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Abstract

A renormalized perturbation theory, as an alternative to the DIA’s approach, is presented

. to describe stationary homogeneous turbulence. The theory can be regarded as a gener-

alization of the resonance broadening theory developed by Dupree, Rudakov-Tsytovich et
al., to arbitrary order. Particularly, the incoherent part is treated in a way of matched
perturbation theory. The concept of “order” becomes unambiguous by showing renormal-
izability of the theory. The self-consistency of the theory is manifest owing to the capability
of its reduction to the standard results in the limit of weak turbulence as well as to the
proof-of energy cénservation to arbitrary order. For'illustrafing the amenability of the
.~ general ffamework the renormalized dielectric function and the renormalized Kadomtsev’s
spectrum équé,tion are derived to second order. The turbulent collisional operator in the

transport equations is generally proved equal to IG, the frequency broadening when & = 0.




I. Introduction

It is well known that there exist two different popular approaches in strong turbulence
- ‘theory for a VvV lasov-Pbisson system. One is the perturbative approach; the other is the

non-perturbative, or functional approach.
| The perturbative approach was initiated by Dupree’s pioneering work,!*? named
“resonance broadening theory”, in which the bare propagator (w —k- 17');1 in the Vlasov
equation is intuitively replaced by a renormalized propagator (w — k-4 1Iy) 1. Herein
1y, stands for the stochastic diffusion arising from the turbulent fields acting on particles.
The later significant progresses along this approach since Dupree’s pioneering work

consist in the following two points.

(i) The “single renormalization theory” (as named by Horton and Choi®) is re-
~ placed by the “fully renormalized theory”, which leads to an equation of ¢I in
terms of the spectrum, instead of its immediate determination through the bBare
propagator.34®
(ii) Another term (the f-term as used by Dupree and Tetreault®) is added to the non-
linear coherent dielectric function (the terminology of coherent dielectric function

will be explained in Sec. V) to survive the energy conservation in the electrostatic

drift waves, that was violated in the earlier version before Ref. 6).

The modern version of the perturbative approach, typically represented by Refs. 6,
7, and 8 is widely used in physical applications. Among others, Refs. 9 and 10 can be
referred.

One problem, which is commonly regarded as a deficiency of the conventional
perturbative approach, is how to define the conéept of “order”. Indeed, this approach has
been developed to the second order so far (the order is counted by the number of vertex of
‘wave-particle interaction, [for details, see Appendix A]). Another critique to this épproach
- is related to the following fact that the conventional perturbative theory fails to reduce
back to the commonly accepted weak turbulence theory in the corresponding limit, e.g.
the well-known Kadomtsev’s spectrum equation of weak turbulence (Eq. (II.50) in Ref. 11)

does not follow from Dupree’s framework even if the turbulence level is very low.
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The non-perturbative approach!? in strong turbulence for a Vlasov-Poisson system
- can be constructed on the basis of the rigorous MSR (Martin-Siggia-Rose) Systematology.'®
- It is basically a generating functional method for- consfructing the Green function. How- .
’ever, the system of equations in the MSR sy"sf,ematology contains a functional differential
. equation of a renormalized vertex I'. Its rigorous solution seems illusive with present .
mathematical techniques. In practice one can use the other four equations in the MSR
systemétology when introducing a rather ad-hoc closure technique of replécing the renor-
malized vertex I' by its lowest order approximation — the bare vertex -, which is a known
quantity. This is the DIA (Direct Interaction Approximation).?141¢ Obviously, the DIA
has the advantage of keeping the form of the equations in the MSR systematology, al-
though, it is an é,pproximate one. To find a solution of the DIA is not easy. Krommes
constructs the DIA equations for Vlasov-Poisson System and proposed the DIAC (Direct
Interaction Approximation Coherent) to find a solution in its diffusion approximation-and
proved the energy conservation of electrostatic drift wave.!” The approximation used in
this solution and the proof of energy conservation are equivélent to the Ref. 6 by Dupree
and Tetfea.ult, and that of the second order without the incoherent source of the present
paper. A significant success in the DIA’s approach is recognized by the capa.bility in re-
duction to Kadomtsev’s weak turbulence equation. Particularly, the dielectric function
defined in statistical mechanics!®19 is derived in the limit of weak turbﬁlence, and found
to be different from the coherent dielectric function used by Dupree.® Besides the diffu-
sion part in the renormalization, the polarization part also cbntributes to the dielectric
function. In a sense this is equivalent to the correlation between the background waves
and the induced waves. Therefore, the coherent dielectric function in Dupree’s sense is not
the dielectric functibn defined in statistical mechanics, because the contribution from the

incoherent part through the correlations mentioned above is ignored.

Although its success in the reduction to weak turbulence theory, the DIA’s ap-
proach has gone little beyond the perturbative results in physical application to strong
turbulence problem. For example, the renormalized version of Kadomtsev’s equation (ih-
cluding Compton scattering, nonlinear scattering, and three-wave interactions) and the

. dielectric function still remain underived from this approach.!?
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Because of its failure in reduction to the weak turbulence theory, the deficiency
of Dupree’s approach was thought to be due to the ill-treatment of self-consistency for
- a Vlasov-Poisson equation.!? This argument might be invoked by the difference in the
-~ renormalized propagator used in these two approache;;. The propagator used in Dupree’s
_ approach only contains the diffusion part, which is related to the self-energy effect, while
the propagator used in the MSR systematology and the DIA includes a polarization part
also which is relatéd to the polarization cloud around a test particle and to statistical
fluctuations in the dielectric response. We shall see in Sec. V that those effects like
) fk(gb( )/ 5¢ | $le)=0 for k # k' is intrinsically related to the incoherent waves, or more
precisely, to the correlation between the background waves and the induced (by the exter-
nal source) waves. These physical effects do not need to be put in the propagator.. The
secularity in the bare Green function can be eliminated by self—eﬁergy renormalization
only. Something like the mass renormalization fqr Dirac equation. Therefore, if the.inco-
herent part is manipulated correctly in a matched perturbation theory, the physical effects
represented by the polarization part will be included in the framework of an alternative
: 't.heory.

The viewpoint of this paper does not think that the defficiency of Dupree’s ap-
proach is attributed to the ill treatment of self-consistency. The real problem of Dupree’s
approach lies in how to develop a matched purturbation theory Which can. be extended
to arbitrary order. The concept of “order” will be elucidated by the renormalizability of
the perturbation theory; As we shall see in the lattef part of this paper, the defficiency in
Dupree’s approach should be attributed to the mismatching treatment of incoherent part.
As soon as the matched treatment is resumed, the Kadomtsev’s weak turbulence equation
as well as the dielectric function defined in statistical mechaﬁics will follow correctly from
their renormalized versions, which are obtained in this paper and have not been shown in
the DIA’s approach. |

‘The renormalization procedure presented in this paper is a generalization of
Rudakov and Tsytovich’s method.® For convenience, a diagrainmatical scheme which is

introduced in this paper is adopted and illustrated in Appendix A. In dedling with the

~ equation of fluctuating quantities, a formal method, named correlation expansion, is used

4




to decompose the product of fluctuating quantities into correlated part and uncorrelated
part for a general statistical ensemble of turbulence, if no specific knowledge of the corre-
... lation probability. is. presented. Its detailed explanation is given in Appendix B.
... The formal solution for .the. fluctuating .distribution functioﬂ‘é in a renormalized
_ theory requires the renormalizability of the theory. Hence, the counter term formally
added to the equations in accordanceiiwith the frequency broadening in the renormalized
propagator has to be eliminated in the perturbative expansion of fluctuating distribution
function. Otherwise, thé fluctuating distribution function would remain in the perturbative
expansion.of itself as to spoil the significance of the formal solution. The renormalizability
thus results in a self-consistent determination of the frequency broadening as well as an
elucidation of the concept of “order”.

