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The interaction between turbulence and a nonlinear tearing mode is investigated numerically using
a 2D electrostatic model. Turbulence is found to cause transitions between the different roots for the
propagation velocity of the mode. The transitions take the mode towards roots with slower
propagation that are characterized by a locally flattened density profile. For sufficiently large islands
the transition reduces the drive for the tearing mode. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2917915�

The nonlinear evolution of the tearing mode is of interest
in many contexts. In the magnetotail1,2 and the solar corona,3

the nonlinear tearing mode may be viewed as a model for the
predisruptive evolution of plasmoids and flux ropes. In toka-
maks, the neoclassical tearing mode gives rise to magnetic
islands that degrade confinement.4 In stellarators, by con-
trast, externally controlled magnetic islands are used as di-
vertors to control edge transport and improve confinement.5

Theoretical investigations of the nonlinear tearing mode
have often relied on the assumption that plasma turbulence
can be modeled by using anomalous transport coefficients. In
many cases of interest, however, the characteristic size of
turbulent eddies is comparable to the width of the magnetic
island so that this assumption is questionable.6 Furthermore,
magnetic islands are known to locally flatten the temperature
and density gradients that provide the drive for the
turbulence.7,8 Investigations of the effects of turbulence on
tearing modes found that the turbulence causes a diffusive
broadening of the current channel9 and gives rise to negative
viscosity and to the growth of zonal flows.10–13 For a nonlin-
ear tearing mode, such zonal flows will affect mode growth
through the polarization current.14

In the present paper we examine self-consistently the
mutual interaction of an island with turbulence. Our analysis
exploits the fact that for an ordinary nonlinear tearing
mode,15,16 the growth rate ��� /w is small compared to the
characteristic frequency �* of the turbulent fluctuations.
Here � is the resistivity, �� is the standard tearing mode
stability parameter, w is the island width, and �*=v*ky is the
diamagnetic frequency, ky is the island poloidal wave num-
ber, and v*=cTe / �eBzLn� �e is the electric charge, Te is the
constant electron temperature, c is the speed of light�. In a
frame moving with the island, the electromagnetic induction
associated with the tearing mode is then negligible. The tur-
bulent electromagnetic induction is also negligible whenever

�̂=�Ls
2 /Ln

2�1, where � is the ratio of kinetic to magnetic
pressures and Ln, Ls are the density and magnetic shear
lengths, respectively.6 Under the stated conditions, the dy-
namics is thus approximately electrostatic in the island’s
frame. A distinguishing feature of our electrostatic simula-
tions is that we allow the propagation velocity of the island
to evolve dynamically, and we infer the growth or decay of

the nonlinear tearing mode from the spatial integral of the
component of the current-density that is in phase with the
island.

We carry out our investigation in a 2D slab configuration
��z=0�. The magnetic field takes the form B=Bzez+ez���,
where Bz is the guide field and the transverse flux � is taken

to have the “constant-�̃” form15 �=x2 /2+ �̃ cos y. This mag-

netic field exhibits an island with full width w=4�̃1/2. We use
the Hasegawa–Wakatani model17 consisting of the electron
continuity equation describing the conservation of density,
n, and an equation for the evolution of plasma vorticity,
U=�2�,

�n/�t + v · �n = C−1��
2�n − �� + D�2n , �1�

�U/�t + v · �U = C−1��
2�n − �� + ��2U , �2�

where ��F=B ·�F and v=ez���. The time is normalized
with respect to the drift-time �*

−1, the transverse coordinate x
and y are normalized to 	s and ky

−1, respectively, where
ky	s�1, B is normalized to 	sBy0� where the prime denotes
derivation with respect to x, the velocities to v*, and the
density to 	sn0�. Here 	s=cs /�ci, where cs=�Te /mi is the ion-
sound speed and �ci is the ion cyclotron frequency. The
time-scale separation argument presented above, together
with the choice of a frame of reference moving with the
island, justifies the neglect of the electromagnetic induction
in Ohm’s law. The parameters D and � are the particle
diffusion coefficient and the ion viscosity, respectively, and
C=c2��8
�−1	s

−2�*
−1��Ls /Ln�2 is the normalized resistivity.

