
cold. The interplay of collisions in different regimes of
beam and background plasma temperatures can be found in
Ref. [5].

In summary, we have developed a simplified model
which identifies the collisional Weibel instability as the
instability of the unstable negative-energy mode driven by
collisions in the background plasma. An important result of
this study is that beam temperature does not kill the Weibel
instability in the presence of collisions in the beam-plasma
system. Detailed 2D simulations on the Weibel instability
of an electron beam have been performed, which essen-
tially confirm the theoretical prediction. An alternate ex-
planation on the persistence of the Weibel instability in 3D

geometry is offered. It is attributed to the anomalous
collisionality of the beam-plasma system due to the two-
stream mode.
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