After the renormalization it is shown that fi can be divided into two parts: the
coherent part f,gc) = Ardk, and intrinsically incoherent part fk. It is also shown thatsthe
coherent dielectric function e,(cc) = 1-®; A}, as a generalization of Dupree’s definition, is not

the dielectric function defined in statistical mechanics. A direct calculation of renormalized

"~ dielectric function is given in Sec. V, which is reduced to the result obtained by Krommes

and Kleva in the limit of weak turbulence.l®

In the renormalized perturbation theory of this paper the frequency broadening
contains the diffusion part only. This statement is valid to arbitrary order [see Sec. VI],
~ where we have shown that the diffusion term in the transport equation is just the frequency
broadening at the limit of £ — 0.

Ih an effort to convince the validity of the proposed propagator.the related con-
servation law should be reviewed. The energy conservation in electrostatic drift waves has
been proved to arbitrary order in Sec. VII and explicitly illustrated to the fourth order in
Appendix E, beyond second order as current literatures have done.%:9:12

The renormalized version of Kadomtsev’s equation is derived in Sec. VIIL It is
immediately reduced to the Kadomtsev’s equation in the limit of weak turbulence. VThere—
fore, a closed set of spectrum equation to second order is established by the combination of

the renormalized Kadomtsev’s equation and the fréquency broadening equation in Sec. III.

- The remainder of this paper is organized as follows. The iterative procedure of
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the proposed renormalization is given in Sec. II. The renormalizability is proved and thus
the perturbation expansion for the renormalized propagator is obtained in Sec. III. The
-perturbative form of the coherent dielectric function e,(cc) and the relevant structure of the -
~intrinsically incoherent function are given in Sec. IV. A few concluding remarks are given in
Sec. IX, specifically, the distinctions of the non-perturbative approach based on the MSR
systematology to the perturbative approach of this paper are discussed. In Appendix C
and D the perturbative expressions for various important'structure forms of the theory,

which include fx, the coherent term f,Ec) and the incoherent term fk are given.

I1. Perturbation Theory of Renormalization

For simplicity we study the Vlasov equation without external magnetic and electric fields.

We note that the formal structure of the theory is readily generalized. Thus we haves:
[at +7-V+(¢/m)E - é’] F(77:t) =0. (1)
Ensemble averaging on Eq. (2) yields |
(0:+7-V)fo + (a/m) (B-5f") =0, 2)

where fo = (f), /' = f — fo, (--*) means the ensemble average."

The equation for the fluctuating distribution function is

— — !

(0 +7-9)1" = ~(g/m)B - 8o — (a/m)(E - 31"’ NG

where

~ is the fluctuating part of (E" . 5]”).
Then taking the Fourier transformation of Eq. (3) and substituting E= -V ¢ into

Eq. (3), yields

(w—k ) fe=—(a/m) (k- 8) fodr Y _ (a/m) (k1 - 8) bk, Fun, (k #0). (4)

kitk
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Now introducing an alternative notation, we have

(w =k ) fi = L(k) fodk + Y L(k1) e, bk, (5)

ky #k
where
L (k) = —(g/m) (- 3).
Adding ¢I fx on both sides of Eq. (5) (I is the frequency broadening operator)

and defining

GkE(w—E-U-{—iFk)*l. (6)

We have
fre = GeL(k)fodi + Y L(k1)fe—k, $5, + Gilk . (7)
ki #k '

It can be drawn diagramatically as

Y OT ST

The precise definition and further discussion of this diagram are given in Appendix A.
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The first term on the r.h.s. of Eq. (8) is the lowest order coherent term and the
third term containing :Ix on the r.h.s. of Eq. (8) is the frequency broadening term. On
these two terms we cease further iterating. The iteration of the second term on the r.h.s.

of Eq. (8) gives

k .
’ ] " Z'/'é‘ x‘ +}§‘ o )
K-k, [ ¢
k-K, ¢ K, ..

For a given ¢x(k # 0) which is characteristic of the coherent wave, the waves ¢k,
and ¢, in the first term on the r.h.s. of Eq. (9) must not be ¢x. We call this term the
intrinsically incoherent term. The last term of Eq. (19) is the term containing 1Ty, for
which we also cease to iterate further. The important step at this point is to note that
before we make a further iteration on the second term on the r.h.s. of Eq. (9) we need to
separate the self-energy structure. The self-energy is just the type of object that iI; needs
to cancel with.

Such a separation is just the correlation expansion to @k, Pk, given in Appendix
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B; ie.,

Br Bs = (5,) (S) + ((Bk1 Dk - (10)

Owing to our assumption the nonzero contribution of correlation function
((qﬁquﬁkz)) exists only in case k; + k; = 0. Hence the correlation function can be rep-
resented by the closed wiggly lines diagramatically. The separation of the second term on

the r.h.s. of Eq. (10) is thus drawn as

K K K K
K ___. )
= ¥ (1)
k (k)

The waves denoted by (k') (with parenthesis!) means they are uncorrelated with
each other, while the closed structure (the first term on the r.h.s. of Eq. (11)) represents

the correlated part.

Equations (8),(9) and (11) form the renormalized perturbation theory to the sec-
ond order (counting order by the number of wave-particle interaction vertices excluding the
shaded bubble @ ) when we ask for the cancellations between Fi]’k and the self-energy

structure.




(12)

This is more or less the same theory as given by Rudakov-Tsytovich® and Choi-
Horton.2% A crucial point at this step is that we cannot ignore the contribution of the
last term in Eq. (11) to this lowest order of renormalization theory. This inclusion is
the essential differénce Vbetween the theory of Dupree-Tetreault® and previous theories.
Because the last term of Eq. (11) includes the contribution to the same order, it will
be the first term of Eq. (13) shown below as important as the frequency broadening. Its
omission can lead to serious error, e.g. in a related driftwave problem it leads to a violation
of energy conservation. |

The next step goes along the similar line as before with only sofne additional
observations. |

The iterations of the last term of Eq. (11) gives

K K K X
(&) tkp (X
3 + + "[) .
[ $}) w { SY) ‘w
K-ki~k; ks
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(13)

Both the first and the third terms on the r.h.s. of Eq. (13) cease iterating. Further
decomposition is needed for the second term before iterating it. This decomposition is just
the same as the correlation expansion for (¢x,)¢r,, something like that illustrated in

Eq. (B9).

(¢k1)(¢kz)¢ka = (¢k1)(¢kz)(¢ka) + <(¢k1 ¢k3>> (¢k2)
(ke Bra)) () + (B Pl Po)) - (14)

The nonzero contributions from ((¢, ¢x,Px,)) exists only if ky + k2 + ks = 0, as we had

argued for ((¢x, #x,)). The decomposition corresponding to Eq. (14) is thus drawn as

) ) * 3 Kk
L) k) )
) = + +
(] l‘a)
., ‘q) .‘ m)
- (15)

] K

We note that the second term on the r.h.s. of Eq. (15) cancels the last term on the
r.h.s. of Eq. (9), if one uses the expression for the frequency broadening term as obtained
to lowest order (which is second order). However, now we need to add to the frequency
broadening an additional term and to third order the frequency broadening term is given

by
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Now, continuing the iteration, we have
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) (18)

The second term on the r.h.s. of Egs. (17) and (18) need separating. It yields [see Eq. (B9)].

