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Abstract

The paper deals with a generic problem of collisionless plasma expansion into vacuum in the

regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused

by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process

is often described under the assumption of Maxwellian electrons, which easily fails in the absence of

collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution:

an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle.

The presented rigorous kinetic description demonstrates how the deviation from the Maxwellian

distribution fundamentally alters the process of ion acceleration during plasma expansion. This

result points to the critical importance of a fully kinetic treatment in problems with collisionless

plasma expansion.
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I. INTRODUCTION

Plasma expansion into a vacuum is a basic physics problem with a variety of applications,

ranging from solar wind to laboratory plasmas [1–5]. It has been extensively studied over

the years [6–13], but recent research of laser irradiated nanoplasmas [14] and plasma based

space thrusters [15] reveal interesting new elements in this seemingly transparent problem.

This paper presents two such elements involving kinetic phenomena.

We focus specifically on the regimes where the plasma consists of hot electrons and cold

ions. In these regimes the expansion is driven by the electron pressure, and it serves as an

energy transfer mechanism from electrons to ions. If the electron motion is collisional, then

the process is largely similar to the conventional gas-dynamic expansion [16] with the fluid

description fully applicable [17]. In this case the electron distribution remains Maxwellian

during the expansion due to the Coulomb electron-electron collisions. Plasma expansion

with collisionless electrons is also often treated under the assumption that the electrons are

Maxwellian [6, 9, 18], but this approach generally suffers from the lack of a mechanism capa-

ble of maintaining such a distribution. In some special cases this assumption can be justified

by proving that the obtained solution is internally consistent despite the absence of collisions

or any other Maxwellization mechanism [6, 13]. However, these special cases are rare ex-

ceptions because the expansion itself can easily distort an initially Maxwellian distribution

in the absence of collisions. Moreover, the electron distribution prior to the expansion may

already be significantly different from a Maxwellian. Both situations apparently require a

proper first-principle kinetic treatment.

This paper considers two systems with intrinsically non-Maxwellian electron distributions:

an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic

nozzle. Our rigorous kinetic analysis of these two problems (Secs. II and III) demonstrates

how the deviation from the Maxwellian distribution fundamentally alters ion acceleration

compared to a model that postulates a Maxwellian electron distribution in the entire flow.

The problem of a laser-irradiated nanoplasma highlights the critical role of hot non-thermal

electrons in the ion acceleration process. A detailed kinetic analysis of this problem is

presented in Ref. [14], whereas Sec. II serves as an overview of the key qualitative results

of Ref. [14]. The magnetic nozzle problem shows the important role of the moving plasma

edge in the distortion of the electron distribution.
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FIG. 1: Plasma flow in a magnetic nozzle with a converging-diverging guiding magnetic field
configuration.

Most of the paper is dedicated to the problem of plasma acceleration in a magnetic nozzle

with a converging-diverging configuration of the guiding magnetic field. This configuration

is employed by some plasma-based propulsion concepts to convert an incoming subsonic

plasma flow into a supersonic jet. The converging part of the nozzle accelerates the incoming

subsonic flow supplied by a plasma source. The flow becomes sonic at the nozzle throat, after

which the acceleration continues in the diverging part of the nozzle. The main difference

from a convention gas-dynamic nozzle is that the flow acceleration mechanism is collisionless.

The electron pressure produces an ambipolar electric field directed downstream that pulls

the ions, accelerating the flow.

At a constant rate of plasma injection, the flow upstream from the nozzle throat (magnetic

mirror) and in its vicinity downstream eventually reaches a steady state. The expanding

plume, however, remains time dependent and consists of two parts: a steady supersonic

flow adjacent to the mirror and a rarefaction wave at the plasma edge (see Fig. 1). This

flow configuration is similar to that of a conventional gas-dynamic nozzle, but there is a

fundamental difference. The rarefaction wave at the plasma edge affects the flow globally

through collisionless electrons, as opposed to the collisional flow regime where it affects

electrons only locally due to the short electron mean free path.

The magnetic mirror makes some areas of phase space inaccessible to the electrons injected

by the source because only those electrons in the loss cone upstream from the mirror are able

to pass through. These areas were treated as empty in previous works when attempting to

construct a steady-state solution for a collisionless flow [18]. Such an approach unjustifiably

ignores electron interaction with the rarefaction wave. A critical aspect of this interaction
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is the energy loss caused by the time-dependent electric field of the wave. Its consequence

is that some of the reflected electrons do not have sufficient energy to overcome the barrier

created by the magnetic mirror and return to the plasma source. These electrons become

decoupled from the source and undergo continuous adiabatic cooling, bouncing between

the mirror and the rarefaction wave. As a result, the inaccessible areas of phase space

downstream from the mirror become filled with decoupled electrons.

In Sec. III of this paper, we formulate a closed set of equations that adequately describes

the collisionless plasma plume for a given distribution of injected electrons. The decoupled

electrons affect the description in a major way. The derived equations are solved for the case

of injected Maxwellian electrons to demonstrate the distortion of the electron distribution

and the resulting significant change in ion acceleration compared to a model that postulates

Maxwellian electrons in the entire flow.