The model equations �1� and �2� have previously been
used by Scott et al.7 to investigate resistive drift wave turbu-
lence in the absence of an island �w=0�. These authors have
shown that the dynamics exhibits the following limiting be-
haviors. In the inner region, k��C1/2, collisional friction re-
stricts parallel electron flow so that the electrons are essen-
tially incompressible. In this region the turbulence is
hydrodynamic in nature �i.e., described by the 2D Navier–
Stokes model�. In the outer region �k��C1/2�, by contrast,
resistivity plays a negligible role and parallel force balance
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leads to a Boltzmann response of the density to electrostatic
fluctuations, ñ= �̃. In the outer region Eqs. �1� and �2� reduce
to the modified Hasegawa–Mima model.18

An important property of Eqs. �1� and �2� is that
�=n=x is an exact solution representing an island traveling
at the electron diamagnetic velocity, i.e., an island at rest in
the electron fluid. We will refer to this solution as the uni-
versal root since it is valid for arbitrary values of the param-
eters. Numerical simulations and analytic calculations as-
suming quiescent conditions show that there are other roots
to the equilibrium problem.8,19

We complete Eqs. �1� and �2� with the following bound-
ary conditions. We keep the density at the edge fixed,
n��lx�= � lx, and require the vorticity to vanish, U��lx�=0.
For ky	s�1, the latter condition approximates the require-
ment that the diffusive momentum flux through the edge
vanish, U��x

2�=vy���lx��0, corresponding to a freely
propagating island. Lastly, we fix the electrostatic potential at
the edge according to ���lx�= �ulx, where u is the phase
velocity of the island in the frame where the background
electric field vanishes. This boundary condition approxi-
mates the condition vy�lx�=�x��lx�=−u provided that w� lx.
Note that the minus sign reflects the fact that in the frame
moving with the island the plasma flow is opposite to the
direction of the island in the frame where the plasma is at
rest.

The choice of boundary conditions raises the question of
how to determine the phase velocity u of the nonlinear tear-
ing mode. To answer this question, consider the azimuthal
�êy� component of the momentum balance equation,

��t + v · ��vy = − �yn − J�̃ sin y + ��2vy ,

where vy =�x� and J=�2� / �̂ is the plasma current along ez.
Integrating this equation over the simulation volume and us-
ing the boundary conditions described above, we find after
some integrations by parts

�tu = Fy�u,�̃� , �3�

where Fy is the azimuthal electromagnetic force acting on
the fluid in the island region,

Fy�u,�̃� �
�̃

4
lx
	

−lx

lx

dx	
−





dyJ�x,y ;u,�̃�sin y .

For consistency with our assumption of steady state, we must

determine the island velocity so that Fy�u , �̃�=0, a condition
that indicates force balance.

In addition to driving zonal flows that contribute to the
modification of the island propagation velocity, the turbulent
fluctuations also drive parallel polarization currents that af-
fect the island amplitude. Their effect on the evolution of w
is governed by the “generalized Rutherford equation,”4,15

0.823

C

dw

dt
= ���w� + �pol�u,w� , �4�

obtained by matching the perturbed magnetic field B̃y at the
boundary of the simulation domain. The left-hand side of this
equation represents the small electromagnetic induction, re-

tained here in order to describe the island evolution. The first
term on the right-hand side represents the drive from currents
flowing outside the island region, while the second term,
�pol�u ,w�, measures the effects of the internal polarization
current, including that generated by the turbulence. This term
takes the form

�pol�u,w� � −
1


�̃
	

−lx

lx

dx	
−





dy�J − 
J���cos y , �5�

where 
·�� represents the average across an infinitesimal tube
of flux �. In summary, we quantify the effect of the turbu-
lence on island propagation in terms of the azimuthal force
Fy and its effect on island size in terms of the matching
parameter �pol.