, . ‘ k k k «
) )
- o+ 'l .‘ ",
: %) 5 +
[{Y ) " )
K (x
) ¥ . & . ] s o x
& )
+ + + + +
) (19)
Ty, ' 09 ((N]
, 3 % x
(R = ﬂ) +
L (k)

The correction to the fourth order for the frequency broadening is thus determined

(20)

by the eighth term on the r.h.s. of Eq. (19) and the last term of Eq (20). The second

term on the r.h.s. of Eq. (19) will cancel the last term of Eq. (13) to this order. To the
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appropriate order the fifth term on the r.h.s. of Eq. (19) is the necessary correction for

the cancellation between the last term of Eq. (19) and the second term on the r.h.s. of

Except those self-energy. terms -all other.terms in Egs. (19) .and (20) shoul‘dg be

iterated to produce the next order.

(a)

(b)

The general rules for the perturbative expansibn is summarized as follows:

The terms containing shaded bubble, the self-energy terms and the frequency
broadening terms (which contain a hollow bubble) will be kept' without further

manipulation but the cancellation between the last two sorts of terms.

When a term which does not belong to anyone in the above terms contains an

- external wiggly line without parenthesis, it needs separating according to the cor-

relation expansion.

After the separation those terms which do not contain a self-energy structure need
iterating to produce the next order. We shall prove that these will be an exact
cancellation between terms containing self-energy structure and terms contain-
ing frequency broadening and the final result for fi is illustrated in Appendix C

diagramatically to the fifth order.
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IT1. Renormalizability

The statement in Sec. II implies that all terms containing self-energy structure cancel

-with-all ‘the terms- containing frequency -broadening so that none of these terms explicitly

---appear in the final expression of fi." By virtue of this cancellation, we will show that ¢ 17 is

determined as the sum of all possible irreducible self-energy structures taken once and only

once. We note that the definition of renormalizability means that if 1% can be expressed

as the sum of self-energy terms, that all diagrams containing self-energy and frequency

broadening sub-structures will cancel with each other.

We first discuss in detail several properties that manifest themselves as results of
our iteration procedures.

Observation I. At a given order all possible self-energy structures must appear
except those (and never those) that contain self-energy sub-structures. (Henceforth, the
‘allowable self-energy structure will be called to a completely overlapping diagram in‘which
no self-energy sub-structures can be isolated.) |

Proof. Aécording to the iteration r_ule indicated in Sec. II, when a simple self-
energy diagram once appears, further iteration of ‘the diagram ceases. This means that
any term in higher order doés not contain the self—eﬁergy structure of lower order. In
other words the allowable self-energy éfructure can only be formed by connecting the
lowest wiggly line (we refer to it as.thé active line) with fh’e upper lines (§ve réfer to them
as the passive lines). Because no self-energy structure can aﬁpear above the active line,
the connection can only produce the completely overlapping diagram.

In order to show that all types of completely over]dppirig patterns are possible,
we need only note that all types of vertex structures are possible in the terms of lower
ordei‘ because the operation k; — (k;) makes each active line connect with every possible
combination of passive lines. Therefore, all types of self-energy structure should be taken
into account except those containing the lower order self-energy structure as a sub-diagram.

According to Observation I, the following diagrams are examples of structures that
should be excluded from the contributor as self-energy diagram (Fig. 1).

Observation II. A given diagram can only appear once. There is no repeated

diagram.
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Proof. All terms appearing in the theory can only be produced in two ways. One
is the iteration, the other is the separation (i.e., the operation k; — (k;). The iteration
. cannot produce. a repeated.diagram. .In the operation k; — (k;) only the lower wiggly
_-line is active (the word “active” meaning that the lowér line can correlate with any other
passive wiggly lines). In contrast, the passive lines, for which the momenta have been
denoted by (k) cannot be correlated with any wiggly line but the active one. Hence, new
diagrams can only be formed from the active part by connecting only to the loWest line.
This kind of diagram certainly does not appear in the previbus order.

Observation III. For non-self-energy diagrams containing self-energy sub-structure
all fypes of self-energy structure produced in the lower perturbative order are reproduced
totally in the higher perturbative order. '

Proof. All possible types of self-energy structure are produced by the operation

~ki-— (k;) of the lowest wiggly line. The operation in the higher order repeats.inithe

lower order as well as adding new ones. ‘Because the structure in the iteration goes in
the downward direction and repeats all lower order diagram of each iteration, the same
operation that appeared in the lower orders must appear in higher order regardless of the
structure in the upper part of the diagrams.

Observation IV. In the higher perturbative order diagrams there exists no new
type of self-energy s'ub—structl_ire which has the same order as the. self—energy structure
that has already appeared in a lower perturbative ordér diagram. |

Proof. Owing to the Observation I, the self-energy structure to the given order
cannot go beyond that given by all types of completely overlapping structure. The self-
energy structures appearing in the lower perturbative orders have completed all possibilities
to the corresponding order of self-energy diagram.

It is then straightforward with the help of these four observations to prove the
renormalizability of the theory and to obtain the general form of the renormalized propa-
gator to any order. |

The Observation I suggests the choice 6f —¢I% to be the sum of all types of possible
self-eﬁergy structures. The combination of the Observation II, III and IV means that as

soon as the cancellation takes place for the lowest order diagram containing 7%, the same
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cancellation occurs for the higher order diagrams that have structure plus 1Ix with the
diagram with that structure plus all self-energy structures.

The explicit diagramatical expression of i1 to the sixth order is given as follows,
where the iterative order of each diagram is readily recognized by counting number of

vertices of the diagram.
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The Green function G and ¢I%, the latter is expressed in terms of correlation
function ((¢k, ---)) and Gj given in Eq. (21), are coupled together to ensure the non-
fluctuating property of Gx. From these coupling relations we readily infer that both Gy
and ¢I; are complex, i.e., besides the frequency broadening of i I’y there must be a frequency

shift (being a nonlinear shift) caused by the renormalization.

IV. Coherent and Intrinsically Incoherent Distribution Functions

Now we are going to manipulate the perturbative expression of fr further because the
wiggly line pertaining to the shaded bubble may be still correlated with other open wiggly
lines in a given diagram.

It is easily seen that the first terms on the r.h.s. of Egs. (8) and (9) retain their
form. The first term on the r.h.s. of Eq. (13) becomes

()

%) (22)

(t-kks)

The diagram obtained by connecting the wiggly line of ok, with the wiggly line
®k—k, —k, is not present. It requires the propagator corresponding to the solid line (a)
of the figure have zero momentum, which cannot be produced in the iteration procedure.
The first term on the r.h.s. of Eq. (22) is the coherent term to the second order of the
perturbation theory, because all parts of this term except ¢, belong to the non-fluctuating
effect. The last term of Eq. (22) is the intrinsically incoherent term to second order, i.e.,
any wiggly line in this term cannot be assigned a momentum ¢, for such an assignment
will result in an excluded diagram. For example, if we assign the wiggly line under the
shaded bubble a momentum k, it will force k; = —ko which is an excluded choice for the

last diagram in Eq. (22), owing to the separation of the self-energy term in Eq. (11). Thus
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we can conclude that none of the wiggly lines can have a momentum k in a diagram with
all wiggly lines uncorrelated to each other.

Because the lowest order of the renormalization occurs to at least the second order,
we must include the corresponding second order to have a consistent theory. As can be
easily seen, the first term on the r.h.s. of Eq. (22) is just the B-term proposed by Dupree
and Tetreault® to retain the conservation of energy in a related formulism for the driftwave
problem.

