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Hall magnetohydrodynamics in a strong magnetic field
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For a plasma embedded in a strong external magnetic field, the spatial structures tend to develop fine
scales preferentially across the field, rather than along the parallel direction. This feature, which
allowed a major simplification in the theoretical structure of one-fluid magnetohydrodynamics
(leading to reduced magnetohydrodynamics), is exploited here to derive what may be called the
reduced Hall magnetohydrodynamic equations (RHMHD) reflecting two-fluid effects such as the
Hall current and the electron pressure. These physical effects, which can be relevant in astrophysical
environments and also in fusion plasmas, allow for the propagation of circularly polarized normal
modes such as whistlers and shear/ion-cyclotron waves. In this paper, the RHMHD system of
equations is integrated numerically, to investigate externally driven turbulence. © 2008 American

Institute of Physics. [DOL: 10.1063/1.2991395]

I. INTRODUCTION

One-fluid magnetohydrodynamics (MHD) is often re-
garded as a reasonable description of the large-scale dynam-
ics of a plasma. A first step toward a more appropriate theory
for fully ionized plasmas is to consider two-fluid effects
through a generalized Ohm’s law which includes the Hall
current. Whenever one deals with phenomena with charac-
teristic length scales comparable or smaller than the ion skin
depth ¢/ w; (c: speed of light; w;: ion plasma frequency), the
Hall effect cannot be neglected. Among its other manifesta-
tions, the Hall current causes (in an ideal plasma) the mag-
netic field to become frozen in the electron flow instead of
being carried along with the bulk velocity field. Another im-
portant feature of the ideal Hall-MHD description is the self-
consistent presence of parallel (i.e., to the magnetic field)
electric fields, which can therefore accelerate particles. Hall-
MHD has recently been invoked in advancing our under-
standing of phenomena ranging from dynamo mechanisms,'
magnetic reconnection, ~* and accretion®® to the physics of
turbulent regimes.H0

In many cases of interest, such as in fusion devices or
astrophysical plasmas, a strong externally supported mag-
netic field is present. This external field breaks the isotropy
of the problem and can be responsible of important changes
in the dynamics, such as in reconnection regimes or in the
development of energy cascades in turbulent systems. For
one-fluid MHD, the existence of a strong magnetic field is
often exploited to yield a simpler model: the so-called re-
duced MHD approximation (RMHD; see Refs. 11 and 27). In
this approximation, the fast compressional Alfvén mode is
eliminated, while the shear Alfvén and the slow magneto-
sonic modes are retained.'> The RMHD equations have been
used to investigate a variety of problems such as current
sheet formation,13 14 nonstationary reconnection,ls’16 the dy-
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namics of coronal loops, ™ or the development of

turbulence.'® The self-consistency of the RMHD approxima-
tion has been analyzed in Ref. 20. Moreover, recent numeri-
cal simulations have studied the validity of the RMHD equa-
tions by directly comparing its predictions with the
compressible MHD equations in a turbulent regime.21

In this paper we derive the asymptotic equivalent of the
Hall-MHD equations; the resulting set will describe the slow
dynamics of plasmas (with Hall currents) embedded in a
strong external magnetic field and will naturally include new
features such as the presence of parallel electric fields. We
organize the paper as follows. After introducing the Hall-
MHD set of equations in Sec. II, we perform the asymptotic
expansion corresponding to the dynamics of a plasma em-
bedded in a strong external magnetic field in Sec. III, and
derive the set of equations that could be called reduced Hall-
MHD (RHMHD). The linear modes of RHMHD are dis-
played in Sec. IV. The results obtained from the numerical
integration of the complete dynamic equations are presented
in Sec. V, while in Sec. VI we summarize our conclusions.

