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Neoclassical tearing mode saturation in periodic current sheets
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The saturation of Neoclassical Tearing Mode islands in a periodic slab configuration is investigated.
Several theoretical models, all based on a generalization of Rutherford’s procedure, that aim at
reducing the complete system to a single equation of the magnetic island width, are compared
against numerical simulations. When the effects of the bootstrap current and of the second derivative
of the equilibrium current profile are included, the numerical saturation levels are well matched with
the predictions of this equation in a wide region of the stability diagram. However, the numerical
results diverge from the standard theory when evaluating the threshold for nonlinear destabilization,
since the theoretical value appears to be strongly conservative. In other words, the standard
generalization of Rutherford’s equation is not able to capture the minimum value of the linear
stability parameter and of the island width such that below them the Neoclassical Tearing Mode is
always suppressed. To correct this discrepancy, a new theoretical model in which the transverse
propagation of the island affects the bootstrap current term is proposed. © 2008 American Institute

of Physics. [DOL: 10.1063/1.2901193]

I. INTRODUCTION

It is well known that magnetic reconnection processes,
which allow changes in the topology of the magnetic field,
can lead to enhanced transport and significant performance
degradation of magnetic confinement devices. Of particular
interest are the so-called Neoclassical Tearing Modes
(NTMs). These occur because of a nonlinear mechanism that
involves the modification of the bootstrap current in the re-
gion of magnetic islands of sufficiently large size. As a re-
sult, NTM islands can exist even for equilibria that are stable
to ordinary tearing modes.

In recent years, several experiments have shown that ad-
vanced configurations for plasma confinement in tokamaks
(Internal Transport Barrier, H-mode with Edge Localized
Mode) may lead to the development of NTMs."” These mag-
netic perturbations may be harmful for the performance of
the next generation tokamaks, which are envisaged to work
in such regimes. In particular, when the island associated
with the perturbation reaches a finite size, it can significantly
reduce the radial confinement or even lead to plasma disrup-
tions. Thus, the understanding of the evolution and the satu-
ration of NTM islands has become a relevant issue for the
magnetic fusion research community.

A distinctive characteristic of the Neoclassical Tearing
instability is that nonlinear effects play an important role
even in the early stage of its evolution. A simple model for
the nonlinear evolution of the tearing mode, in the case of
small A’ equilibria, was first proposed by Rutherford.® The
linear stability parameter, A’ is defined in Ref. 4 as the jump
of the logarithmic derivative of the fundamental eigenfunc-
tion of the perturbed magnetic flux around the reconnecting
surface. In the standard linear theory it drives the instability
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growth when positive. The nonlinear solution obtained in
Ref. 3 relies on a perturbative technique that is applicable
when the island width, w, is small with respect to a macro-
scopic length, L. The smallness of the factor w/L allows a
simplification of the problem by splitting the complete solu-
tion into two parts: a fully nonlinear inner solution, valid in a
narrow layer around the reconnecting surface, and a linear
outer solution, determined only by the equilibrium, the
boundary conditions and the perturbation mode number, k.
The matching of the two solutions in the region where they
overlap yields the equation that governs the evolution of the
island width.

From a technical point of view, the problem is therefore
tackled by using an approach that aims at the reduction of the
complex system of nonlinear partial differential equations to
a single and simpler relation, where the only variable that
characterizes the perturbation is the magnetic island width.
Even if this procedure is fairly well suited to represent a
basic model (e.g., the 2-equations model in Rutherford’s pa-
per), it may present shortcomings when trying to describe
cases with pressure inhomogeneities, which add another im-
portant variable in the problem, the rotation frequency of the
island, w (see below).

In the original Rutherford’s work, the island width equa-
tion has the simple form dw/dt=nA’, the solution of which
grows linearly in time. Therefore this equation does not deal
with the tearing mode saturation. A satisfactory solution to
the saturation problem was found only recently,s’6 for the
class of model equilibria, like the Harris pinch, that possess
reflection symmetry around the reconnection surface. Fol-
lowing these results, the island width equation takes the form
dw/dt=n(A"—aw). Here 7 is the resistivity and « is a pa-
rameter that depends on the equilibrium current profile and
which can be computed precisely from the theory. In the
(A",w) plane, the stationary solution is represented by a
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straight line going through the origin. In the rest of this pa-
per, the plots showing the saturated island width as a func-
tion of the relevant physical parameter(s) are referred to as
bifurcation diagrams.

The nonlinear theory of classic tearing modes was later
extended to generic equilibria,7_11 using various techniques.
The outcome is a somewhat more complicated evolution
equation for the island width. Note that in the literature, the
evolution equation for the single degree of freedom given by
the island width, is commonly refereed to as the generalized
Rutherford’s equation (GRE). As such, there are several
versions of the GRE, depending on the included physical
effects.

A fundamental result, described in Refs. 12-16, is that
the GRE modified by the bootstrap current effect admits so-
lutions with finite size saturated islands also for negative
values of the linear stability parameter A’. Consequently, in a
linearly stable regime, a so-called seed island, generated for
instance by a sawtooth crash or the inhomogeneity of the
coils, can grow and saturate if its width exceeds a threshold
related to the plasma pressure gradient in the island region
(which is proportional to the bootstrap current).

When more refined and complete models are concerned,
the stability diagram shows a tangent bifurcation, so that for
A" <A] (with A, <0) a seed island is damped, whatever the
value of its initial width. In the classical models, this stabi-
lizing effect can be obtained by taking into account the par-
allel ion dynamics,”_19 finite perpendicular transport,15 or
the polarization current.”*”!