II. ION ACCELERATION IN EXPANDING NANOPLASMAS

This section describes collisionless expansion of a nanoplasma (micro-cluster) with a two-

component electron distribution. The corresponding theory has been largely motivated by

experimental studies of micro-clusters that are exposed to a high-intensity laser beam [4].

In a typical experiment, a supersonic deuterium jet expands into vacuum producing liquid-

density droplets, which are a few nanometers in radius. When the droplets are irradiated

with an intense laser pulse, they are quickly converted into dense fully ionized nanoplasmas

(micro-clusters). The nanoplasmas expand producing counter-streaming fluxes of fast ions

and subsequent ion collisions lead to fusion reactions with a noticeable neutron yield [4].

Quantitative predictions of the neutron yield require the knowledge of the ion spectrum and

understanding of the expansion dynamics.

The problem involves two elements that can be considered as subsequent stages in a short

laser pulse limit when the pulse duration is significantly shorter than the cluster expansion

time. The first stage is the electron heating by the laser, and there are several possible

regimes depending on the electron mean free path, cluster radius, and laser pulse parameters.

The regime of particular interest for theory is the one where the laser can create a two-

component electron distribution with a cold majority and a hot collisionless minority. The

underlying mechanism is the so-called Brunel heating [19, 20] that takes place at the cluster
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surface and repeats stochastically during multiple passes of the heated electron through the

cluster [21–24] . The second stage is the ion acceleration which, in this limit, is a problem

of plasma expansion into vacuum for a given initial electron distribution. The mechanism

of electron heating by the laser is such that the hot electrons move predominantly radially,

which makes the problem of ion expansion caused by the hot electron pressure effectively

one-dimensional.

The key feature of the problem is that both cold and hot electron populations occupy

the same volume prior to the expansion. Such initial configuration is the cause for the

breakdown of quasineutrality at the edge of the cold electron core during the expansion.

A detailed analysis of the expansion dynamics is given in Ref. [14], and in what follows

we summarize its results. Initially all ions and both electron populations occupy the same

volume inside the cluster where the sum of the electron densities is equal to the ion density,

so that the charge density and electric field vanish. There is also a thin double layer at

the cluster surface (the same as the surface of the cold electron core) that consists of a

negatively charged hot electron halo and a positively charged ion shell. The electric field of

the double layer keeps hot electrons inside the cluster but, at the same time, it forces the

ions of the thin shell to expand radially. As the original ions from the thin shell expand, new

ions become exposed to the electric field of the double layer. Gradually, a new double layer

structure shown in Fig. 2 is formed at the surface of the cold electron core. It is critical that

the ions are extracted from inside the cluster where the ion density significantly exceeds the

hot electron density. Therefore, continuous violation of quasineutrality is unavoidable at the

edge of the cluster, so that the double layer must persist during hot electron expansion.

The double-layer shown in Fig. 2 produces a quasineutral outgoing supersonic plasma

flow. The drop of the electrostatic potential in the double layer is insufficient to confine all

hot electrons inside the cluster. The remaining drop of the electrostatic potential needed

to reflect back all the hot electrons that are moving radially outwards is accommodated by

a rarefaction wave at the expanding plasma edge. A self-consistent theory that describes

ion expansion together with the resulting cooling of the hot electrons has been developed in

Ref. [14] for a top-hat distribution of the hot electron component. The rigorous solution of

the problem allows one to find asymptotic (t → +∞) ion energy and time-of-flight spectra.

These spectra indicate that the average ion energy gain is of the order of the hot electron

energy before the expansion and that there is a fraction of ions whose maximum energy
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FIG. 2: Electron and ion density profiles (ne and ni) and electrostatic potential (ψ) in the double
layer. The densities are normalized to the hot electron density n0 at the surface of the cold electron
core. The surface of the cold electron core is located at r = R0. The electrostatic potential is
normalized to its value at the double layer exit ψ0 = −

√
3EH/2|e|, where EH is the maximum

(cutoff) electron energy. The radial scale is normalized to λD =
√

EH/4πn0e2
[
Et=0

H /EH

]1/4.

exceeds the initial maximum electron energy. It also follows from the solution that the ions

gain as much as 50% of their final energy moving through the double layer located at the

surface of the cold electron core.

III. EXPANSION OF SUPERSONIC PLASMA JET

The qualitative picture of expansion of a supersonic plasma jet into vacuum was discussed

recently in Ref. [15]. In what follows, we adopt the same general formulation of the problem

and reduce introductory qualitative arguments to the bare minimum with the understanding

that more details can be found in Ref. [15].

We consider a collisionless paraxial plasma flow through an axisymmetric magnetic nozzle

with a steady plasma source at the nozzle entrance (a source with a constant rate of plasma

injection). The incoming flow is subsonic and the plasma ions are assumed to be cold and

single-charged. The dynamics of such a flow is described by the following equations:

∂V

∂t
+ V

∂V

∂z
= − |e|

mi

∂ϕ

∂z
, (1)

∂n

∂t
+ B

∂

∂z

(
nV

B

)
= 0, (2)

n = ne(ϕ,B), (3)
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where V is the ion velocity that is directed along the given guiding magnetic field B(z), mi

is the ion mass, e is the electron charge, ϕ is the electrostatic potential, n is the ion density,

ne is the electron density, z is the axial coordinate, and t is the time. Equation (1) is the

ion momentum balance equation, Eq. (2) is the ion continuity equation, and Eq. (3) is the

quasineutrality condition. The electron density in Eq. (3) must be expressed in terms of ϕ,

B, and a given distribution function of injected electrons f0.