Il. THE HALL-MHD SYSTEM

The equations of motion of an ideal fully ionized
plasma, made of an ion species of particle mass m; and elec-
. . . 2
trons of negligible mass (since m,<<m;) are given by

dU 1
m,-n—:en<E+—U><B)—Vp,~, (1)
dt c
1
O:—en<E+—Ue><B) -Vp., (2)
¢

where U, U, are the ion and electron flow velocities, respec-
tively, and E,B are the electric and magnetic fields, respec-
tively. The electron and ion pressures p,,p; are assumed to
satisfy polytropic laws

pie<n’, 3)
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pen. 4)
Charge neutrality and mass conservation add n;=n,=n and
dlm;n
% £V (mpl) =0 (5)

to the system, while the Ampere’s law (J is the current)
c
J=—V XB=en(U-U,) (6)
4

closes the system. The electric and magnetic fields can be
expressed in terms of the electrostatic potential ¢ and the
vector potential A as

E=- %a,A Ve (7
and

B=VXA. (8)

The preceding set of equations can be cast in a dimensionless
form in terms of a typical longitudinal length scale L, an
ambient density n=n,, a typical value for the magnetic field

By, a typical velocity corresponding to the Alfvén speed vy
=B,/ V4mm;n, and reference pressures p, and p,,
du 1
——=—(E+UXB)-BVp;, )
dt €
1
0=-—-(E+U,xXB)-BVp,, (10)
€
and
1
J=VXB=—-(U-U,), (11)
€

where we have introduced the Hall parameter

c mic2 (12)
€= =
wily N dme’nyl?

and the plasma beta

p=—L0 (13)

mi}’lovi '
By adding Egs, (9) and (10), and by eliminating E and U, in
Eq, (10), we derive the equivalent pair consisting of the
plasma equations of motion (9) and (10)
du

E=(VXB)XB-BV([71'+])€), (14)

and the Ohm’s law equations (7)—(11) into Egs. (10); i.e.,
JA=(U-€eV XB)XB-V¢+eBVp,. (15)

Equations (14) and (15) constitute what may be called the
ideal Hall-MHD (HMHD) equations. The HMHD system has
been thoroughly studied, both analytically and numerically.
It is possible to obtain several important general results by
manipulation of Egs. (14) and (15), but detailed numerical
calculations are somewhat difficult with the full raw system,
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particularly in the presence of a strong external magnetic
field which forces the parallel and perpendicular dynamics to
be at different spatial scales. The existence of a strong exter-
nal field, however, can be exploited to simplify or reduce the
system. This spirit, epitomized in reduced MHD (RMHD), is
precisely our guide here when we seek an appropriate and
consistent procedure to reduce HMHD to what might be
termed “RHMHD.”

lll. HALL-MHD IN A STRONG MAGNETIC FIELD

The presence of a strong external magnetic field forces
spatial structures to develop fine-scale structure across the
external field, without changing their parallel size
appreciably.B_26 Let as assume, for instance, that the normal-
ized magnetic field is of the form (the external field is along
é,)

B=é,+ 6B, |SBl~a<l, (16)

where « represents the typical tilt of magnetic field lines
with respect to the é, direction. Therefore, as for reduced
MHD, one expects

V=1, d~a<l. (17)

To guarantee that the vector fields B and U remain solenoidal
(incompressible flow), we decompose them as

B=¢,+V X (ae, + ge,) (18)
and
U=V X (¢&,+f2,), (19)

where the potentials a(r,?), g(r,1), ¢(r,1), and f(r,t) are all
assumed of order << 1.

Notice that the potentials f and g are usually neglected in
reduced MHD applications and simulations, and that the po-
tentials @ and ¢ restrict the dynamics to velocity and mag-
netic field components perpendicular to the external mag-
netic field. The potentials f# 0 # g allow nonzero dynamical
field components along é,. These parallel components are
actually retained in standard RMHD theory,27 giving rise
passive scalar equations for the field components along é,. In
Hall-MHD, it is essential to retain the potentials f and g, to
capture the helical behavior introduced by the Hall terms;
i.e., those proportional to € in Eq. (15).

Assuming also d,~ a<<1, we obtain, to first order in « in
Egs. (14) and (15),

VL[ayg_IB(pi"-pe)]:O’ (20)

VL[¢+QD+€(ayg_Bpe)]=0s (21)

which are the Bernoulli conditions constraining the pressures
and the electrostatic potential.