The introduction of the latter is particularly critical since
it is associated with the poloidal rotation of the magnetic
island. Indeed, the presence of pressure gradients implies that
a minimal description of the island would require the knowl-
edge of its rotation frequency, w, besides its width, w. There-
fore, even in the framework of the standard theories, a rela-
tion for the island width (GRE) is not sufficient to
completely describe the physical problem and must be
coupled to a relation that gives the rotation frequency. While
the first can be computed following reduction procedures
similar to the standard one, the latter represents an open the-
oretical issue. In this regard, it is useful to perform numerical
calculations that can provide the dependence of the phase of
the island with respect to time, and therefore w.

In this work we numerically investigate the saturation of
the Neoclassical Tearing Modes and we study the influence
of the different physical effects by comparing our results
with the theoretical models available in the literature. Fur-
thermore, we propose a new mechanism for the stabilization
of the NTMs associated with the effect of the island rotation
on the bootstrap current contribution. The new theory is able
to describe our numerical data better than the classic ap-
proach.

The paper is organized as follows: In Sec. II we describe
the model equations we have used and the numerical code
employed to solve them. Section III is dedicated to the dis-
cussion of the numerical results and their comparison with
the standard analytical predictions of the GRE. In Sec. IV the
mathematical procedure and the physical approximations
that lead to the GRE are described. The bootstrap current
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contribution to the GRE is discussed in Sec. V, where also an
alternative derivation is proposed. Finally, in Sec. VI, we
draw our conclusion.

Il. MODEL EQUATIONS AND NUMERICAL CODE

The physics of the NTMs can be described by a set of
four equations that regulate the evolution of the magnetic
flux, ¢, the electrostatic potential, ¢, the perturbed electron
density, n, and the ion velocity parallel to the magnetic field,
v. These equations are reminiscent of those obtained by
Hazeltine et al. in Ref. 22 and include a term that simulates
the effect of the bootstrap current. Furthermore, the model
takes into account electron diamagnetic effects that induce
island rotation, the coupling with the ion sound waves, and
allows for a finite Larmor radius. The electron temperature is
assumed constant and the ions cold. The model is valid in 2D
slab geometry and it is well suited to describe low- 3, large
aspect ratio magnetic fusion plasmas, where the confining
magnetic field along the tokamak toroidal direction domi-
nates over the other components,

B=Be +ViyXe, (1)

with By, the guiding field along the ignorable direction, con-
stant.

It is convenient to normalize all the variables in the
model by using quantities that are relevant for the physical
process we describe. In our convention, we assume that all
the transverse length scales with L, a typical equilibrium
length scale, and all the velocities with v,=(Br€)/V4mmn,,
the transverse Alfvén velocity. Here n,. is a typical density, m;
is the ion mass, and e=L,/L, is the slab aspect ratio, evalu-
ated with the numerical box sizes in the “radial” and “poloi-
dal” directions, x,y. Consequently, the transverse Alfvén
time is 7,=L/v,. A natural normalization of the fields is as
follows:

$=——¢, 2)
LBTUA

“ 1

= v, (3)
€LBT
d.

n= _léi (4)
2L en,

A d; v

U= Z_” (5)

Ua

where d;=c/w,;, w,=e\V4mn./m; is the ion plasma fre-
quency, and ,3=87THCT€/B%- is the square of the ratio between
the ion sound velocity and the Alfvén velocity. Therefore, the

plasma vorticity and parallel current are (see Ref. 22)

U=mU=Vé, (6)
. 4qL )

=2y = V2 (7)
"~ ecBr ¢
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The model includes several dissipative effects such as
the electrical resistivity, 7, the particle diffusivity, D, the
perpendicular ion viscosity, w, and the parallel viscosity, x.
The normalized dissipative parameters are

h= 0 ®)
fi= nu ©)
= m;’szx, (10)
b= A?ﬁ. (11)

In the following, we decompose the density in a perturbed
and equilibrium part, ﬁ:ﬁeq(x)+r71, where the equilibrium
is a function of x only. Note that, with this notation,
diteg/ di=—v /v ==V, and v, =—(cT/eBn )(dn.y/ dx) is the
electron diamagnetic velocity.

Thus, the normalized equations are

dU/dt =[J, ] + uV?U, (12)
dyidt=[n, )= v, d Py - n(J = Jog+J}), (13)
dnldt+v, d ¢y = p’[J, ] - Blv, ] + DV’n, (14)
dvldt=—[n, ] +v, d Yy + xV?v, (15)

where 7 is the perturbed part of the density. Note that the hat
notation as well as the subscript L, have been suppressed
for simplicity and all quantities henceforth are to be consid-
ered Mormalized. In Eq. (14) p=p,/L, p,=c,/Q with
¢,=\T,/m; the ion sound speed and ()=eB;/m;c measures
the ion gyrofrequency. The length reference scale is the
radial dimension of the numerical box over 27r. The operator
[A,B]=0,Ad,B—d,BI,A is the Poisson bracket, while d-/dt
=d-/dt+[ ¢, -] contains the EXB drift.

The equilibrium magnetic flux function, generated by the
equilibrium current density, is assumed to be t,=cos(x).
With this definition, J.q includes the equilibrium part of the
bootstrap current in addition to the equilibrium inductive cur-
rent. On the other hand, the perturbed part of the bootstrap
current is proportional to the radial derivative of the per-
turbed density, J,=c,dn, where ¢, sets the strength of the
bootstrap current. The equilibrium fields ¢, and v, are as-
sumed to be equal to zero.