The motion of plasma electrons is controlled by the guiding magnetic field B(z) and

the ambipolar potential ϕ(z; t). The nozzle concept implies that the electrons are strongly

magnetized, such that they follow the magnetic field lines. The time evolution of ϕ is

determined by the ion motion and can be regarded as slow (adiabatic) with respect to the

electron gyromotion and electron axial motion. Therefore, the magnetic moment of each

electron,

µ ≡ mev
2
⊥

2B
, (4)

is a conserved quantity, where me is the electron mass and v⊥ is the electron velocity perpen-

dicular to the magnetic field. The electron motion along the field lines can then be described

as one-dimensional motion in an effective potential

Ueff ≡ µB(z)− |e|ϕ(z; t). (5)

We assume that the ambipolar potential ϕ is a monotonically decreasing function of the

axial coordinate z, so that plasma ions accelerate progressively along the magnetic field

lines. In contrast with ϕ(z), the effective potential Ueff is not monotonic for electrons with

a sufficiently high µ and it has a local maximum downstream from the magnetic mirror

because of the magnetic term in Eq. (5). The location of the maximum depends on the

electron magnetic moment.

We distinguish two groups of electrons: coupled electrons and decoupled electrons. Cou-

pled electrons are the electrons that return to the plasma source after a single axial bounce

through the nozzle. The term coupled emphasizes that these electrons are energetically

coupled to the plasma source, as the source restores their energy losses after every bounce

through the nozzle. A local maximum in Ueff acts as a barrier for coupled electrons, making

a certain area of phase space downstream inaccessible to them. The second group of electrons

that we call decoupled are the electrons that occupy the inaccessible areas. These electrons
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bounce between the mirror and the rarefaction wave without returning to the plasma source,

so that their energy losses accumulate with time. An injected electron becomes decoupled

when it fails to go over the barrier and return to the source after being reflected by the

rarefaction wave. This occurs as a result of the electron energy loss experienced during the

reflection. The process is analogous to what happens when a ball elastically rebounds from

a retracting wall and loses some of its kinetic energy. It is important to point out that the

electron magnetic moment remains conserved.

The energy lost by an electron in a single reflection from the rarefaction wave is relatively

small compared to its total energy because the wave evolution is adiabatic. For a coupled

electron, the energy losses are fully restored by the plasma source after every bounce. This

enables us to treat both the magnetic moment µ and the total energy

ε ≡ mev
2

2
− |e|ϕ (6)

of a coupled electron as conserved quantities. For a decoupled electron, the energy losses

gradually accumulate over time and thus the conserved quantities are the magnetic moment

µ and the adiabatic invariant

I =
1

2π

∮
mev‖dz. (7)

In Eq. (7), v‖ is the component of the electron velocity parallel to the magnetic field and

the integration is performed over a single bounce period. The conservation of I for the

decoupled electrons adequately describes their adiabatic cooling.

In order to to derive an explicit expression for ne in Eq. (3), we need to express the

electron distribution function fe in terms of the given distribution of injected electrons f0.

As a consequence of the plasma’s adiabatic expansion, the electron distribution function is

nearly symmetric with respect to the longitudinal electron velocity v‖ and we can therefore

neglect its small asymmetry when calculating the electron density. The given distribution

of injected electrons f0 specifies fe at the nozzle entrance only for v‖ ≥ 0, but the symmetry

of fe means that fe(v‖, v⊥) = f0(|v‖|, v⊥) for both signs of v‖. This function describes both

the injected and returning electrons. Since all electrons at the nozzle entrance are coupled

electrons, we express fe in terms of the conserved quantities µ and ε, such that fe = f0(ε, µ).

This distribution is preserved by the Vlasov equation during the electron motion through

the nozzle. We thus conclude that the expression fe = f0(ε, µ) is valid in all areas of phase
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space accessible to the coupled electrons. In the case of decoupled electrons, the distribution

function is preserved by the Vlasov equation if expressed in terms of I and µ. A direct way

of expressing fe in terms of I would obviously require the knowledge of the time evolution

of ϕ(z; t) in the entire flow downstream from the mirror throat. However, there is an easier

way to deal with this problem.

Let us pick a value of µ with a non-monotonic profile of Ueff. The time-dependent

part of the flow is gradually moving away from the mirror and, eventually, the barrier

produced by Ueff becomes stationary. From this moment on, only injected electrons with

the same energy ε = ε∗(µ) become decoupled, where ε∗(µ) is the height of the barrier.