Self-sustained turbulence requires a sufficiently large
number of linearly unstable modes. In the present model, the
resistive drift-waves are driven unstable by the density gra-
dient. Experiments and simulations have shown, however,
that magnetic islands flatten the density gradients for a broad
range of conditions.8,20 In order to guide the choice of pa-
rameters for the nonlinear simulations, we have used a linear
eigenvalue code �benchmarked with analytical results21,22� to
investigate the linear stability properties. To model the ef-
fects of density flattening we have used the equilibrium den-
sity profile n��x�=1− �1−n��0��exp�−x2 /w2�. Recall that due
to the frozen-in property, electrons inside the separatrix must
propagate at the same velocity as the island. Thus, the degree
of flattening n��0� must be such that the island velocity
matches the electron diamagnetic velocity inside the separa-
trix, u�n��0�.

Figure 1 shows the marginal stability curves in the plane
�u ,D� for modes with even and odd parity about x=0. Note
that the marginal stability points in the absence of flattening
lie at the intersection of the line u=1 with the stability
boundaries. Figure 1 shows that there is a region of param-
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FIG. 1. �Color online� Stability diagram for the dissipative drift wave for
w=2.9. The shaded regions show the domains of instability for the even and
odd dissipative drift waves and the lines show the phase velocity of the
unforced �Fy =0� island as a function of D=� when parity is enforced.
Unstable roots are represented with dashed lines.
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eter space where only even modes are unstable. Given the
odd parity of the equilibrium, this region offers the opportu-
nity to suppress numerically the turbulence by imposing an
odd parity on the dynamics. Enforcing parity makes it pos-
sible to compare the turbulent and quiescent states for the
same values of the parameters.

We have solved systems �1� and �2� using an initial-
value, finite-difference code that uses a fully implicit
algorithm.23 The size of the numerical box is lx=6.7 and the
grid resolution is 100�112 points. We initialize the simula-
tions with randomly phased adiabatic perturbations described
by the spectral distribution �nk �
k2 / �1+k4�. A Gaussian en-
velope localizes the seed perturbations in the central region
of the numerical box with amplitudes in the linear regime.

The qualitative properties of the system are indicated in
Fig. 2 by a comparison between the nonadiabatic component
of the density, H=n−�− 
n−��� in a case �a� without, and
�b� with an island. In the first case the nonadiabatic pertur-
bations are concentrated in the hydrodynamic layer, as
expected.7 In the presence of an island, by contrast, pertur-
bations propagate along the field away from the hydrody-
namic region, thereby spreading across the entire island.

In order to gain some understanding of the effects of
turbulence on the island, we begin by investigating the re-
sponse of the system to an island moving with a constant
velocity. Figures 3 and 4 show Fy and �pol as a function of
the velocity, u, for two different island widths w=0.5 and
w=2.9, and for D=�=0.1 and C=1. The solid lines repre-
sent cases where the odd parity of the fields is enforced, so
that turbulence is suppressed, while the dashed lines repre-
sent time-averaged values of Fy and �pol in simulations
where both parities are allowed to evolve.

Of particular interest are the multiple unforced solutions
described by the intersections of the force curve with the
abscissa and marked by vertical lines in Figs. 3 and 4. For
the value C=1 used here the unforced solutions other than
the universal root all correspond to u�1 and thus to flat-
tened density profiles. Note that the stability of any root with
respect to a change in velocity can be determined from the

derivative of the force with respect to the velocity, with
dFy /du�0 and dFy /du�0 indicating that the root is, re-
spectively, stable �dashed vertical lines� and unstable �dotted
vertical lines� against small perturbations in u. Comparison
of Fig. 3�a� with Fig. 4�a� shows that increasing w leads
to the formation of new pair of stable/unstable roots at
u
�0.35,0.55�. Increasing the island width further leads to
the merger and annihilation, at some width 2.9�w�4.1, of
the pair of roots at u
�0.55,0.75� in Fig. 4.