The system of equations above has been solved numeri-
cally by employing a pseudospectral code which was already
used in a similar analysis (see Ref. 17). The integration box
has dimension L, X L, and is periodic in both directions. In
the numerical integration we have used 256 harmonics to
resolve the fields along the coordinate x and 8 in the y direc-
tion. The periodic boundary conditions impose that the
wavevector is given by the expression,
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FIG. 1. (Color online) Bifurcation diagram. The solid lines represent the
standard theoretical prediction of w,, the saturated island width, for three
different values of ¢, [cf. Eq. (17)]. The numerical data with ¢,=1,
c,=1.4, and ¢,=2 are represented with triangles, circles, and squares, re-
spectively. Full symbols show cases with 8=0.0025 while for the empty
symbols B=0. A case with ¢,=0 is added for comparison (crosses). The
dashed lines show the prediction of the new theory, where A, is calculated
using Eq. (26). The radial width of the numerical box is L,=2r.

k =mye, (16)

where my is an integer number.

In order to understand the behavior of actual NTMs, the
value of the parameters should be chosen to be as close as
possible to that of a typical tokamak. The saturation time of
the tearing mode is typically of the order of the resistive
time. So, to keep the computation time reasonably short, we
set 7= 1073. As a consequence, also the other coefficients are
rescaled so that their ratios are typical of a magnetically con-
fined plasma. Thus, in all the simulations we have pu=y=2
X 1074, D=5X%107, p=0.1, v,=0.1, 8=2.5%X 1073 or B=0.
Although the value of ¢, is formally related to the values of
B and p through the expression c,=2.44(B/ €)'/ p, we con-
sider it as a free parameter in order to study the bootstrap
current effect on the saturation process. We varied it in the
range 1=c,=2, which, however, are realistic values. Fi-
nally, by changing the aspect ratio, e=L,/L,, it is possible to
modify the drive of the instability that acts on the magnetic
islands. How to set A’ in the code deserves a special discus-
sion, that we give in Appendix A.

lll. BEHAVIOR OF THE SYSTEM AND DISCUSSION
OF THE STANDARD MODEL

In our analysis, we have investigated the stability dia-
gram of the system for three different values of the bootstrap
current parameter, c,=1, 1.4 and 2. The initial conditions of
each field at the beginning of our numerical campaign were
given by a stationary configuration including a finite size
saturated island and characterized by A’=0.405 and no boot-
strap current, ¢,=0 (cf. the cross in Fig. 1). Then, the system
was taken to a new stability branch by increasing the value
of the bootstrap current (by taking a finite value for ¢;) and
by decreasing the linear stability parameter (by increasing e,
as explained in Appendix A).

Without the effect of the bootstrap current and for the set
of parameters used, a small reduction of A" from the starting
point should lead to the loss of the magnetic island through
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the (B-stabilization described recently in Ref. 17. Therefore,
our results show that, when ¢, is large enough, it is possible
to have a nonlinearly sustained island even where the parallel
compressibility would lead to a stabilization (linear and non-
linear).

Once the new stable branch was reached, we gradually
decreased the linear stability parameter until the system en-
tered the linearly stable region, A’ <0. Thus, in our simula-
tions, the magnetic island is sustained by the bootstrap cur-
rent even for negative values of A’, in agreement with the
theoretical predictions of the nonlinear behavior of the
system.lzf16 However, the bootstrap current destabilization
can maintain nonlinearly a finite size island only as long as
the absolute value of the (negative) linear stability parameter
does not exceed a threshold, Aé, represented by a tangent
bifurcation on the stability diagram. Despite the many works
devoted to this issue, how to calculate the value of this
threshold and the physical mechanisms involved in its deter-
mination, are still unclear from a theoretical point of view.
Indeed, several models dealing with this problem have been
investigated, most of them focusing on the effect of either
cross-field transport or the polarization current.

The three values of ¢, were scanned with the same
modus operandi, in order to obtain a collection of informa-
tion useful to scale the behavior of the system with the effect
of the bootstrap current. In Fig. 1 we represent the numerical
data for ¢,=1 with triangles, ¢, =1.4 with circles, and ¢,=2
with squares. The shape of the stability diagram for the three
cases treated is similar, while an increase of ¢, with all the
other parameters fixed, corresponds to a more unstable con-
figuration and, therefore, to a bigger magnetic island. In or-
der to verify the analytic theory developed in Sec. V we have
also performed simulations with B=0 (represented with
empty triangles and circles for ¢,=1 and c¢,=1.4, respec-
tively).

The most complete theoretical prediction of the system’s
behavior, relevant for the case treated here, can be obtained
by including in the GRE the terms obtained in Refs. 5, 6, 12,
13, 15, and 21,

A=A +A,+4,

=—0.41bw —6.34c,v, +A,wo,...), (17)

w
w?+wh
where b is the equilibrium current shape factor
[6=Jcq(0)"/Jeq(0)], wy=1.8w, is defined in Ref. 15 and cor-
responds to the perpendicular transport effect, w,=kv,. The
term called A, corresponds to the effect of the equilibrium
current,j’6 A, is due to the bootstrap currf:nt,12’13’15 while the
last term, Ap, represents the contribution of the polarization
current and depends on the structure of the plasma velocity
field?**! through the island width, rotation frequency, and the
plasma parameters.

We remark that the rotation frequency, w, in the polar-
ization term of Eq. (17) should be calculated self-
consistently. However, a reliable theoretical expression for
this quantity is not available in the literature, apart for cases
in certain limits. In all our simulations, the rotation fre-
quency of the island is slow, O(0.lw,), due to the almost
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complete flattening of the total density profile in the region
inside the separatrix. This effect is also predicted in Refs. 21
and 23, where the w relevant for our simulations should be
exactly zero, since we have no electron viscosity. Therefore,
in our comparison with the theory, we have neglected the
polarization current effect.