The distribution function of these electrons is constant in time, fe = f0[ε∗(µ), µ]. However,

the adiabatic invariant corresponding to ε = ε∗(µ) increases with time as a result of the

flow expansion. This means that the distribution function of the electrons, that become

decoupled after the barrier became stationary, is independent of I. As the flow expansion

continues and the decoupled population grows, the fraction of the electrons that became

decoupled during the formation of the barrier diminishes. We can then safely neglect this

transiently-formed population when constructing an asymptotic solution (t → +∞). The

decoupled electrons gradually cool down losing energy and fill up the area of phase space

inaccessible to the coupled electrons with the same µ. Therefore all decoupled electrons with

the same magnetic moment µ have the same distribution function, fe = f0[ε∗(µ), µ], in the

asymptotic solution.

The electron density ne can now be calculated as a sum of coupled and decoupled electron

densities [15]. The resulting general expression for ne involves a double integral over ε and

µ. However it can be reduced to a single integral over energies if the distribution of injected

electrons is independent of µ. This simplification applies conveniently to the particular case

of an incoming flow with Maxwellian electrons discussed in Sec. III D.

A. Expressions for electron density

Upstream from the nozzle throat, Ueff is a monotonic function of z for all magnetic

moments and the flow contains only coupled electrons. For a given magnetic moment µ, the

lowest possible energy is ε = Ueff, which is equivalent to the condition v‖ = 0. As shown

in Fig. 3, the constraint ε ≥ Ueff defines a boundary of the phase space area occupied by
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FIG. 3: Electron distribution function upstream (left contour plot) and downstream (right contour
plot) from the nozzle throat for the case of injected Maxwellian electrons with temperature T . The
left contour plot corresponds to B/Bm ≈ 0.21 and |e|ϕ/T ≈ 0.49, where Bm is the magnetic field
at the mirror. The electrostatic potential is defined such that ϕ = ϕm = 0 at the mirror. The right
contour plot corresponds to B/Bm ≈ 0.21 and |e|ϕ/T ≈ −1.66.

coupled electrons at a given axial location. The boundary depends only on the local values

of ϕ and B. The electron density is then given by

ne = πB

(
2

me

)3/2 ∫ ∞

0

dµ

∫ ∞

Ueff

f0(ε)dε√
ε− Ueff

, (8)

where the conventional expression for ne in terms of integrals over v⊥ and v‖ has been

replaced by integrals over ε and µ using definitions (4), (5) and

ε =
mev

2

2
− |e|ϕ =

mev
2
‖

2
+ Ueff. (9)

We change the order of integration in Eq. (8) and evaluate the resulting integral over µ,

which does not involve f0, to find that

ne = 2π

(
2

me

)3/2 ∫ ∞

−|e|ϕ
f0(ε)

√
ε + |e|ϕdε. (10)

Downstream from the nozzle throat, the flow electrons also occupy the phase space area

bounded by the curve ε = Ueff. However the electron distribution function in this area

is different from the upstream case because decoupled electrons occupy a part of the area,
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as illustrated in Fig. 3. Unlike the boundary of the electron population that depends on

the local values of ϕ and B, the curve separating coupled and decoupled electrons (the

separatrix) depends on the entire profile of ϕ upstream. We have already introduced ε∗(µ)

as the height of a barrier in Ueff for a given value of the magnetic moment µ. It follows

directly from the definition of ε∗(µ) and Fig. 3 that the separatrix is specified by the equation

ε = ε∗(µ), where µ runs through all magnetic moments that have a barrier in the effective

potential upstream from the current axial location. In order to find ε = ε∗(µ), one has to

solve these two equations:

ε = µB − |e|ϕ, (11)

µ
dB

dϕ
− |e| = 0. (12)

Equation (11) gives the energy of injected electrons with magnetic moment µ that become

decoupled from the plasma source after reflecting off the rarefaction wave. Equation (12) is

the condition dUeff/dϕ = 0, which is equivalent to dUeff/dz = 0, because ϕ is a monotonic

function of z and the guiding magnetic field can be expressed at every time instant in terms

of ϕ. Equation (12) relates B and ϕ at the location where the barrier is the highest for the

given magnetic moment. Therefore one way to resolve Eqs. (11) and (12) is to express B

in terms of ϕ, solve Eq. (12) for ϕ(µ), and use the resulting function in Eq. (11) to express

the right-hand side in terms of µ and find ε = ε∗(µ). Equivalently, Eqs. (11) and (12) can

be used to find µ = µ∗(ε).

As shown in Fig. 3, the separatrix crosses the v‖ = 0 boundary at µ = µt. The value of

µt is given by Eq. (12),

µt =
|e|

dB/dϕ
, (13)

where the right-hand side must be calculated at the current axial location using the local

values of the magnetic field and the electrostatic potential. Indeed, at the intersection point,

Eqs. (11) and (12) must be compatible with the equation that specifies the boundary of the

electron population, ε = Ueff. The equation ε = Ueff is identical to Eq. (11), but it involves

local values of B and ϕ. As a result, the compatibility of the three equations requires us to

use the local value of dB/dϕ in Eq. (12) as well and we immediately arrive to Eq. (13).
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We now find that, for a given function ε = ε∗(µ), the expression for the electron density

downstream from the nozzle throat is

ne = πB

(
2

me

)3/2 ∫ µt

0

dµ

∫ ∞

Ueff

f0(ε)dε√
ε− Ueff

+ πB

(
2

me

)3/2 ∫ ∞

µt

dµ

[∫ ∞

ε∗(µ)

f0(ε)dε√
ε− Ueff

+

∫ ε∗(µ)