In third order the term of f; after the renormalization cancellation in Eq. (17)

becomes
[ ]
(r,)
(l,)
(($Y) ("‘a’
k-k- t: K . . (23)
k;
{N) {»
+ +
(k%)) ()

(5

(K"A"& -5)

The first two terms on the r.h.s. of Eq. (23) are coherent terms, the last three
terms on the r.h.s. of Eq. (23) are intrinsically incoherent terms.

The first term for fi in Eq. (18) is an intrinsically incoherent term, because the
setting of k — ko =k or ko =k gi-ves zero contributions to this diagram.

Going along this line we readily obtain the result that the fluctuating function is

divided into a coherent part and an intrinsically incoherent part

fk=f,5°)+fk (24)

where f Igc) represents all coherent terms, and f . represents all incoherent terms. To third

order of perturbation they are expressed diagramatically as
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79 = {4 Q\,+ g + 4 - (25)

Their perturbative expressions to fifth order and the general construction rules in terms
of diagramatics are given in Appendix D.
The coherent part can be expressed as f,Ec) = Axdkr, where Ajx represents the

non-fluctuating effect. We define an operator @y:
4
Sl | / di. (27)

The Poisson equation is written as
bk = PiJk. (28)
When substituting Eq. (24) into Eq. (28) we obtain
fl(cc)¢k =0ufi = ¢ (29)

where

E](cc) =1—- P Ax. (30)
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For the historical sake e,(cc) is called renormalized dielectric function, because it was thought

to be the dielectric function incorrectly.

Starting from the renormalized coherent dielectric function e,(f) the renormalized

average distributions function fx can be defined as
el =1 8,GL(k) fi (31)

which is motivated from the form of the linear dielectric function egf) given by

e =1-0,GOL(k) fo. | (32)

The definition of fx by Eq. (31) is somewhat different from that defined in Ref. 12 and 19,

where e,(gc) is replaced by e, the dielectric function in statistical physics. The renormalized

average distribution function fi can be written as
L(k)fi = G Ak (33)

As G;lﬂ just annihilates all upper line of the A diagram, the perturbative expansion of

f is given by

o = LE)GL Ak = Jot .+ “, + n A (34)
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where the denotation o implies the missing vertex I:(k) We note, however, that the utility
of fi is somewhat limited as its velocity moments do not have any apparent physical

- significance.

V. Inverse Dielectric Function

The renormalized perturbation theory can be used to calculate the inverse dielectric func-
tion e~ 1.

In the electrostatic wave it is defined through Poisson equation:!®

i B 8(a69)

= 35
k 4ar 5/’1(:) (35)

where p(¢) is the unrandom external source. The response to the bare source is qS,(:) =

(4%/]]?:'[2),0,(:).. Thus we have

§ (e) ‘
6;1=1+@k<_f_£(_%_2> . (36)
' 6y ] gta=o
- The Vlasov equation becomes
[0+ 7V + (o/m)E(E®) - 8] $(E@) =0, (37)
The Poisson equation is :
() = 87 + Bifu(8). o (38)
For an infinitesimal external source 5¢,(:)
65k (0) . |
6e(3(9)) = $1(0) + | 8w + B (%) 5o (39)
T 668 ) s
where ¢1(0) = & f (¢(2))
Equation (39) shows that the variation of ¢ under the influence of external field
56 is .
| : 51x (¢ e
5k = |k + B (—L(T)—l s (40)
5¢k’ @le) =0

When deﬁniﬂg fo = <f (qﬁ(e) = 0)> and f (gb(e)) = fo+ f' (¢(e)) we have for the Fourier
transformation of Eq. (37) for £ # 0
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(41)

where the wiggly lines represent ¢y (0), the dashed lines represent 6¢;. The iteration
procedure for fx (5¢(e)) should be modified a little bit. Because the external source §¢(¢)
makes sense only in its linear form, the operation k; — (ki) only limits choices of the
stochastic field ¢ rather than ¢(¢). Therefore, the dashed lines representing the effect
of the external source 6¢§;) can only be external lines. This suggests that if the lowest
wiggly line is the external source, the corresponding term should be iterate further. On
the other hand if more than one dashed line appear in a diagram, the contribution of the
diagram to the final result <5fk (¢(e)) /5¢](ce)>¢(u)=0 vanishes and we drop these diagrams.
The renormalization in this case is almost the same as what has been described in the
renormalization of Sec. II. The first few steps of this iteration procedure are illustrated in

the following. In Eq. (41) only the third term on the r.h.s. of the equation needs to be
iterated further, yielding
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Before iterating the second term on the r.h.s. of Eq. (42) we separate the correla-

tion part, obtaining

& L K
. ()

= * (43)

kL )

where the last term of Eq. (43) should be iterated.
. .
™~ .

o (44)

The third term on the r.h.s. of Eq. (42) needs no separating and gives
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] (45)
‘st!

v 4
—‘——J{=<::;.' ;F%,'_j!:::::.‘ ‘:E:?
= -~ '}
-~ 5, '

The second term on the r.h.s. of Eq. (44) needs separating before iteration, while the third
term on the r.h.s. of Eq. (44) and the second term on the r.h.s. of Eq. (45) can be iterated

directly. Hence we have

(48)

“J) :(49)

) - ™) (I
‘ﬁn-. ‘~n¢ ‘~.'¢ ~ & (50)
& (V) “3) )
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and further iteration gives

The separation for the second terms on the r.h.s. of Egs. (47), (48) and (50) yields

(52)

(53)

This procedure can go along up to higher orders and will demonstrate the full can-
cellation between frequency broadening terms and the self-energy structure terms. The
proof of the renormalizability is the same as what was given in Sec. III. The appearance of
dashed line does not affect the renormalizability as shown by the cancellation between first
terms on the r.h.s. of Eq. (53) and the last term of Eq. (45). After the full cancellation
between frequency broadening terms and the terms containing self-energy structure the
remaining terms can be divided into two parts. One part is just the f;(0), in which no
dashed line appears. The other part is composed of terms which contain only one dashed
line. Their formation rule can be summarized as follows. Starting from the fundamental
constructive diagrams (see Appendix D), each external wiggly line is replaced by dashed

line only once in a given fundamental constructive diagram; the total sum of the resultant
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diagram is the second part, if such a replacement does not cause a zero-momentum prop-
agator or a self-energy structure when the momentum of the dashed line is taken to be k.

Thus
T (5¢(e)> = f%(0) + (fundamental constructive diagrams),,.,¢x — 6¢x.  (54)

The perturbative expressions of 6 fi (6(1)(5)) = fx (6@5(")) — fx(0) to the fourth

order are illustrated as follows:

% * i ; *+ é ] -+ £ ;’ <+ :
" \\\ S ~ £
+ “ + \\ + - + \
AN A N
\\

‘ﬁ’\ﬁ‘*ﬁ*‘ﬁ.} +ﬂ (55)

- ~. .
N
¢ +

Then we have the general formula

6 ~
(1 — gpkﬂk)@k&qs% =@, Arbrrr + P fi
kl

0 fk;
5%

bk, — Ok + P,
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The formal solution of inverse dielectric function 5;1 is thus found to be

- ok
1 =1 + ¢k < (l:) >
6¢k Ple)=0

= <Q1:k1> DAk + Z <Q]:kl,.¢k;fk;
k;

S
Pr; Ok ik

where Q,:jcj is the inverse matrix of Q, k; with

Qkik; = (1 — Pk, Ak, )Skik; — Prsk; (58)

and Py, is defined by
Z Pes;® ) = B fue| b5 — Biy (65, /645 (59)

To the second order P, is shown below diagramatically,

K¢
"‘k'
Pi.k; = ¢k£{ /
ky
K‘ ; -Ky
ke
K
+ + . 1 (60)
d k‘.—k"‘k c
Ki’k)'x' "k.
! '

In a demonstration of the amenability of the perturbative calculation for the renor-

malized dielectric function €g, an illustration to second order is shown below.
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Setting k' = k in Eq. (56), to second order we have

Kk
6 -1 6 fi—
45k—]?:) + et Qk{ é\/‘i Dr—k, fk(el;l
59 ko B b0
5 k-
o, —fﬁg)} " (61)
6o,
where K
) =1 ;4 - 1- & @/-r
k to second order 5
Ck
47 - A A A A
=1+ |k|q / dvGy | L(k) + ZL(kl)Gk—hL(k)G-—le("'kl)IkJ:I fo (62)
ky
. _ * k
with I, = <¢k1¢k1>' p
-1 1
Those terms like e,(:) D @’Q @k_kl_kzg—k;ﬁ——kz do not contribute to

) | s\
the second order because ¢x, and ¢, are uncorrelated.