The bootstrap current term in Eq. (17) requires particular
attention since it applies only when the dominant mechanism
for the evolution of the density is the diffusive transport and
the inertial effects (such as the island rotation) can be
neglected.15 This is equivalent to assume a density conserva-
tion in the form,

Dy[(no 1), /] +Dvintot ~0, (18)

where n,=n-v,x is the total density minus its value in
x=0. The first term on the left-hand side of Eq. (18) gives the
relevant parallel transport (D is a parallel diffusion coeffi-
cient), while the second gives the perpendicular transport.
Note that [(r,, ), 1=V n is the parallel Laplacian of the
density. According to Ref. 15, the term w, used in Eq. (17) is
proportional to (D/D;)"4.

We show now that our model contains transport physics
such as that of Eq. (18) but it also includes other additional
effects that modify the bootstrap current term, as discussed in
the next section. While the perpendicular particle diffusion is
transparent in our equations, the presence of parallel trans-
port is much less obvious. The identification of the physics
of the parallel diffusion is of great importance, since it in-
duces the flattening of the density profile in the island region,
thus fixing the poloidal rotation frequency of the island. The
systems (12)—(15) contain two flattening mechanism, dis-
cussed below.

The first implicit parallel transport mechanism was dis-
cussed by Ottaviani et al. in Ref. 17. Note that, assuming
negligible plasma flow, from the dominant balance in
Eq. (13) the current density can be approximated by
J=n[ny. ). By substituting the thus-obtained expres-
sions for J in Eq. (14) we find a term that is equivalent to
the first term in Eq. (18), with D,=p?/ 7. The second mecha-
nism is related to the presence of ion sound waves in the
system which lead to an enhanced parallel transport when
w>p*Ly/L,=pv,/ \/73‘]9’24 The analytic treatment of this
effect is more delicate than that of the previous case and
we will address it here only qualitatively. Assuming again
small inertial effects, from Eq. (15) we have that
v = (xk?)"'[nr> /] Substituting the previous expression in
Eq. (14) we can estimate that D=~ Bw?/x, where the island
width was taken as the characteristic transverse length of the
perturbations. The total parallel diffusion coefficient is pro-
duced by the simultaneous occurrence of the two mecha-
nisms described above, so that Dy=Dj;+D),. As a conse-
quence, in our simulations w;=0.19 when $=0.0025 and
w,=0.23 when B=0. Note that this corresponds to a ratio of
parallel to cross-field particle transport of the order of 10°.

As shown in Fig. 1, the analytic predictions given by the
GRE reduced in this way, are in good agreement with our
numerical results for a wide range of A’. On the other hand,
the theoretical model shows several points of weakness. In
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particular, it is not very accurate for large values of w and ¢,
and, most importantly, it fails to predict the correct position
of the tangent bifurcation (see Fig. 1).

The lack of precision for large w is easily justified by the
observation that the GRE is obtained by employing a pertur-
bative expansion in the island width. Thus, if the island be-
comes too big, w/L==1, the nonlinear solution is no longer
valid. Finite island size effects should be taken into account
and an extra term, proportional to w3, should be added in Eq.
(17). Also, the discrepancy between theory and numerical
results when c,, is large can be explained by a limit of the
model. Indeed, a key assumption in the treatment of the non-
linear systems (12)—(15) is that the constant-¢ approximation
remains valid in the nonlinear regime as well (see Ref. 3).
This implies that the GRE is valid as long as |A'w|<1.
When the bootstrap current parameter is too large, the satu-
rated island width becomes of the order of A’~! and the
constant-¢ approximation is no longer correct.

The problem of the accuracy of the prediction of the
tangent bifurcation is more complicated. Within the theoret-
ical model used, Eq. (17), the tangent bifurcation is gener-
ated by the effect of the cross-field transport in the bootstrap
current term and by the polarization current term. However,
the former effect becomes relevant for only very small is-
lands, w~wy,, while the latter should go exactly to zero,
following the present day theories. This disagreement be-
tween numerical data and standard predictions requires a
more detailed investigation of the validity of the assumptions
employed in the derivation of Eq. (17). Our results also show
that small islands present a rotation frequency which can
become as large as 30% of the electron diamagnetic fre-
quency before the island collapses at the tangent bifurcation.
This suggests that new inertial effects could be responsible
for the lack of precision of the standard model close to the
critical point. In the next sections we will describe the ana-
lytical technique used to obtain the GRE and we will propose
an alternative theoretical explanation to cure the observed
discrepancy based on the effect of the island rotation on A,.

IV. THEORETICAL ANALYSIS

In the following we shortly describe the method to ob-
tain the GRE. The standard procedure requires the calcula-
tion of the total nonlinear current, which can be related to the
linear stability parameter through the expression3

A= ()7 f ) dx5f> d(ey)J cos(ey), (19)

where zz is the value of the fundamental (n,=1) eigenfunc-
tion of ¢ calculated in x=0. In order to obtain the nonlinear
current, J, we need to reduce the equations of our system.

The saturated configurations are in steady state, which
implies that all the time derivatives can be set to zero in the
island frame of reference. Then, the magnetic flux surfaces
average of Eq. (13) gives

<J>¢,= <Jeq>¢_ <Jb>¢, (20)

which is the part of the current that depends only on
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FIG. 2. (Color online) Numerical asymptotic matching of A, (solid curve),
A, (dashed-dotted curve), and A, (dotted curve) for ¢,=1.4, B=0. A" is
—0.7 for the left plot and —0.53 for the right plot. The dashed curves indicate
the theoretical values of A, and A calculated using Eq. (17).