To order o?, Eqs. (14) and (15) describe the dynamical
evolution of the potentials (i.e., a, ¢, g, and f),

da=3d.(¢—eb)+[¢— eb,a], (22)
(9[(.0 = (95] + [(P’ w] - [a’j]’ (23)
ab=0.(u-¢€j)+[e.b]+[u-e€j,al, (24)
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du=3.b+[e,u]l-[a,b], (25)

where j :—Via and w:—Vzlq: are, respectively, the parallel
current and vorticity components, and [a,b]=d,adb
—dyad,b indicate the standard Poisson brackets. The parallel
component of the dynamical magnetic field is b=-4,g, and
that of the velocity field is u=-d,f. Both of these compo-
nents are usually assumed to be zero in reduced MHD appli-
cations and simulations. However, in standard RMHD theory
they are retained and passive scalar equations are obtained
for the parallel components (see Ref. 27). Note that Egs. (24)
and (25) are indeed passive scalar equations for u and b for
the case €=0.

Equations (22)—(25) together with the Bernoulli condi-
tions

b+ B(p;+p,) = const, (26)

¢+ ¢—elb+ Bp,) = const (27)

describe the dynamical evolution of an incompressible Hall
plasma embedded in a strong external magnetic field. In
analogy with MHD, we call this system the reduced HMHD
(RHMHD). The derivation of the RHMHD is one of the
main goals of this paper. In the next section (Sec. IV) we
derive the linear modes that RHMHD can sustain, and in
Sec. V we show typical numerical solutions of the nonlinear
evolution equations.

Just as for three-dimensional Hall-MHD, this set of
equations display three ideal invariants: the energy

1
- f &r(UP +|BP)

1
=5fd3r(|VlgD|2+|Vla|2+u2+b2), (28)
the magnetic helicity

H,,,:% f d’r(A-B) = f d’rab, (29)

and the hybrid helicity”*’

1
H,= > f &r(A + €eU) - (B + eQ)

= J &r[ ab + elaw + ub) + Euw)], (30)

where =V X U is the vorticity vector field.

IV. LINEAR MODES IN HALL-MHD

Retaining only the linear terms in Egs. (22)-(25) and
considering all variables to behave like exp[ik  -r +ik.z
—iot], we readily obtain the following dispersion relation-
ship:

ot = 2K[ 1+ 3(ek )]+ K =0, (31)

yielding the normal modes
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FIG. 1. The phase speed o/k. vs perpendicular wavenumber (i.e., |k |) is
displayed for the two branches. The whistler branch grows monotonically,
while the shear ion-cyclotron mode has monotonically decreasing phase
speed with wavenumber. The unsplit Alfvén mode, which is the only one
present in the limit =0, is shown with a dotted trace for reference.

4 ik (32)

g+ = k2+(M>2
+ z 2

2

The positive branch (o) corresponds to the whistler mode,
while the negative branch o_ represents shear ion-cyclotron
waves. The variation of the phase speed o/k, for these
modes as a function of |k | is shown in Fig. 1. Naturally, for
€=0, the only residual mode is the dispersionless shear
Alfvén wave.

V. NUMERICAL INTEGRATION
OF THE HALL-MHD EQUATIONS

We integrate Eqs. (22)—(25) numerically, assuming peri-
odicity for the lateral boundary conditions, and specifying
the velocity fields at the boundaries (z=0 and z=L). The
particular boundary motions considered for this paper, are
¢©(z=0)=0, while ¢(z=L) is a superposition of Fourier
modes k such that 3 < |k|<4 (for a detailed description, see
Ref. 19). The details of these boundary motions are not rel-
evant; what is important is that they pump energy into the
system and drive it into a turbulent regime. For the spatial
derivatives on the (x,y) plane, we use a pseudo-spectral tech-
nique with de-aliasing, while finite differences are adopted
for the (much smoother) é, derivatives. Since the system is
being driven from the boundaries, we start all our simula-
tions with trivial initial conditions (i.e., a=@=u=b=0).

To study the role of the Hall current in a plasma perme-
ated by a strong magnetic field, we performed a set of simu-
lations with different values of the Hall parameter (namely,
€=0, 0.031, 0.062, 0.125). The size of all these simulations
is 256 X 256 X 30. In Fig. 2, we show the ratio of total kinetic
energy (i.e., for both parallel and perpendicular motions) to
total energy (i.e., kinetic plus magnetic). For pure MHD (e
=0), this ratio is about EX"/E,~0.057. For the same pa-
rameters, we find that as the Hall parameter e rises, the ki-
netic fraction increases, becoming as high as Ef;?/ E\,
~0.123 for €=0.125 (see Fig. 2).
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FIG. 2. Ratio of total kinetic energy to total energy vs time for different
values of the Hall parameter € (labeled).