Ueff

f0[ε∗(µ)]dε√
ε− Ueff

]
. (14)

The integrals in Eq. (14) are written according to Fig. 3 that illustrates how the “inaccessi-

ble” areas of phase space fill up with decoupled electrons. Equation (14) is similar to Eq. (6)

in Ref. [15]. Integrating by parts over energy, we transform Eq. (14) to

ne = −2πB

(
2

me

)3/2
[∫ µt

0

dµ

∫ ∞

Ueff

dε +

∫ ∞

µt

dµ

∫ ∞

ε∗(µ)

dε

]
df0(ε)

dε

√
ε− Ueff. (15)

To take advantage of the fact that f0 is independent of µ, we change the order of integration

in Eq. (15):

ne = −2πB

(
2

me

)3/2 ∫ Ueff(µt)

−|e|ϕ

df0(ε)

dε
dε

∫ (ε+|e|ϕ)/B

0

√
ε− Ueffdµ

−2πB

(
2

me

)3/2 ∫ ∞

Ueff(µt)

df0(ε)

dε
dε

∫ µ∗(ε)

0

√
ε− Ueffdµ, (16)

where µ = µ∗(ε) is the function specified by Eqs. (11) and (12) as described above. After

integrating over µ in Eq. (16), we find that

ne =
4

3
π

(
2

me

)3/2 ∫ ∞

µtB−|e|ϕ

df0(ε)

dε
[ε + |e|ϕ− µ∗(ε)B]3/2 dε

− 4

3
π

(
2

me

)3/2 ∫ ∞

−|e|ϕ

df0(ε)

dε
[ε + |e|ϕ]3/2 dε. (17)

A comparison with the upstream case [see Eq. (10)] reveals that the second term in Eq. (17)

is the same contribution that is given by Eq. (10) when the flow contains only coupled

electrons. The first term in Eq. (17) accounts for the fact that the area of phase space below

the separatrix is filled with decoupled electrons.

Equation (17) is a general expression for the electron density that works both near the
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mirror and in the region where the magnetic field is low. In the low magnetic field region,

the expression for ne can be simplified by expanding the right-hand side of Eq. (17) with

respect to B and keeping only the linear terms of the expansion:

ne = −2πB

(
2

me

)3/2 ∫ ∞

−|e|ϕ

df0(ε)

dε
µ∗(ε)

√
ε + |e|ϕdε. (18)

To obtain Eq. (18), we took into account that, by definition, the square bracket in the first

integral in Eq. (17) vanishes at the lower limit.

B. Steady flow equations

In a steady-state flow, Eqs. (1) and (2) readily reduce to a single algebraic equation,

B

Bm

=
n

nm

√
1− |e|ϕ

miV 2
m/2

, (19)

where the subscript m marks quantities at the mirror (nozzle throat) and the electrostatic

potential is defined such that ϕm = 0.

Equations (19) and (10) form a closed system for the plasma flow upstream from the

magnetic mirror and yield a single equation that relates B and ϕ:

B

Bm

=

√
1− |e|ϕ

miV 2
m/2

[∫ ∞

0

f0(ε)
√

εdε

]−1 ∫ ∞

−|e|ϕ
f0(ε)

√
ε + |e|ϕdε. (20)

In the considered nozzle configuration, the steady-state solution B = B(ϕ) must be such

that dB/dϕ < 0 upstream from the mirror and dB/dϕ > 0 downstream from the mirror.

The derivative must vanish at the nozzle throat, where ϕ = 0, and this condition determines

Vm. It follows from Eq. (20) that

Vm =

√
2

mi

∫ ∞

0

f0(ε)ε1/2dε

/ ∫ ∞

0

f0(ε)ε−1/2dε. (21)

Equations (20) and (21) explicitly determine the relation between B and ϕ upstream from

the mirror. Note that Vm is the local speed of sound and the mirror throat is the location

where the sub- to supersonic transition takes place.
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The steady part of the plasma flow downstream from the mirror is described by Eqs. (19)

and (17). They readily combine into to an integral equation that relates B and ϕ,

B

Bm

=

√
1− |e|ϕ

miV 2
m/2

[∫ ∞

0

f0(ε)
√

εdε

]−1

×
[

2

3

∫ ∞

|e|B
dB/dϕ

−|e|ϕ

df0(ε)

dε
[ε + |e|ϕ− µ∗(ε)B]3/2 dε +

∫ ∞

−|e|ϕ
f0(ε)

√
ε + |e|ϕdε

]
, (22)

where we explicitly used the definition of µt given by Eq. (13). Equation (22) should be

solved together with the equations for µ∗(ε) [see Eqs. (11) and (12)] to find a steady-state

solution for a given distribution f0(ε) of injected electrons. In general, this step needs to be

done numerically. In Sec. IIID, we solve these equations to construct a solution for the case

of incoming Maxwellian electrons.