P [()y=Q2m) " $d(ey) | mconst]- We proceed by observing
that from Eq. (13) we have for small resistivity,

N = ¢+ H(), (21)

where H(i) is an unknown function that can be obtained by
solving the higher order transport equations (for all the de-
tails, see Ref. 21). Here ¢ represents the ion stream function
(or equivalently the electrostatic potential) in the island
frame of reference. Substituting Eq. (21) in Eq. (14) and
integrating over ¢, we find

J=1(¢)+[Lf)<p—ﬁzv, (22)
P P

where the prime indicates derivation with respect to . For
small x, Eq. (15) gives v=+G(¢), where G(¢) is due to the
integration and can be found by solving the transport equa-
tions. From Egs. (20) and (22) we find that

K1)y= U= Ut 2Dy = (o

- §[G(¢><1>¢— (Gle)y). (23)

We call polarization current the total current minus its flux
surface average, i.e., Jy=J—(J),/(1),, and it is given by the
last four terms on the right-hand side of Eq. (23). Replacing
the previous equation into Eq. (19), we obtain the GRE.

V. DISCUSSION OF THE BOOTSTRAP
AND POLARIZATION CURRENT EFFECTS

In this section we discuss the last two terms in Eq. (17)
and propose a new expression for A,. In order to identify the
origin of the observed discrepancy between our numerical
results and the standard predictions, it is useful to isolate and
analyze the single contributions to the GRE. This can be
done by numerically evaluating the different currents in Eq.
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(23), substituting the outcome in Eq. (19), and therefore per-
forming a “numerical asymptotic matching,” the results of
which are A, A,, and A, These quantities and their theo-
retical counterparts, predicted with Eq. (17) for c,=1.4,
B=0, are plotted in Fig. 2 for two different values of A’
(0.7 and —0.53). Our analysis confirms that, for large is-
lands, the standard models accurately describe the equilib-
rium and bootstrap effect, while the polarization current term
is small and therefore negligible compared to the others. At
the same time, for smaller and faster islands, we find that
while the theoretical A, agrees with the numerical data and
A, can still be neglected, the predicted A, is larger then the
actual numerical value. This is a clear indication that the
bootstrap term calculated in Refs. 12, 13, 15, and 16 is not
adequate to describe the complex behavior of small rotating
islands. Furthermore, this comparison rules out the possibil-
ity that the polarization term can significantly modify the
position of the tangent bifurcation and confirms that, in first
approximation, it is correct to neglect it.

di{_ F ox

c, | 0
Co= (Ve Vgt T =) b{—“’} - p’é—ﬁ{c@)}

di ”
C
(Vo) + 5o} + %”{5}

where C,=C,/D,

BORCraSY
-

ty=(o -

and O is a step function that takes the value O inside the
separatrix and 1 outside. As a standard approximation, when
the island is small with respect to a macroscopic scale, we
will take |Vyi>=x2.

2 v
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These observations justify a more detailed investigation
of the bootstrap term and the inclusion of inertial effects in
the calculation. We remark that Jh:cbo?xn:cb[v*+&xcp
+ 0. (dH /d:ﬂ), where the density perturbation has been ex-
pressed using Eq. (21). As a first step, we calculate the pro-
file function H, following the procedure described in Ref. 21.
This can be done by averaging Eq. (14) over the magnetic
flux surfaces, observing that [¢,n,,]=V - (n,,,v) and using the
property (V-I') ,=d/dy<T"- V), We obtain

(el ¢]>¢ +D(Vny - V¢>¢ =Cy,

where the constant C; can be determined by applying the
correct boundary conditions as shown in Appendix B. Equa-
tion (24) describes the same density transport physics as Eq.
(18) and, in addition, includes convection. The first term on
the left-hand side of the previous equation can be evaluated
by taking the flux surface average of Ohm’s law multiplied
by ¢, (@ln ¥ y=mMe(J=Jeq+J,)), and using Eq. (23) to
evaluate the current. Thus, we find

(24)

0, (25)

For sake of simplicity, we assume that ¢=-vx in the
island frame of reference, with v =w/k. This is equivalent to
neglecting the plasma response to the presence of the island
in favor of the flow generated by the mode rotation. With this
ansatz the magnetic flux averages can be calculated in terms
of elliptic integrals. Furthermore, in the analytic treatment
we take 8=0, thus simplifying the solution. An extension to
finite B will be the subject of future work. After some alge-
bra (detailed in Appendix C) we find that

v W
v, D16

v

where Q:(l—(ﬂ)/l?/, K=K[2,(Q+1)], and E=E[2/(Q+1)]
are elliptic integrals of the first and second kind.

To discuss the previous expression, without loss of gen-
erality, we use the standard boundary condition applied in
Refs. 12-16, where the particle flux matches the equilibrium

— +
[ 2 |:(1+Q)E—QK:| Uy Uy
O+1 K

(26)

value for large x, which implies C,=v,.. The extension to the
periodic boundary domain associated with our numerical
box, where this approximation is no longer valid, and the
calculation of the relevant form of C, are discussed in details
in Appendix B. First of all, note that once the physical pa-
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viv,

FIG. 3. (Color online) The curve represents the coefficient that multiplies
v,c,/w in Eq. (26) as a function of v/v,. For the case shown c,=1, w=1
and C,=v,.

rameters are fixed, the right-hand side of Eq. (26) is a com-
plicated function of w and of v/v,. In Fig. 3 we show the
behavior of the numerical value multiplying c,v./w in Eq.
(26) as a function of the rotation frequency for ¢,=1.4 and
w=1 (the dependency on w and ¢, is very weak). We em-
phasize that, even for islands with a relatively slow rotation,
the bootstrap term can be reduced by a significant fraction.
For example, when v is 20% of the diamagnetic velocity, A,
decreases by 25%.