An iteration to the 6 fi, /5¢,(ce) and 5fk_k1/5¢,(:) in Eq. (61) to second order gives

Ky
&, 5fke,) _ l(ccl) ldslc,{ gg,-x EI(cC)—l
564 K

(63)
Tk
) o) -
Pr_rk, fk(el;’ ;(c) Dy kl{ éq;k, ;(cc) (64)
66 .
Then we obtain
=140, L3 =e(c)_1+
5¢(8) k
k 1 ¢le)=
=1, -1_ 1
+4fk) el(cf)k klel(cC)Ic, f(_zi,, fx(cc) Iy, (65)
where ki+ke Ktk
1 ‘ "“k |
kf),kr- = §¢k1+k2[ é)’ '+ J& }
“.K; ""k;
1 4mgq . - A A A
= T == dva1+k3 L(kl)szL(kg) + L(kg)leL(kl) fo. (66)
2 k1 + /C2|2
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Substituting Eq. (62) into Eq. (65), we obtain the renormalized dielectric function

to second order _
~(2 y—1 o (2
—.4Z€§c,),k—k16(o k—k, fz(c ) Zky Ak (67)

Wlth . K

D =1_g, @/ = 1— &G L(k)fo. . (68)

In the limit of weak turbulenée, the renormalized propagator is expanded to the

second order. Equation (62) becomes

K ke K

GJ(CC) - el(c[zweak] 1- ¢k d - Qk{ +

s
~

+ 2 Z el(c?):_kly | (69)
with

3
D ks = _‘¢k{

4mq 0 A A
= T [ e LG | EUkIGD k)
1 2 3

+ fi(ks)a,(c‘i)_i(kz)} fo. - (70)
Then Eq. (67) becomes
(2) (2)
€k k—k, €k, —k,
€k|weak] = 6 + ZZ Ek1 —ky,k —4 Z (g) Ikl' (71)
€p— k)

We note that in Egs. (69), (70) and (71) the propagators contained in e,(f), e?),
¢(®) are bare ones. Equation (71) is just the dielectric funetion of weak turbulence which
has been obtained by Krommes and Kleva by using the DI1A# approach.!®

The above results of the dielectric function is a manifestation of the amenability

of the perturbation theory proposed in this paper.
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VI. Transport Equation

The complete transport equation in the renormalization formulism should be written as

[see Eq. (2)]

(00 +7- V) fo+ ila/m) (k- 3) [4 (#hen) + (417:)] =o. (72)

k

In order to get a neat form of the turbulent collisional operator,
ia/m)Y_(k-8) [4(#tsr) + (frsh)]
k

we study its diagramatical structure.
When we note L(k) = —(g/m)(k - §), the turbulent collisional operator can be

written as a series of connected diagrams. A few terms are illustrated as follows

S (k)4 {gest) = ,?4 Qj+ 6:0-+ ?;@ (73)
ki s
4 e ) J

[
S oLk (fust) = ﬁ &; + ’ (74)
k ]
. , :

where the pertubative expressions of f,gc) and fk (Appendix D) have been used in writing
down Egs. (73) and (74).

We recall the shaded bubble @ =L(k")fo, where k' is the momentum of the
solid line just above the bubble. For the time being, in order to study the diagramatic
structure of Egs. (73) and (74), we extract fy from the bubble. Thus Egs. (73) and (74)

become
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It is not difficult to see that the sum in the bracket on the r.h.s. of Eq. (75) is just
110 i.e., the limit of iI; of Eq. (21) when k goes to zero (here we note that the last vertex is
L(k) instead of ﬁ(—k). Hence there is a minus sign compared to the diagramatical rule of
(—1I%) in Eq. (21), which the conservation of momentum requires. This minus sign can be
factorized out. We get the I instead of —iI). This is true to any higher order because
the diagramatical structure of fi (the fundamental constructive diagram, see Appendix
D) suggests that all diagrams of I:(k) <¢,’: fk)> must be overlapping and include all possible
connecting ways. It is obvious for ﬁ(k) <¢}: f ,£°)> because there is only one wiggly line in
f,Ec) to be connected. The same case is also applied to I:(k) <¢:fk>, although there are
many wiggly lines in fk, by noting that these wiggly lines are uncorrelated with each other.

Therefore, we arrive at an important result
3 Lk) <¢:fk> = ils fo. . | (76)
k
The transport eguation Eq. (72) becomes
(0 +v-V+1Io)fo=0. (77)

Because the derivatives /8¢ at the extreme right and left can always be extracted

from I, Eq. (77) is readily written in form as

{ai+a-V+(—q~>25-*ﬁ’-5Jfo:0, (78)

m

where the formal diffusion tensor *5) is defined as

— = —

Iy = (-T%)Za. D -4. (79)
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In fact, infinite deriva,tives to ¥ are contained in D . The infinite series of derivatives to '
could be truncated only if the non-local effect in the velocity space is notlimportant. :

-+ »Themanifest Markovian form-of the-transport equation [Eq. (78)] is.attributed to
- the ‘homogeneity in space and time which we have assumed to manipulate the fluctuating
equations. A multiscale method has been developed to obtain a non-.Markovian form of

the transport equation and will be seen elsewhere.

VII. Energy Conservation in Electrostatic Drift Waves

As pointed out in previous sections the violation of energy conservation from the resonance
broadening theory will survive if the modification due to renormalized averaged distribution
function to the second order is considered as done in Dupree and Tetrault’s prescription®
and similar versions by other authors.!” This problem will be analyzed and generalized in

this section to show that the perturbation theory proposed in this paper satisfies the energy

conservation order by order. This might be interesting because any attempt beyond the -

DIAC with diffusion approximation, which is equivalent to second order of perturbation

of this paper without incoherent part, should satisfy this kind of energy conservatiomn.

However, this is not shown successfully before. For simplicity, only the shearless slab -

model is considered. The generalization to a sheared slab model is straightforward.
Using the Vlasov equation for a guiding center in uniform magnetic field, we write
the perturbed distribution function in Fourier representation, as done similar to Sec. II, as
fo = GrlLo(k) fo®x + G Y Lk, k1) P, fr—r, + Grilkfx (80)
. k)

where N ( )
Lo(l{) = —(e/Te)(k“v“ — Wy ) .
Lk, k1) = (e/m)ky,8) = i(e/Bo) (k x k1) - bo
Gk = (w— k”v” + ifk)_l.

The power done by drift current is expressed as!”
<]1 . E:J_> = z'e/ dv”alkG,(CO)~1 <fk€15}:> (81)
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where

0)~! _
G,(c) :w—kHv”.