In the MHD limit (e=0), the total energy reduces to [Eq.
(28)]

1
Eperp:ader(|VL‘P|2+|V¢a|2), (33)

while for the general case (e#0), there is a fraction of the
total energy directly associated with the parallel degrees of
freedom:

Epy= % f EPru* +b). (34)

The fraction E,,./E is displayed in Fig. 3 for different
values of the Hall parameter €. Note that for all these cases,
parallel fluctuations become non-negligible only after times
of the order of r=6-8. This timescale is not directly con-
trolled by the external driver (which is feeding only the per-
pendicular components in a stationary fashion); it is the typi-
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FIG. 3. Ratio of parallel energy (kinetic plus magnetic) to total energy for
different values of the Hall parameter € (labeled).

/Y & E°,/E°,
T T T ‘ T T T T ‘ T T

0.4

0.3

0.2

0.1

0.0

time

FIG. 4. Ratios of parallel to total magnetic and kinetic energies for different
values of the Hall parameter € (labeled). The three upper curves correspond
to magnetic energy ratios, while the lower curves correspond to kinetic
energy ratios.

cal time it takes to the perpendicular part of the dynamics to
ignite parallel fluctuations via terms proportional to € in Eq.
(24). For a moderate value €=0.125, we find that the parallel
dynamics can store up to 7.5% of the total energy. Fluctua-
tions of this energy ratio also become proportionally larger,
since it is only the total energy that remains invariant.

In Fig. 4 we display the detail of how the energy splits
into parallel and perpendicular degrees of freedom, and also
into the kinetic and the magnetic energies, for different val-
ues of €. In Fig. 2 we have already seen that, although the
fraction of kinetic energy grows with €, most of the energy in
our simulations is magnetic. In Fig. 4 we see that for €
=0.125, up to 34.5% of the magnetic energy is associated
with the parallel dynamics, while only 3.8% of the kinetic
energy is associated to parallel flows.

The Hall effect is expected to affect the dynamics of
patterns whose sizes are of the order of the ion skin depth
(i.e., ¢/wy;) or smaller. According to Eq. (12), this typical
size is A= €L. In Fourier space, it corresponds to a typical
wavenumber k.=1/€. In Figs. 5 and 6 we show the spectral
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FIG. 5. Energy power spectrum for different values of the Hall parameter €
(labeled) at r=20. Full traces correspond to total energy, and the Kolmog-
orov slope is displayed for reference. Dot-dashed traces correspond to just
the parallel part of the total energy. Vertical dashed lines indicate the loca-
tion of k.=1/€ for the values of e considered.

distribution of energy corresponding to t=20. We remind the
reader that the time unit is Ly/v, (i.e., the Alfvén time along
the main magnetic field) and that the system reaches a sta-
tionary regime by t=8§, as shown, for instance, in Fig. 2.
Bold lines in both figures correspond to the total energy
power spectra for different values of the Hall parameter e.
Even though our numerical simulations have only a moder-
ate spatial resolution, the energy spectra are not inconsistent
with the slope predicted by Kolmogorov in what could be
interpreted as the inertial range. Figure 5 also shows the
spectra for the parallel part of energy in dot-dashed traces.
For each of the simulations, characterized by a given value
of €, we find that the parallel energy spectrum becomes a fair
fraction of the total energy spectrum for k=k,.. In Fig. 6 we
show the power spectra for kinetic energy in dot-dashed
trace. Even though in these simulations kinetic and magnetic
energy do not reach equipartition, kinetic energy spectra
reach a sizeable fraction of the total for k=k,.