Finally, we show that our solution contains the standard
non inertial limit. When ¢ is negligible (i.e., v/v, small), the
expressions (21) and (25) reduce to

dﬂ_(ﬂn_) _1
d‘ﬁ ﬂlﬂ standard W

which is equivalent to Eq. (41) in Ref. 15 for the standard
boundary conditions C,=v,,. Similarly, Eq. (26) becomes

2 ’7TC2

— 27
QO+1 E° @7)

U.Cp
Ay =-634a(w)—. (28)
w

Here a(w)=C,/v,, is a correction factor expressing the fact
that for the periodic domain associated with our numerical
box, the boundary conditions for Eq. (24) must be different
from those in Refs. 12—-16. The mathematical details of the
derivation of a, which can be obtained through a fully ana-
lytical procedure, are given in Appendix B. For w<1 we
have that «— 1 and we retrieve the standard limit of Refs.
12-16, that does not include neither inertial nor perpendicu-
lar diffusivity effects (introduced by Fitzpatrick by means of
a Padé approximation).

VI. CONCLUSIONS

In the last 15 years a strong theoretical effort has been
spent to tackle the problem of the NTM evolution and satu-
ration. To achieve an analytical solution, all the models

Phys. Plasmas 15, 042104 (2008)

developed rely on simplified physics and on strong assump-
tions. On the other hand, by approaching the question with
numerical tools it is possible to solve the complete set of
equations. Then, a systematic numerical investigation can
shed some light on the validity of each theory and give a
more global view of the behavior of the system.

Our results show a good agreement with the classical
analytical curves obtained by solving the standard GRE only
for slowly rotating large islands. In particular, it is found that
to obtain reliable predictions for the saturated island size it is
sufficient to take into account the effects of the shape of the
equilibrium current density and of the bootstrap current. The
effect of the polarization current can be neglected according
both to the theory, which gives a vanishing w, and to the
simulations. However, the standard GRE, Eq. (17), is a good
approximation only far from the tangent bifurcation, since in
the neighborhood of the critical point the bootstrap term
takes a different form with respect to those given in Refs.
12-16.

Indeed, our simulations yield that a prediction based on
the standard generalized Rutherford equation is not able to
capture the position of the tangent bifurcation in the stability
diagram, which defines the threshold for the nonlinear desta-
bilization of the mode. We propose that, in the model under
study, and for the parameter range under consideration, the
cause of this departure from the standard analytic theory is
due to the effect of the island rotation that reduces the desta-
bilizing effect of the bootstrap current term.

Since our study has been carried out in a simplified slab
geometry and with certain physical parameters constrained
by numerics, it is useful to discuss to what extent our results
may be extrapolated to a more realistic situation. As already
noted, in our study, the ratio of parallel to cross-field particle
transport is of the order of 10°. In an actual machine, this
ratio would be substantially higher, when evaluated within
collisional theory; this would implies a reduction of the seed
island w, of a couple of orders of magnitude. As a conse-
quence, the effect of the polarization current, which in slab
geometry grows rapidly when the island width is comparable
to the ion sound Larmor radius, could become comparable to
the effect of the island rotation frequency on the bootstrap
term. We also remark that in toroidal geometry, the polariza-
tion current effect could be further enhanced by the fact that
it scales like the square of the banana orbit width, w,, rather
then the square of the ion sound Larmor radius. Since
wy/ py=q(T;/T,) "2/ €23 where g is the safety factor, T; and
T, the ion and electron temperatures and € is the local in-
verse aspect ratio, we expect this enhancement to be of one—
two orders of magnitude. However, this modification may
not significantly affect our results since, on the basis of the
simulations presented in this paper, the polarization current
effect is typically three—four orders of magnitude smaller
than the bootstrap current effect (see Fig. 2). A further un-
certainty is due to the fact that perpendicular transport in a
realistic plasma is likely due to turbulence. This may justify
the use of enhanced perpendicular transport coefficients, as
long as the width of the island is larger than the characteristic
scale length of the turbulent eddies (see Ref. 26, and refer-
ences therein). This scale length would be typically of the
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order of a few Larmor radii. On the other hand, the very
existence of a sufficiently large island, with nearly flat gra-
dients, would alter the nature of the turbulence, which relies
on those gradients as a driving agent. Little information is
known in this respect, and this makes it difficult to evaluate
how much the perpendicular transport coefficients should be
increased to emulate a more realistic situation. In order to
satisfactorily answer this question it is probably necessary to
carry out multiscale simulations in 3D geometry with very
long integration times that would cover all the necessary
spatial and time scales, a daunting task. In the end, how
much the rotation of the island can affect the bootstrap cur-
rent drive of neoclassical tearing modes may depend on the
nature of the perpendicular transport mechanism.
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APPENDIX A: BREAKING OF THE SYMMETRY
BY THE BOOTSTRAP CURRENT
AND CALCULATION OF A’