The flow in the expanding part of the nozzle is supersonic and, therefore, the boundary

between the steady flow described by Eq. (22) and the time-dependent flow is gradually

moving downstream. At t → +∞, the boundary is located in a low magnetic field region.

To find an equation for the asymptotic value of the electrostatic potential ϕb at the boundary,

we substitute the low-field approximation for ne given by Eq. (18) into Eq. (19), which yields

Bm

√
1− |e|ϕa

miV 2
m/2

∫ ∞

−|e|ϕb

df0(ε)

dε
µ∗(ε)

√
ε + |e|ϕbdε = −

∫ ∞

0

f0(ε)
√

εdε. (23)

Equation (23) determines the asymptotic drop of the ambipolar potential between the nozzle

throat and the rarefaction wave. The fact that ϕb has an asymptotic value indicates that

the steady-state solution in the low-field region describes a diverging plasma flow without

an ambipolar electric field. In other words, plasma ions move ballistically through the

steady-state region before they enter the rarefaction wave.

Clearly, the drop of the ambipolar potential ϕb in the the steady flow is insufficient

to reflect all the electrons moving downstream. The steady-state solution then has to be

matched to a rarefaction wave (time-dependent part of the flow) that accommodates a part

of the total potential drop needed to reflect all the electrons and to keep electrons and ions

together in the expanding plume.
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C. Rarefaction wave in low-field region

The rarefaction wave, which is the time dependent part of the flow, is described by

Eqs. (1) - (3). In an asymptotic solution (t → +∞), the rarefaction wave is far away from

the nozzle throat in a region with a low magnetic field. It is then appropriate to use the

low-field expression (18) for the electron density in Eq. (2).

To make our further expressions more compact, we introduce new variables:

N ≡ nBm

nmB
, (24)

τ ≡ t

√
T

mi

, (25)

u ≡ V

√
mi

T
, (26)

φ ≡ −|e|ϕ
T

, (27)

where T is a characteristic electron energy that will be taken to be equal to the electron

temperature in Sec. IIID. The values of N , u, and φ at the boundary between the rarefaction

wave and the steady flow are

Nb =

[
1− |e|ϕb

miV 2
m/2

]−1/2

, (28)

ub =

√
mi

T

Vm

Nb

, (29)

φb ≡ −|e|ϕb

T
, (30)

where ϕb is the solution of Eq. (23). Equations (1) and (2) now take the following form:

∂u

∂τ
+ u

∂u

∂z
=

∂φ

∂z
, (31)

∂N

∂τ
+ u

∂N

∂z
= −N

∂u

∂z
, (32)

with

N = −
[∫ ∞

0

f0(xT )
√

xdx

]−1 ∫ ∞

φ

df0(xT )

dx

µ∗(xT )Bm

T

√
x− φdx. (33)
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As τ increases, the values of z in the rarefaction wave become large compared to the

nozzle length. This indicates that, at τ → +∞, the solution of Eqs. (31) and (32) will take

a universal self-similar form independent of the nozzle length. We therefore construct the

rarefaction wave by assuming that u = u(φ), N = N(φ), and φ(z, τ) = φ(ξ), where ξ ≡ z/τ .

Under these assumptions, Eqs. (31) and (32) yield the following two relations:

(
du

dφ

)2

= − 1

N

dN

dφ
, (34)

ξ = u−
(

du

dφ

)−1

. (35)

We use Eq. (33) to express the right-hand side of Eq. (34) in terms of φ and then integrate

the resulting equation to find

u(φ) = ua +

∫ φ

φa

[∫ ∞

φ′

df0(xT )

dx

µ∗(xT )dx

2
√

x− φ′

/ ∫ ∞

φ′

df0(xT )

dx
µ∗(xT )

√
x− φ′dx

]1/2

dφ′. (36)

Equation (36) determines u as a function of φ and we can now use Eq. (35) to determine ξ

as a function of φ as well,

ξ(φ) = u(φ)−
[∫ ∞

φ

df0(xT )

dx

µ∗(xT )dx

2
√

x− φ

/ ∫ ∞

φ

df0(xT )

dx
µ∗(xT )

√
x− φdx

]−1/2

. (37)

Equations (36) and (37) implicitly determine φ(ξ) for a given function f0. Once φ(ξ) is

determined, Eqs. (33) and (36) should be used to find N(ξ) and u(ξ).

At the boundary between the rarefaction wave and the steady flow, we have ξ = ξ(φb),

where ξ(φb) should be calculated using Eq. (37). It follows from the definition of ξ that the

asymptotic axial location of the boundary is z = zb(t) = ξ(φb)
√

T/mit.

D. Nozzle thrust and power

In this section we apply the procedure outlined in Secs. III B and III C to find the ex-

panding plume solution for the case of injected Maxwellian electrons, with

f0(ε) =
( me

2πT

)3/2

nm exp(−ε/T ), (38)
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FIG. 4: Steady-state part of the solution for the case of injected Maxwellian electrons with tem-
perature T .

where T is the electron temperature. Using Eq. (20), we find the relation between B and ϕ

upstream from the nozzle throat analytically:

B

Bm

=

√
1− 2

|e|ϕ
T

exp

( |e|ϕ
T

)
, (39)

where it is taken into account that, according to Eq. (21),

Vm =
√

T/mi (40)

for f0 given by Eq. (38).