Substituting fix = Adr + fi and G’,(CO)_1 = G’;l — 1% into Eq. (81), we have

<31 .ﬁL> - z‘e/dv”dk{ <¢;G;1A¢k> + <¢’,§(—ifk)ﬂ¢k>

+ <¢zG;;1fk> + <¢:(—ifk)fk> } | (82)

All four terms on the r.h.s. of Eq. (82) can be expressed by connected diagrams.

For convenience, we firstly prove the following two useful lemmata.

Lemma I
In a given diagram if there are two wiggly lines & and k; which connect:to:the
highest vertex, then if the two wiggly lines intersect at a multi-wave vortex, the contribution

of this diagram to Eq. (69) vanishes (Fig. 3).

Proof

The part relevant to k and k; in the diagram can be written as f,(k,kl)P(k —
k1) Pk, qﬁ,’:. For the highest vertex, the contribution from the explicit velocity derivative
of f/(k,kl), fll(k,lcl) = (e/m)ky,0), becomes zero after the integration over vj. The

contribution from the second part also vanishes
Lk, ky) = Lok, ky) = —1 <—> (k X k1) -bo

as IAlz(k, lcl') changes its sign under a transformation (k < —k;) whereas k — k;, and Ad);cgb,’:l
are invariant under this transformation. ' \

- We define the two diagrams to be -adjoint with each other, if they have the same
- highest vertex J:J(Ic, k1) where the two wiggly lines k and k; meet, and the remaining parté
of the two diagrams transform into each other through the operation (k ++ —k;). A few

- examples are illustrated in Fig. 4 and Fig. 5
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Lemma II
The sum of the contribution of the adjoint diagrams to the integral in Eq. (69) is

equal to zero.

Proof

For the highest vertex the contribution from f,l is trivially zero. The contribution
from L, (k, k1) terms vanishes as the L (k, k1) vertex changes sign under the transformation
(k < —k1) while the remaining parts of the sum of the diagrams are unchanged.

We shall show the energy conservation of the ﬁrst few orders explicitly by using
the above two lemmata.

To zero order there is only one contribution from <¢zG;1ﬂ¢k>, which is linear
one ~ ‘Iﬂlo fo. It changes its sign under k-inversion and thus gives no contribution .in.the
integration over k.

To the first order there is only one contribution from the incoherent source
. "'<¢:G,:1fk> (Fig. 6). It gives no contribution owing to Lemma I

In the second order, besides the contribution from <¢:G’;1 fk> (Fig. 7), which
vanishes owing to Lemma I. There are two additional ‘terms [Fig. 8; (a) and (b)]. One
term comes from (@G "A¢x) (Fig. 8(a)), the other from (@F(—iT%)Adr) (Fig. 8(b)).
The sum of these two terms is cancelled with each other é,ccording to Lemma II. The
violation of energy conservation would occur if we had only kept the resonance broadening
in ¢I'x while ignoring the modification in the renormalized averaged distribution function
(represented by A here). This is no other than the mismatching in pefturbation theory to
second order. Therefore, Dupree and Tetrault’s prescription for the energy conservation
is just a manifestation as to how to obtain a correct perturbation theory to the second
order. -However, within the second-order whether or not correct for the incoherent part
is irrelevant owing to the Lemma I. As we shall see below, to the third order the correct
form of the incoherent part is indéed relevant in the energy conservation, which becomes

a crucial test to any progress beyond the Dupree and Tetrault’s theory.

To third order <¢z(——ifk)fk> (Fig. 9(a)) gives a term which cancels its adjoint
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term in <¢zG;1A¢k> (Fig. 9(b)). At the same time <¢:G;1A¢k> gives another term
(Fig. 4(a)) which is cancelled by the nonzero term in <¢’,:G,:1fk> (Fig. 4(b)).
The. terms in Fig. 5(a) come out of (qﬁz(-il"k)ﬂqﬁk), which is cancelled by its

. -adjoint term in Fig. 5(b) out of <¢:G’,:1 fk> The full cancellation to the third order is thus
_shown explicitly. We stress at this point that the incoherent source and the non-Gaussian
part should be taken into account simultaneously to survive the energy conservation. This
implies that the DIAC must violate the energy conservation where the polarization part
is taken into account while the incoherent part is neglected. |

The energy conservation to the fourth order is shown explicitly (in diagram) in
Appendix E. |

A rather lengthy proof of the energy conservation up to arbitrary higher order has
been succeeded based on the above two lemmata and other fourteen lemmata concerning
the topological structure of the diagrams involved in the four terms of Eq. (82)..For:the

limited scope of this paper we neglect them.*

VIII. The Spectrum Equations to Second Order Perturbations

From a point of view of perturbation theory the lowest order of the incoherent source should

be more important than the modification of the renormalized average distribution function.

The validity of ignorance of those terms is justified if either only the production of energy
is concerned or the phase space for three wave interaction is very small. However, the role
of incoherent source will become more significant in the determination of spectrum, if the
phase space of three wave interaction is not very small at the saturated level of turbulence.
Provided e¢/T is small enough to be a perturbative parameter. A closed set of spectrum
equations can be constructed from the renormalized perturbation theory of the paper.

To the second order the nonlinear Poisson equation, [Eq. (29)] is reduced to

GI(CC)(ZS’C = Z El(cgl),kg ¢k1 ¢k2 + Z g](cgl),kg,ks Pk, ¢k2 ¢ks (83)

ky+ka=k ky+katkz=k

* For interested readers, a copy containing details of the proof to arbitrary order
- will be offered on request to the author.




(e) s #(2)

where €, is given by Eq. (62), & 'k, is given by Eq. (66) and
?n'!l’gl

~(3 _
GI(CI),kQ,ka = ¢kl +katks .. [

e

."t‘
4mq - A A A
=TT = 7 12 /dvax'sz+k3L(k1)sz+k3L(k2)GksL(k3)f0' (84)
|ky + k2 + ks3]

Multiplying ¢} on both sides of Eq. (83) and ensemble averaging yield

eI = Z kl,ko <¢k1 Pk ¢k> Z E;(f,kq ks <¢k ¢ko¢kn¢k> (85) .

ki+ko=k kitkatks=k

In a quasi-Gaussian process the correlation <¢k1¢k2¢k3¢:> on the r.h.s. of Eq. (85) be-

comes zero because of the incorrelation between ¢x, , ¢x,, dk,, and

O ~(2) ~(211 : |
<¢k1¢kn¢k> = pthik 5 T Iy +2 k“ I In +2 kz’ I, I. (86)
k 2 1
Then, Eq. (85) becomes

(c) gz(f)k k (212 k Ig'(f)k 2

)4 pkok Cokikp g L2 I Ik 87
[Ek ; €k—k, kl} ‘ k Z €k o T &)

L 1t+ka=k

On the other hand, to the second order we already have an equation for Gy and Iy

[Eq. (21)].
—iT} = Q ZL )Gk, ( )i, =607 — gt (88)

1

where G}({o)“ = G;l - z;I’k, the inverse bare propagator.

Egs. (87) and (88) are combined together to give a closed set of equations for Gy
and I, because the other items in the equations like fj, i(k), G}(CO) are known quantities.
They are quite similar to the equations proposed by Biskamp?! in diagramatical technique
and Orzag and Kraichnan.!®

If the turbulence level is so small that Eq. (88) is approximated by G’;l ~ G’,(co)-1 ,
to the O(I?) Eq. (87) is then reduced to the standard spectrum equation in weak turbulence
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theory, where Eq. (69) is used for the expression of e;(cc). In a sense the set of Egs. (87)

and (88) is the renormalized version of weak turbulence theory, in which the resonance
~---broadening, the.three wave.interaction and the nonlinear.scattering are all included in a
. consistently renormalized way.