We first emphasize that the equilibrium used in
our simulations generates three reconnecting surfaces, at
x=0, = m, where the tearing mode develops and the associ-
ated magnetic islands can grow. If the islands have a small
width with respect to L, it is reasonable to assume that they
do not directly interfere with each other’s evolution. That
means that each island can be considered as a single isolated
entity, and its growth and saturation are determined only by
the parameters and by the local value of A’. However, this
assumption does not imply that the perturbations are com-
pletely magnetically decoupled. Indeed, while the physics of
the nonlinear layers around the reconnecting surfaces is un-

altered, the linear outer solution between the islands, Jom,
must be calculated by using self-consistent boundary condi-
tions, and is thus dependent on the island widths. We remark

that I,Zout is the fundamental component of the Fourier de-
composition of the perturbed magnetic flux. It follows that
the central island (at x=0) is affected by the edge islands (at
x= % 17) because the presence of the latter contributes to the
definition of the boundary conditions at x= * 7 of the equa-

tion for .

o

dx? (A1)

(K = 1)y =0,

which is the linearized version of Eq. (12). Due to the par-
ticular choice of the equilibrium, it is possible to analytically
solve the previous equation, that, for 0 =x =, gives

You = A cos[k(x — 7/2)] + B sin[k(x — 7/2)],
(A2)

Phys. Plasmas 15, 042104 (2008)

You=A" cosh[k(x — 7/2)]+ B’ sinh[k(x — 7/2)],
(A3)

where A, B, A’, and B’ are constants of integration.
The complete solution, with the constant of integration
determined, can be obtained by solving a four-equation

system. In particular, if we take the case k< 0, we have (for
k>0 the calculation follows similar lines)

.= A cos[k(m/2)] - B sin[k(m/2)], (A4)
¥, = A cos[k(m/2)] + B sin[k(m/2)], (A5)
. = Ak sin[k(7/2)] + Bk cos[k(7/2)], (A6)
. = — Ak sin[k(7/2)] + Bk cos[k(/2)], (A7)

where a prime represents a derivative with respect to x, i,

and (Ze are the values of the fundamental eigenfunction of the
perturbed magnetic flux for x=0 (the central island), and for
x= (the edge island), respectively. We emphasize that, in
order to obtain A and B, two equations are not sufficient.
Indeed, the values of (Zc,e:w?,g/ 16 (valid for this equilib-
rium) are related to the magnetic island widths, which are not
known a priori. They can be calculated by employing a
GRE-like approach, i.e., by using the expression of the non-
linear current density in the edge and central boundary layer

to evaluate Jze
The nonlinear current is easily obtained by averaging
Eq. (13) over the magnetic flux surfaces,

T= o) + h<‘;—x> : n<‘;—‘f> v,

where J,, is due to the fact that the inertia is taken into ac-
count in Eq. (12), [J, ] # 0, and is related to the polarization
current effect. We are reminded that the averaging operator
can annihilate the Poisson bracket that contains the magnetic
flux, ([f,¢])=0, where f is a periodic function of &
The definition of this average is given, for example, in
Ref. 5. Finally, from Ampere’s law we have that
zZé,e=O.5 m[JZdx' $dE cos EJ(x', )], where the sub-
scripts ¢ and e indicate that the integral is computed around
the central or edge nonlinear boundary layers, respectively.
The infinity symbol means that the limit of integration is far
from the reconnecting surface (the integrand goes to zero
quickly outside the boundary layers).

As a first approximation, we assume that the polarization
current effect is negligible and we use a stationary magnetic
flux, since we are interested in the saturation. Consequently,
we have that

(A8)
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~ 1 *
L = —[f dx’' % dé cos &cos x)]
‘ 2m - c.e
3 f "4 ,3gd n

+ 2l ) X &cos & Pn

The integrals in the above equation can be computed numeri-
cally. Note that the second integral function in Eq. (A9) takes
the same value either in x= * 77 and in x=0. Conversely, the
first integral evaluated on the central and edge reconnecting
surfaces, changes sign, as can be understood by analyzing
the integrand. Therefore, we have

=

(A9)

ce

U= Ceg)” + csCo”, (A10)

== Cogl)* + c,CpUl”, (A11)

where C.q=0.82 and C,=-0.7%,, are the result of the nu-
merical integration. To calculate C, we made use of the the-
oretical perturbed density profile given in Ref. 15, with
w,.=0.

It is useful to introduce two alternative variables for the
perturbed magnetic flux, &, = \/iﬁ \/Z and o_= \/Ee— \/ZC
With this notation, substituting Eqs. (A10) and (All) in the
systems (A4)—(A7), we have

- 8 +388
(& + &)F tan[K(m/2)] = ceq% —2¢,Cy6.,
(A12)
L 8 +386.
5,8k cotlk(m/2)] = - ceq‘JrT* +e,Cd.. (A13)

Finally, if we multiply Egs. (A12) and (A13), we obtain
—83,0.(8} + k> =C2,8,8.(8, +38) (8 +38))
+16¢,C; 8,8 — 4¢,CyCef( 8}
+66.5° + 6). (A14)

Solving Egs. (A12) and (A13) allows us to obtain the
values of the magnetic island widths on the two reconnecting
surfaces, while Eq. (A14) provides useful information on the
final state of the two islands. For example, in the limit
¢,=0, we find that 6_=0 is the only physical solution of the
system. Indeed, if 6_# 0 the values of the magnetic island
widths would be imaginary. As a consequence, when the
bootstrap current is not present, the island on the central
reconnecting surface has the same width as the one on the
edge resonant surface (6_=0), B=0 and the island width is
given by the usual analytic expression,

2k tan[k(7/2)] = Coy ., (A15)

which is equivalent to A’=0.41w (see Refs. 5 and 6).