We solve Eq. (22) numerically to find B = B(ϕ) downstream from the nozzle throat in

the stead-state part of the flow. The numerical procedure that we use is outlined at the end

of this section after we describe the results. The asymptotic solution (t → +∞) of Eq. (22)

together with the corresponding profiles of V and n/B are shown in Fig. 4. The guiding

magnetic field vanishes at ϕ ≈ −2.03T/|e|, as indicated by a dashed line. Therefore the

drop of the electrostatic potential downstream from the mirror throat in the steady flow is

ϕb ≈ −2.03T/|e|.
It is instructive to compare the solution shown in Fig. 4 with the solution that one obtains

under the assumption that the entire electron distribution is Maxwellian downstream from

the magnetic mirror. The latter one is given by Eq. (39), so that the electrostatic potential

diverges downstream from the mirror throat, with ϕ → −∞ for B → 0. Consequently,
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FIG. 5: Flow velocity and density in the rarefaction wave for the case of injected Maxwellian
electrons. The red line indicates the boundary between the rarefaction wave and the steady flow
shown in Fig. 4.

the ion velocity also diverges in this asymptotic solution. The dramatic difference in ion

acceleration between the two cases results from the difference in the electron distribution,

which emphasizes the importance of the kinetic description.

Figure (3) shows the electron distribution at two different axial locations: upstream (left

panel) and downstream (right panel) from the mirror. In the upstream case (left panel),

the distribution is purely Maxwellian. The downstream case differs only in the area below

the separatrix that is now filled with decoupled electrons. The distribution function in this

area is less than the Maxwellian distribution for the same values of ε and µ. Thus the phase

space below the separatrix is underpopulated compared to the case of a purely Maxwellian

distribution.

The steady-state solution shown in Fig. 4 matches to a rarefaction wave at ϕ = ϕb. We

use Eqs. (33), (36), and (37) to find the rarefaction wave solution shown in Fig. 5 for the

distribution of injected electrons given by Eq. (38). The rarefaction wave accommodates the

drop of the ambipolar potential necessary to reflect all those electrons that travel past the

steady part of the flow, as evident from the lower panel of Fig. 4. The same field that slows

down the electrons, provides ions with additional acceleration (see upper panel of Fig. 5).

The inner wave front shown with a red dotted line is a sonic wave propagating upstream

with respect to the ion flow. There is a constant influx of ions into the rarefaction wave

through the wave front and, in the asymptotic solution, the wave contains 42% of all ions

that are located downstream from the nozzle throat.
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Using the asymptotic solutions for the steady and time-dependent parts of the flow, we

find the thrust produced by the nozzle:

dP

dt
≈ 2.48 · nmTSm, (41)

where P is the total momentum of the flow, and nm and Sm are ion density and the flow

cross-section at the mirror throat. The total momentum is the ion momentum because the

electron momentum is negligible in the adiabatic flow being considered. The power needed

to produce this thrust is
dK

dt
≈ 4.48 · nmT

√
T/miSm, (42)

where K is the total kinetic energy of the flow that includes both the ion (Ki) and electron

(Ke) contributions. The ion contribution to the power turns out to be the dominant one,

dKi/dt

dKe/dt
≈ 5.14. (43)

We conclude this section with a brief discussion of the procedure used to solve Eq. (22).

Our first step is to differentiate both sides of Eq. (22) with respect to ϕ and rearrange

the resulting equation to take the form dB/dϕ = G(B,ϕ, dB/dϕ), where dB/dϕ enters the

right-hand side only through the limits of integration. It is important to point out that

the second derivative of B is not present in this equation. The structure of the rearranged

equation then allows us to solve it iteratively, using the following algorithm:

Bk(ϕ) = Bm +

∫ ϕ

0

G

[
ϕ′, Bk−1(ϕ′),

d

dϕ′
Bk−1(ϕ′)

]
dϕ′, (44)

where the superscript k represents the number of the iteration. The right-hand side involves

the function µ∗(ε) that should be calculated using Eqs. (11) and (12), with B = Bk−1 and

dB/dϕ = dBk−1/dϕ.

In order to achieve convergence, we start with a short interval, ϕ ∈ [0, ϕ1], such that

B(ϕ1)/Bm calculated using Eq. (39) is close to unity. For the first iteration, we use B0 and

dB0/dϕ evaluated using Eq. (39). Once the desired convergence is achieved on the initial

interval ϕ ∈ [0, ϕ1], we expand it to ϕ ∈ [0, ϕ2], where ϕ2 < ϕ1. For the first iteration on

the new interval, we use the already known solution at ϕ ∈ [0, ϕ1] as B0 and dB0/dϕ. We
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use the cubic spline extrapolation of the solution at ϕ ∈ [0, ϕ1] to calculate B0 and dB0/dϕ

at ϕ ∈ (ϕ1, ϕ2]. We apply the iterative procedure for the entire interval ϕ ∈ [0, ϕ2] until we

achieve convergence once again. We then extend the interval and repeat the steps described

above. This procedure allows us to gradually extend the interval such that the magnetic

field at the end of the interval is much less than Bm. The next step is to extrapolate the

solution and find ϕ = ϕb where B = 0. This value should be close to the one that one

finds from Eq. (23) using µ∗(ε) from the iterative procedure. It should be pointed out that

the numerical iterative procedure does not allow us to find ϕb directly, even though dB/dϕ

is finite at ϕ = ϕb. The reason is that the analytical expression for G(B, ϕ, dB/dϕ) is a

fraction, whose numerator and denominator both vanish as ϕ → ϕb.