For small, but finite Iy Eq. (88) is approximated by the single renormalization,®

Gt~ GO N Bk)eQ, Bk, ~ (89)
k1 '

Substitution of Eq. (89) into Eq. (87) yields a spectrum equation for Iy only. The back-
reaction of particle on waves is contained in the spectrum equation.

The detailed solution of Eqs. (87) and (88) in specific circumstances is not the
aim of the paper. However, we should point out that the spectrum equations given in
‘this section are a more appropriate approximate description, if the spectrum is peaked-up,
whereupon the clump model” does not apply very well.

In the conventional perturbative approach or the diffusion approximation of the
- DIAC the resonance broadening [equivalent to Eq. (88)] and the nonlinear dispersion rela-
tion €; = 0 have been established. The new information given in Eq. (87) is the addition of
two other effects: the renormalized three-wave interaction and the renormalized nonlinear

scattering.?!
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IX. Concluding Remarks

The renormalized perturbation theory presented in this paper aims at how to establish a
.~ matched perturbation theory for the Vlasov-Poisson system. The concept of matching or

- “order™is elucidated throughthe following points.

(i) A well-defined procedure of iterative and the contents of each order.
(ii) The proof of the renormalizability, i.e., to each order the counter term should not
appear at the final perturbative expansion of f.

(ili) The energy conservation is valid to each order.

In all three points the propagator is regarded as the non-perturbative quantity,

otherwise the theory would reduce to the unrenormalized one.

We have seen that the violation of energy conservation is caused by the mismatch-

ing in the second order as depicted in Sec. VII. Also, we 'ha,ve seen in Sec. V and See:»VII
that correct weak turbulence limit did not follow from the earlier perturbative approach
because the incoherent part which contributes to the first order of pertﬁrbation is not ma-
nipulated in a perturbative way or ignored at all, WHile the propagator and the averaged
distribution function are renormalized to the second order. The critique to the perturbative
approach is then answered by resorting to the matched pertubation procedure presented in
this paper. In a sense the theory can be regarded as a continuation and accomplishment of
the previous perturbative approach initiated by Dupree! and then, developed by Rudakov
and Tsytovich,® Dupree and Tetreault.®

In a comparison to the non-perturbative approach (the DIA)!? we find that the two
theories are somewhat different. In ‘the originél MSR systematology the Green function of
kinetic equation is a two-component function, the response function R and the correlation
function C,'2 while the so-called propagator G is generally not the Green function of
Vlagov equation by its definition (as usual, a Green function is defined as source function
- through the formal solution of the.fluctuating distribution function). On the other hand,
the propagator used in the perturbative approach is indeed the Greén function of Vlasov
equation. It is not surprising that the renormalized propagators of the two theories are

‘different even to the lowest non-trivial order, as the polarization part in the DIA does
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contribute to this order. In view of intrinsic difference of these two theories we can not
conclude which theory is superior to the other before any evidence is made manifestly.

The renormalization procedure may not need to be unique. However, the present
- theory does have different consequences fr6h1 the DIA. For example, a Krammer-Kronig
- kind dispersion relation for I'; can be derived owing to the causality of our Green funciton
Gg.2® This j)roperty is non-existent in the DIA’s approach.

Another emphasis is just on the role of incoherent sburce for the comparison to
conventional perturbative approach. As is well known, only the coherent part is dealt with
in perturbative approach, while the incoherent part is mainly manipulated by the clump
model.”® This semi-perturbation theory is plausible only if the spectrum is broad enough so
fhat the granulation in phase space becomes evident. The earlier treatment by the concept
of non-linear dispersion relation is basically dealing with the Compton scattering.%:2%:° The
nonlinear scattering and the three wave interaction related with the incoherent source:will
cause a broadening of w to a giveﬁ k (in a few literature it is called the “correlation
broadening”). Thus to the second order of perturbation, the usual nonlinear dispersion
" ‘relation e,(:) = 0 should be reformed. - Approximately, theArequirement of minimum e,(cc)
might make sense as a substitute for the usual nonlienar dispersion relation. The condition
of minimum el(c) produces a turbulence-level-dependent shift from the frequency predicted
by the linear dispersion relation. In this sense the recomstructed. nonlinear dispersion
relation w = w(lZ), determined by 561(:) /6w = 0 is referred to the nonlinear mode if the
Compton scattering is dominant. More precisely, a closet set of spectrum equations is
established to second order [Sec. VII] in a sense of the renormalized perturbation theory.

This approaéh suggests an alternative to clump model in solving the spectrum problem.

Another shift given by the paper is the nonlinear shift in the propagator accompa- -

nying the Dupree damping [see the end of Sec. 3]. However, we must have %erg]m[’k - 0,
- as indicated by the reality of Eq. (64), i.e., the limit of the nonlinear shift at low frequency
must go to zero.

-Recently, the results from simulation indicates the importance of a non-Gaussian
pchess.24 Indeed, the non-Gaussian contribution of the propagator and the coherent dis-

- tribution function starts at the third order of perturbation [as seen in Egs. (21) and (25)].
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Meanwhile, the contribution from the incoherent distribution function including a non-

Gaussian diagram appears at the fourth order of perturbation [see Eq. (26)]. However,

-~ it should .be. emphasized here that.the.non-Gaussian effect of the incoherent part usually

begins at lower order than fourth. An examp:lé can be seen from Eq. (74), in which the
first order of the incoherent part combined with other quantities gives the third order of
non-Gaussian z'AI’o. The non-Gaussian effects keep a very close relationship with the inco-
herent part, as analyzed in Sec. VII. But, we have seen the influence of the iﬁcoherent part
on the transport equation in a glance at the structure of I;. The lowest non-Gaussian

structure of I is just produced by the lowest incoherent distribution function.
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Appendix A

Diagramatic Rules

Because of the importance of the diagramatic scheme introduced in this paper, a
detailed account of the diagramatic rules is given in this appendix.

In each diagram like in Fig. 10 or 11, the.solid line represents the propagator Gy,
[Fig. 10(a)] with k denoting the four-momentum of the particles carried by the propagator.
The one exception to this representation is when the solid line is at the lowest part of the
diagram which then represents the fluctuating distribution function fix_k, [Fig. 10(b)] or
function f [Eq. (7),(8)].

There is always an arrow to denote the direction of its k. The solid line deflects
whenever it meets a wiggly line [Fig. 10(c)] which represents wave ¢i,. The redirection
indicates that there is a vertex L which is called wave particle interaction vertex implying
their interaction. At the vertex there must.be conservation 6f momentum. When the
wiggly line of momentum k; is an external line, which one end connecting with the solid
line of momentum k at the vertex the other end being free, the momentum connected with
it is taken up by the solid line below the vertex has a momentum k — k;. The vertex at
the intersection between solid line and wiggly line is an operator, which generally does not
commute with the propagator G. At the end of the lowest solid line it may be connected
to a shaded bubble @ = flo(k)fo or it may be open ended. In the latter case this
lowest solid line means','fk:. A circle O is introduced here to denote :I'x. The wiggly
line which connects two vertices is called an internal line and it denotes |¢|?. Sometimes
several wiggly lines meet at one point. The point is called multiwave vertex. There
is no interaction at a multiwave vertex akin to the interaction I at the wave-particle
vertex. However, the multiwave vertex provides the conservation of four-momentum of
waves k; + ko + ...k, = O where ki, ks,...,k, are the four-momentum of waves connected
to the multiwave vertex. Both the internal line and the multiwave connecting wiggly lines
imply a non-fluctuating closed structure for the correlation of corresponding waves.