Thus, by changing the aspect ratio, e=L,/L,, it is pos-
sible to modify the drive of the instability that acts on the
magnetic islands [cf. Eq. (16)]. The situation becomes more
complex in the presence of the bootstrap current effect.
When ¢, #0 a symmetry breaking term is introduced in Eq.
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FIG. 4. Plot of the dependence of a with respect to the island width,w, Eq.
(B4).

(A14). Consequently, the 5_=0 is no longer a solution of the
system and the island on the edge is typically smaller than
the island in the central resonance. Therefore, to determine
the outer magnetic flux and the island widths the solution of
the systems (A12) and (A13) is required. Thus, we have
proved that there is a magnetic connection between the cen-
tral and edge resonances, although the width of each island is
fixed only by the local value of A’.

In our simulations, we have changed the aspect ratio, ¢,
and evaluated a posteriori the linear stability parameter
through a best fit analysis of the numerical results.

Finally, we remark that the polarization current term, the
time dependent term, or any other term with an integrand
that changes its sign on the two resonances, would behave
like the first term on the right-hand side of Eq. (A9). As a
consequence, they would not break the symmetry and
0_=0 would remain a solution of the system.

APPENDIX B: DENSITY PROFILE WITH PERIODIC
BOUNDARY CONDITIONS

In this Appendix we evaluate the effect of periodic
boundary conditions on the calculation of the bootstrap cur-
rent term in the Generalized Rutherford equation.

In the standard theory,lz’m’ls’16 the integration constant
in Eq. (25) is obtained by imposing that the particle flux far
from the resonant surface matches the equilibrium one,
I o= Oxlleq=—V,, at x— 0. Similarly, we have that d,¢p=-v
at x—%. As dyH=3d,(n—¢)/d,i, the right-hand side of Eq.
(25) has to go like (v, —v)/x asymptotically. Following the
approximations of the text, ¢=~-vx and B8=0, we can ex-
press Eq. (25) in terms of elliptic functions, as described in
Appendix C. The asymptotic behavior of the right-hand side
of Eq. (25) is therefore given by the following expression:

lim— = —>—, (B1)

from which we deduce that C,=v,,.
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The standard boundary conditions do not accurately de-
scribe the problem when dealing with a periodic domain.
Indeed, in this case magnetic islands grow around the edge
resonances at x=* 7 and inside their separatrices, where
0=0,~87%/ wf, the density is equal to the equilibrium
value, n,(Q,)= = ng (x=0) 7. The density in the central is-
land is approximately constant and hence on the separatrix,
where (=1, we have that n,,(Q=1)=0 [remember that we
assume, without loss of generality, that n¢,(x=0)=0]. There-

Phys. Plasmas 15, 042104 (2008)

fore, in order to find the integration constant C, we must
satisfy the relation,

2

nx=m - ex=m=-m,-v)
w dH(Q)

Qe
[
1 dy

where dH/d is given again in Appendix C. As a result, we
have

- E s (BZ)

[ Q+1)E |
Q-—
Q, 2 K
["aof \f
1 Q+1 ( #1)
E-B/|E-——
C2 U Bz 4 K
— = — 4 —B3 = = s (B3)
UV, U, Q, 2 1 Q, 2 1
[“an| |/ [“an| |/
I Q+1 ( Hl) I Q+1 ( 7#1)
E_Bl E___ E—Bl E—__
4 K | 4K/ |
[
where X2
(x) < —?
2 x2 x3 Y 2
B(- )5 ’ {feq}={1}‘{3}=” <5>[ W, )
de
— (=-v{1}=0, (C2)
Bz=<1—vi>1;6, {fﬂ} v
' (x);
and {o}=-vix}= vz<<x2>¢,— 6‘2) (C3)
nvw ’
" Duv, 16 awl ( @)
{&x}__{X}_v <x2>¢—<1>¢ , (C4)

It is interesting to evaluate the limit of Eq. (B3) for
negligible rotation velocity,

8 VE

lim9 =alw)= , (B4)

v—=0U

82 /w?
wJ dQ(Q +1)"12E1
1

which is a growing function of w and goes to 1 when
w—0, as can be seen in Fig. 4.

APPENDIX C: CALCULATION OF A’

In this Appendix we give the mathematical details of the
calculation of the expression for A, given in Eq. (26). Fol-
lowing the text, we assume that 8=0 and ¢@=-vx. The

T Dy
former approximation implies {- - -}=-v|{x-+-),~ —m, |- As

a consequence, we can write the terms within curly brackets
in Eq. (25) as

where the first two terms of the local Taylor expansion of the
equilibrium current density have been used in Eq. (Cl),

while Eq. (C4) is correct within the constant-zZ approxima-
tion. All the magnetic flux surface averages in Eqgs.
(C1)—(C4) can be cast in terms of elliptic integrals
E=E[2,(Q+1)] and K=K[2/(Q+1)],

-
4\!’2 K
1),=— \ C5
(1)y W Jos1 (Cs)
(=1, (C6)
W\E —
(P)y=——EVQ+1, (C7)
21T
2
(), = %Q (C8)
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These approximations lead to a well defined analytical
expression for H',

dH T VE
oo ===
dp  Fw[NQ+1

G v sz_z[ﬂ (9+1>E]
v v v,D16 K
* * * . o (C9)
v 7 Us v 1
E-——|cu,+5— ||E-—=
v.D p U, 4 K

Equation (C9) can be used to evaluate the density profile
and therefore the bootstrap current contribution to Eq. (23),

Iyl (Dy=c,(v+H'/(1),). After a straightforward
change of variables, Eq. (19) can be written as
A’=4[7,dQJ(cos(ey)),. Observing that
1+Q)E-QK
(cos(ey))y ( ) (10)

1, K ’

we finally retrieve Eq. (26).
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