It is instructive to draw the locus of unforced �Fy =0�
solutions of the laminar nonlinear simulations in the linear
stability diagram of Fig. 1. The solid and dashed lines in this
diagram represent the velocity of the roots corresponding,
respectively, to stable and unstable propagation for the case
with enforced parity and for w=2.9. These lines lie mostly in
the regime where dissipative drift waves are stable, reflecting
the stabilizing effect of density flattening. The two higher-
velocity roots, however, cross the stability limit for even
modes at D
0.16 and D=0.09. We thus expect turbulence
to develop in these states when both parities are allowed to
evolve.

3 2 1 0 1 2 3
6.7

0

6.7
(a)

y

x/
ρ

3 2 1 0 1 2 3
6.7

0

6.7
(b)

y

x/
ρ

FIG. 2. Contour plot of H=n−�− 
n−��� �a� without and �b� with a mag-
netic island.
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FIG. 3. �Color online� �a� Perpendicular force Fy acting on the island and
�b� stability parameter �� vs imposed velocity u for w=0.5. The solid lines
represent laminar states �parity enforced numerically� and the dashed lines
are the time-averaged values in the turbulent states. The vertical dashed
�dotted� lines indicate stable �unstable� unforced states.
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FIG. 4. �Color online� Same as Fig. 3 but for w=2.9.
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The predictions of the linear stability calculation in Fig.
1 are borne out by the dashed lines in Figs. 3 and 4 showing
the dependence of the time average of Fy and �pol on the
velocity when both parities are allowed to evolve. When the
linear stability condition described in Fig. 1 is violated, the
dashed lines separate from the solid lines corresponding to
the parity-enforced, quiescent simulation. The difference de-
scribes the effect of the turbulence on the island at fixed
velocity. Figures 3�b� and 4�b� show that over most of the
range of parameters resulting in turbulence, its effect at fixed
velocity is to drive island growth. Inspection of the force

curve, however, shows that turbulence changes Fy�u , �̃�
qualitatively. In particular, the universal root disappears in
the presence of turbulence. This suggests that the more dra-
matic effect of turbulence is to cause transitions by modify-
ing the unforced states available to the island.

In order to investigate transitions in the propagation ve-
locity of the tearing mode we have implemented the velocity
evolution Eq. �3� by adjusting the boundary condition on �
every time step. Figure 5 shows the evolution of the propa-
gation velocity for islands initialized with u=1. With en-
forced parity the propagation velocity remains fixed at u=1
�dotted line�. When we allow the turbulent fluctuations to
develop, by contrast, the propagation velocity slows down
abruptly. For w=0.5 �solid line�, the velocity settles in a
turbulent steady-state around the root at u
0.75. Figure 3�b�
shows that �pol�0 for that root so that the transition in-
creases the drive for the nonlinear tearing mode. For
w=2.9 �dashed line�, the final propagation velocity is similar
to that for w=0.5 but the density flattening now extends over
the entire hydrodynamic region �w�C1/2=1� with the result

that the dissipative drift waves are stable and the final state is
quiescent. Figure 4 shows that �pol
0 for the final state, so
that the transition has negligible effect on the drive. Lastly,
for w=4.1 �dashed-dotted line� the intermediate unforced
roots have disappeared through merging and the island slows
to the smallest root at u
0.15. In this state the polarization
current is stabilizing and the island quiescent.

In summary, we have described the interaction between
magnetic islands and the electrostatic turbulence caused by
dissipative drift waves. We used parity constraints to com-
pare quiescent and turbulent states with the same values of
the parameters. The most important effect of turbulence is
to cause transitions to more slowly propagating states with
partially flattened density. For a small island �w=0.5� the
transition is destabilizing but for w=2.9 the effect on stabil-
ity is very small and for large islands �w=4.1� it becomes
stabilizing.
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