IV. DISCUSSION

Besides the apparent similarity between the magnetic nozzle and the gas dynamic de

Laval nozzle, there is also an important difference between the two. The gas jet in the de

Laval nozzle is adiabatic whereas plasma electrons are isothermal due to very high electron

thermal conductivity. The highly mobile electrons can deliver virtually unlimited power

from the plasma source to the outgoing ion plume. As a result, a formally constructed

steady-state ambipolar plasma flow with isothermal Maxwellian electrons produces infinite

thrust and requires infinite power, which is clearly unphysical. This predicament follows

immediately from the fact that the particle flux is constant within the magnetic flux tube

whereas the ambipolar potential grows to infinity downstream in the case of isothermal

Maxwellian electrons, leading to unlimited acceleration of the ions. It is noteworthy that

the barrier in the effective potential energy for the electrons limits the electron heat flux to

the outgoing plume and thereby gives finite and physically reasonable values for the thrust

and power shown by Eqs. (41) and (42).

Another interesting consequence of electron decoupling is that there is an extended area

in the plasma flow where the ambipolar electric field nearly vanishes and the ions move

downstream ballistically without acceleration despite the decrease in the plasma density.

This would not be possible in a plasma with isothermal Maxwellian electrons where any

plasma density gradient would automatically create an ambipolar electric field.

The assumption that electrons are collisionless in the flow requires that their mean free
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path remains greater than the plume length during plasma expansion. For coupled electrons,

this condition remains always satisfied, provided that it is satisfied early in time. Indeed,

the local value of the mean free path λ, which is inversely proportional to plasma density,

increases as l2 with the length of the plume l. Therefore the ratio of λ/l increases as l as

the plume expands, meaning that the electrons do not become more collisional over time.

The collisionality constraint is somewhat more restrictive for the decoupled electrons. It

requires the time-scale of adiabatic cooling to be shorter than the Coulomb scattering time.

A decoupled electron needs roughly
√

mi/me reflections from the rarefaction wave in order

to lose its energy. This leads to the condition λ/l À
√

mi/me rather than λ/l À 1 for

the coupled electrons. Still, the role of collisionality does not increase over time for the

decoupled electrons.

We thus conclude that Coulomb collisions do not affect the electron distribution function

in the plume in any significant way if the plume is initially collisionless. The only candidate

mechanism to alter the collisionless solution described in this paper would be an instability

of the anisotropic non-Maxwellian electrons. A complete stability assessment goes beyond

the scope of this work. Yet, a preliminary analysis shows that an electron distribution with

an empty hole in the decoupled area of phase space turns out to be strongly unstable with

respect to excitation of plasma density fluctuation. The underlying reason is that the absence

of slow electrons in the distribution function changes the sign of electron compressibility,

so that ion fluctuation grow aperiodically instead of propagating as sound waves. The

population of decoupled electrons that builds up naturally due to the rarefaction wave

suppresses this particular instability, which resonates with the old notion that nature abhors

a vacuum.

V. SUMMARY

We have considered two systems with intrinsically non-Maxwellian electron distributions:

an expanding laser-irradiated nanoplasma (micro-cluster) and a supersonic jet coming out

of a magnetic nozzle. The kinetic analysis of these two problems demonstrates how the

deviation from the Maxwellian distribution fundamentally alters ion acceleration compared

to a model that postulates a Maxwellian electron distribution in the entire flow. The problem

of a laser-irradiated nanoplasma highlights the critical role of hot non-thermal electrons in
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the ion acceleration process, whereas the magnetic nozzle problem shows the important role

of the moving plasma edge in the distortion of the electron distribution.

The key points of the expanding nanoplasma problem are

• the laser field can create a two-component electron distribution with a cold majority

and a hot minority,

• co-existence of the two electron populations within the same ion background leads to

a breakdown of quasineutrality at the cluster edge,

• hot electrons maintain a steady-state double layer at the cluster edge during the ex-

pansion,

• ions pre-accelerate in the double layer to supersonic velocities, gaining as much as half

of their final energy, and then their acceleration continues in the rarefaction wave.

The key points of the magnetic nozzle problem are

• the supersonic flow downstream from the magnetic mirror consists of a steady-state

part and a rarefaction wave at the leading edge of the expanding plasma,

• the magnetic mirror together with the rarefaction wave produce a population of de-

coupled electrons in the “inaccessible” area of phase space,

• the “inaccessible” area is underpopulated compared to the case of a purely Maxwellian

distribution,

• the values of the nozzle thrust and required power are finite as opposed to the diverging

values predicted by a model postulating a Maxwellian electron distribution in the entire

flow.
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