A summation index with parenthesis, (k;), means k; # k (k is the coherent mo-
mentum) and the designated wiggly line by (k;) is uncorrelated with other. wiggly lines

designated by momentum with parenthesis in the same diagram. A typical example of this
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diagramatical rule is given in Fig. 11 which corresponds to the following formula.:.

Gr Y L(k1)Grory Y L(ka)Grr,—k, Y L(ks) G, koo L(—F1)
ky (k2) ks

Gl—ky—ks Z L(ks)Gr—y—ky—ke Z L(k6) Gty — ks ks —ko L(—k3 — ks)
ks ke '

Grmbamte L= E2) G (=) fo ( (81,88, ) ) ((bre8t, ) ) ((Brebre 8F, ik ) ) 1o
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Appendix B

Correlation Expansion

In the perturbation a systematic procedure, named correlation expansion, is
adopted based on the definition of the correlation function to all orders.
The stochastic quantities for any stochastic process, A,B,C,D... might be corre-

lated with each other, so that we have
(4) =(4) | (B1)

(AB) = (4) (B) + ((4B)) (B2)

(ABC) = (4) (B) (C) + (4) ((BC)) +(B) ((AC))
+(C) ((4B)) + ((ABC)) (B3)
(ABCD) = (4) (B) (C) (D) + (4) (B) ((CD)) + (4) (C) ((BD))
+(4) (D) ({BC)) + (B) (C) ((AD)) + (B) (D) {(AC))
+(C) (D) {(4B)) + ({4B)) ((CD)) + {(4C)) {(BD))
((AD)) ((BC)) + (4) ((BCD)) + (B) {(ACD))
+(C) {({ABD)) + (D) ((ABC)) + ((ABDC)) | (B4)

where ((AB)), ((ABC)), ((ABCD)) ... are called the correlation functions of stochastic
Quantities A,B,C.D... . They simplify the dependent probability of multiple stochastic
quantities and defined as the difference of the e_nsemble average from the lower order ones.
Ha,viﬁg the definition of correlation functions in mind, we can expand the product of

stochastic quantities A,B,C,D... in terms of correlation functions. For example,
AB = (4)(B) + ((AB)). (B5)

The quantities in parenthesis are not correlated with each other. When the ensemble

‘average is taken over them, the average is split into that acting on each single quantity,
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because the correlated part has been extracted from vthem., ie., ((4)(B)) = (4)(B). We
readily find the consistency of Eq. (B5) with Eq. (B2).

The further examples are

ABC = (4)(B)(C) + (4) {(BC)) + (B) {(AC)) + (C) {(AB)) + ((4BC))  (Be)

ABCD = (4)(B)(C)(D) + (4)(B) ({CD)) + (4)(C ) (BD))
+(A)(D) ({BC)) + (B)(C) ((AD)) + (B)(D) ((AC))
+(C)(D) ({(AB)) + ((4B)) ({CD)) + ({AC)) ({(BD))

({AD)) ((BD)) + (A) ((BCD)) + (B) ((ACD))
+(C) ((ABD)) + (D) ((ABC)) + ({(ABCD)) . (B7)

A quantity in parenthesis might be correlated with the quantities not in parenthesis; how-
ever, no quantity in ((...)) could be correlated with quantity outside it. In fact, the corre-

lation expansion can be done only for part of the product. Thus we write

ABCD = (A)(B)(C)D + (A) {({(BC)) D + (B) ((AC)) D
+(C) ({AB)) D + ({ABC)) D (B8)

" The further expansion of Eq. (B8), according to the above rule, reads

(AB)C)D = (A)(B)(C)(D) + (4) (BCD)) + (B) ({4CD))
+(C) {({ABD)) + (4)(B) ((CD)) + (4)(C)((BD))
+(B)(C) {({(AD)) + ({(ABCD)) (B9)

[Only the correlation among A,B,C, is prohibited in this expansion.]

(4) ((BC)) D = (4)(D) {(BC)) + ((BC)) {{AD)) (B10)

(B) ((AC)) D = (B)(D) ((AC)) + {(AC)) ((BD)) (B11)

(€) {{4B)) D = (C)(D) ((AB)) + {(4B)) ((CD)) (B12)
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- ((ABC)) D = ((ABC)) (D) (B13)

When combining Eq. (B8) with Egs. (B9)-(B13), we readily see the consistency with the
result of Eq.. (B7). The correlation expansion is equivalent to the clustef expansion used
in the BBGKY hierarchy?5 and functional for both the distribution function f and the

electric fields E by virtue of the linear relations given by the Poisson equation.?®
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- In this representation the wiggly lines above the shaded bubble are uncorrelated

with each other, while the wiggly line connected to the shaded bubble may or mé,y not be

.-correlated with the other open wiggly lines in-a given diagram as discussed in Section IV. .

Appendix D — Construction Rules of the Perturbative Expression

of the Coherent Terms f,gc) and the Incoherent Terms fk
We introduce some useful definitions first.

Definition I. Primitive frame diagram

It comnsists of a solid line with n wave-particle vertices, each of which connects with
an open wiggly line, a shaded bubble with a wiggly line connected to the lowest end of the
solid line. The four-momentum conservation holds for lines

The fourth order primitive frame diagram pertaining to each wave-particle vertex
as well as for lines pertaining to the shaded bubble. Such a diagram is defined as the nth

order primitive frame diagram as shown in Fig. 12.

Definition I1. — Fundamental constructive diagram

Starting with the giVen order primitive frame diagram we combine the wiggly

lines in all possible way to form internal line and/or closed structure confaining multi-

wave vertex with the exception that it will cause any tyﬁe of self-energy sub-structure and
zero-momentum propagator in the diagram. The set of vthe resultant diagram is called the
fundamental constructive diagram for the given order. For example, all possible funda-
mental constructive diagrams given by the 3rd order primitive frame diagram (Fig. 13(a))

are given in Fig. 6(b).

The formation rule of f,gc)
 All fundamental constructive diagrams with only single open wiggly line comprise
the contribution to f,gc) for any given order. The diagramatical expression of f,gc) to the

fifth order is illustrated as follows
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All fundamenta) constructive diagrams with more than one open wiggly line com-
prise to fk for any given order. The diagramatical expression of fx to the fifth order is

illustrated as follows:
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Appendix E — Adjoint Diagrams at Fourth Order

The nonzero diagrams in fourth order are given below. They are cancelled with each other

according to Lemma II, while the zero diagrams, to be zero by Lemma I, are not illustrated.
The sources composed the diagrams are given on the left of each diagram. They

can be found in Appendix C.
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The adjoint pairs are: (4)+(8)=0, (5)+(7)=0 (6)+(9)=0 [the pairs within the

coherent part], (13)+(16)=0, (14)+(17)=0, (18)+(20)=0 [the pairs within the incoherent
part]; (1)+(19)=0, (2)+(11)=0, (3)+(12)=0, (10)+(15)=0 [the pairs between the coherent
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Figure Captions
Fig. 1 The excluded diagrams from the contributor as self-energy.
Fig. 2 The diagram creating propagator with zero-momentum does not exist in the iter-
ation. K
Fig. 10 An illustration for the definitions of diagramatic rules.
Fig. 11 An illustration for the diagi‘amatic rules.
Fig. 12 An example for the primitive frame diagram (the fourth order).
Fig. 13 (a) and (b) All possible fundamental constructive diagrams given by the 3rd order

primitive frame diagram.
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