EYK) & Eg(k)

0.125

log(E(k))

0.0 0.5 1.0
log(k)

FIG. 6. Energy power spectrum for different values of the Hall parameter €
(labeled) at t=20. Full traces correspond to total energy (same as Fig. 5).
Dot-dashed traces correspond to kinetic energy. Vertical dashed lines indi-
cate the location of k.=1/€ for the values of e considered.
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FIG. 7. The upper panel shows magnetic helicity vs time [H,,(t); see Eq.
(29)] for different values of the Hall parameter € (labeled). The lower panel
shows hybrid helicity vs time [H,(z), see Eq. (30)] for different values of the
Hall parameter € (labeled). The dotted traces correspond to the approximate
expression given in Eq. (36).

The behavior of both the magnetic and the hybrid helic-
ity can be seen in Fig. 7. The upper panel shows the mag-
netic helicity as a function of time for different values of the
parameter €. For e=0 (RMHD), the magnetic helicity is trivi-
ally zero, and does not enter the dynamics at all. When €
# 0, however, the magnetic helicity oscillates around zero in
all the cases considered. Even though the amplitude of these
oscillations grow with €, when averaged in time, the system
tends not to store magnetic helicity. The lower panel in Fig.
7 shows the hybrid helicity as a function of time for different
values of the parameter e. The hybrid helicity for the case
€=0 is also trivially zero, since it coincides with the mag-
netic helicity in this asymptotic limit. However, for € # 0, the
hybrid helicity is stored in the system with a net sign (posi-
tive, in this case). We also plotted an approximate expression
of the hybrid helicity, using a dotted trace. The reason for the
good fit between the full and dotted curves stems from the
fact that according to Eq. (30), for sufficiently small e, is

H,=H, + €K, (35)
where
1 3 3
K:E d’rU-B= | d’r(aw+ ub) (36)
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is the so-called cross-helicity. The cross-helicity is one of the
ideal invariants (along with energy and magnetic helicity) in
plain MHD, but not in Hall-MHD.

VI. CONCLUSIONS

In this paper we have derived the basic equations which
comprise the new system of reduced Hall-MHD (RHMHD)
following the asymptotic procedure used in deriving the con-
ventional RMHD. The derived system describes the slow
dynamics of Hall plasmas embedded in a strong external
magnetic field. The larger RHMHD subsumes RMHD and
contains additional physics such as the existence of parallel
electric fields, and normal modes like whistlers and shear/
ion-cyclotron waves.

This asymptotic low-frequency limit defining RHMHD
equations is described by two solenoidal vector fields (the
velocity and magnetic fields), which are generated by four
scalar fields. In RMHD, on the other hand, only two scalar
fields are needed (namely, the stream function and the mag-
netic flux), from which the velocity and magnetic vector
fields perpendicular to the external magnetic field may be
derived. In the more general four scalar description [see Egs.
(22)-(25)], both vector fields are allowed parallel compo-
nents as well, and therefore can fully display the helical na-
ture of the dynamics induced by the Hall effect.

We checked that the reduced model is still capable of
sustaining the whistler and shear/ion-cyclotron modes of the
full Hall-MHD. Since the shear/ion-cyclotron phase speed is
a decreasing function of wavenumber, its associated electric
field can be potentially relevant in accelerating and heating
particles. This feature of Hall plasmas is, of course, well
known; we only emphasize that it is retained in the geometri-
cally simple model presented here.

We also report the results of a set of numerical simula-
tions with different values of the Hall parameter, to study
changes in the plasma dynamics as the Hall effect becomes
progressively more important. We find, for instance, that as €
is raised, both the kinetic energy and the fraction of the total
energy entertained in the parallel degrees of freedom, are
boosted up. We find that these two features (relative impor-
tance of kinetic energy versus magnetic energy and relative
importance of parallel energy versus perpendicular energy)
are much more noticeable at small spatial scales, in particu-
lar, whenever k=k,, as shown Figs. 5 and 6. These figures
also show that the power spectrum displayed in the station-
ary turbulent regime is not inconsistent with a Kolmogorov
power-law, as it is also the case for RMHD." However,
simulations at a considerably larger spatial resolution are re-
quired to derive a reliable value for the slope.

Phys. Plasmas 15, 102303 (2008)

In summary, we report the derivation of a theoretical
model which describes the slow dynamics of a Hall plasma
embedded in a strong magnetic field. We believe that this
model will be potentially quite useful for a number of appli-
cations such as fusion devices and astrophysical plasmas.
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